

Spoken Language Dialogue Systems

Report 9a, January 1996

Test of the Danish

Spoken Language Dialogue System

CPK - Center for PersonKommunikation, Aalborg University

CCS - Centre for Cognitive Science, Roskilde University

CST - Centre for Language Technology, Copenhagen

Printed at Roskilde University

January 1996

ISBN 87-7349-300-7

The present report is part of the documentation series from the strategic research programme

Spoken Language Dialogue Systems. The programme is sponsored by the Danish Technical

Research Council. The project partners are the Center for PersonKommunikation (CPK)

(coordinating partner) at Aalborg University, the Centre for Cognitive Science (CCS) at

Roskilde University, and the Centre for Language Technology (CST), Copenhagen.

Authors:

Laila Dybkjær, CCS

Niels Ole Bernsen, CCS

Tom Brøndsted, CPK

Anders Baekgaard, CPK

Hans Dybkjær, CCS

Lars Bo Larsen, CPK

Børge Lindberg, CPK

Bente Maegaard, CST

Bradley Music, CST

Claus Povlsen, CST

The project partners can be contacted at:

Center for PersonKommunikation (CPK):

Paul Dalsgaard

Aalborg University

Frederik Bajers Vej 7

DK-9220 Aalborg Ø, Denmark

Phone: +45 98 15 85 22. Fax: +45 98 15 15 83

Email: pd@cpk.auc.dk

Centre for Cognitive Science (CCS):

Niels Ole Bernsen

Roskilde University

P.O.Box 260

DK-4000 Roskilde, Denmark

Phone: +45 46 75 77 11. Fax: +45 46 75 45 02

Email: nob@cog.ruc.dk

Centre for Language Technology (CST):

Bente Maegaard

Njalsgade 80

DK-2300 Copenhagen S, Denmark

Phone: +45 35 32 90 90. Fax: +45 35 32 90 89

Email: bente@cst.ku.dk

Spoken Language Dialogue Systems - Report 9a 1

Preface

This report is the ninth in the documentation series from the research programme Spoken

Language Dialogue Systems. The objective of the programme is through the development of

prototypes to gain new knowledge in the research fields of speech technology, natural

language processing and human-computer interaction (cognitive engineering) and especially in

the combination of these fields. The programme is scheduled to run for a four year period

(primo 1991 - primo 1995) and is divided into the two sub-projects P1 and P2, each scheduled

to produce a running prototype in the domain of flight ticket reservation and information. Both

prototypes have been implemented and tested.

Report 9 has three parts, 9a, 9b and 9c. The present report (9a) focuses on the test of the

implemented modules of P1 and P2, P2 being an improved version of P1. Report 9b presents

the user test of the final system, called the Danish dialogue system, or sometimes P2 for short,

with a simulated speech recogniser. Report 9c builds on the user test material from report 9b

and describes the sufficiency of the linguistic coverage and the performance of the parser for

input outside the linguistic coverage.

Chapter 1 provides an introduction to the test strategies and techniques used for testing the

implemented components of P1 and P2. Chapter 2 describes in detail for each system com-

ponent how it was tested. Chapter 3 concludes the report. Appendix A provides a set of design

rationale (DR) frames used for the representation and discussion of dialogue problems detected

during the test. Appendix B gives a brief description of a program constructed to facilitate the

indication of test input to the dialogue part and to the application database of P1 and P2.

Keywords

Spoken language dialogue systems, test, glassbox, blackbox.

Danish Summary

Denne rapport er den niende i dokumentationsserien fra forskningsprojektet Behandling af talt

sprog i dialogstyrede applikationer. Projektets formål er gennem udvikling af prototyper at

erhverve ny viden inden for forskningsområderne taleteknologi, natursprogsbehandling og

menneske-maskine interaktion (kognitionsforskning) og specielt i kombinationen af disse

discipliner. Programmet løber over en fireårig periode (fra primo 1991 til primo 1995) og er

opdelt i to dele, P1 og P2, der hver skal resultere i en kørende prototype inden for domænet

flybilletbestilling og -information. Begge prototyper er på nuværende tidspunkt færdig-

implementeret og afprøvet.

Rapport 9 består af tre dele, 9a, 9b og 9c. Nærværende rapport (9a) fokuserer på afprøvningen

af de implementerede P1- og P2-moduler. P2 er en forbedret version af P1. Rapport 9b

præsenterer brugertesten af det endelige system, kaldet det danske dialog system eller kort og

godt P2, med en simuleret talegenkender. Rapport 9c bygger på brugertestmaterialet fra

rapport 9b og beskriver tilstrækkeligheden af den lingvistiske dækningsgrad og parserens

performans ved input uden for den lingvistiske dækningsgrad.

Kapitel 1 giver en introduktion til de afprøvningsstrategier og -teknikker, der er brugt ved

afprøvningen af P1 og P2. Kapitel 2 beskriver i detaljer, hvordan hver systemkomponent er

blevet afprøvet. Endelig afrunder kapitel 3 rapporten. Appendiks A viser et sæt design

rationale (DR) rammer, der er blevet brugt til at repræsentere dialogproblemer, der er opdaget

under afprøvningen, og til at diskutere mulige løsninger. Appendix B giver en kort beskrivelse

af et program, der blev konstrueret for at lette angivelsen af testinput til dialogdelen og til

databasen i P1 og P2.

Spoken Language Dialogue Systems - Report 6a 3

Spoken Language Dialogue Systems - Report 9a 4

Contents

Preface1

Contents 3

1. Introduction5

2. Test of system platform and system components ... 7

 2.1 System platform .. 8

 2.1.1 The DDL-Tool ... 8

 2.1.2 The ICM dialogue manager ... 8

 2.1.3 The communication system ... 9

 2.1.4 Test modules .. 9

 2.2 The speech recognition module 9

 2.2.1 Test of the speech recogniser ... 9

 2.2.2 Test of tools for generation of language models 11

 2.2.3 Test of databases and acoustic models .. 13

 2.3 Other devices .. 16

 2.3.1 The text recogniser .. 16

 2.3.1.1 Test of the text recogniser ... 16

 2.3.2 The TLI telephone line interface device .. 17

 2.3.2.1 Tests performed on the TLI ... 17

 2.3.3 The reproductive speech driver .. 18

 2.3.3.1 Test of the reproductive speech driver 18

 2.4 The linguistic module ..18

 2.4.1 The evaluation scenario ... 18

 2.4.2 Test data for NLP systems ... 19

 2.4.3 Corpus-based definition of the sublanguage model 20

 2.4.4 Testing the lingware part of the NLP module 22

 2.4.4.1 Description of the applied test procedure 22

 2.4.5 NLP software testing ..

 24

 2.4.5.1 The debugging of the NLP software 25

 2.4.5.2 Testing of algorithm performance 25

 2.4.6 Conclusion ... 27

 2.5 The dialogue description28

 2.5.1 The first test phase ... 28

 2.5.2 The second test phase .. 31

 2.5.3 The third test phase ..35

 2.5.4 Concluding remarks ... 35

 2.6 The application database35

 2.7 Pre-recorded output ...

 37

Spoken Language Dialogue Systems - Report 9a

3. Conclusion

 39

Appendix A: DR-frames ..

 40

Appendix B: The prompt program62

References

 63

Project reports

 65

Spoken Language Dialogue Systems - Report 9a 7

1 Introduction

The present report focuses on the test of the implemented components of the two prototypes,

P1 and P2, developed in the Danish dialogue project. P2 is a revised and improved version of

P1 and is also called the Danish dialogue system.

Program testing is an important part of systems development. It is the process of making the

system behave as intended [Lauesen 1979]. Testing serves to detect errors in the implemented

program and to make a diagnosis of what is wrong in each case so that errors can be corrected.

Basically, there are two strategies for testing an implemented system: it may be tested bottom-

up or top-down. In bottom-up testing, each system module is tested separately by embedding it

in artificial test surroundings and providing it with input on the form requested by the module

in question. By contrast, top-down testing tests the system as a whole. Missing parts are

replaced by dummies simulating the effect of the absent parts. System input in a top-down test

corresponds to input to the final system.

The advantage of bottom-up testing is that system components developed at different sites

and/or not finished at the same time can be tested separately and independently of the existence

of other components. The drawbacks of bottom-up testing are that artificial test surroundings

must be built which may be costly, and that disagreements on formats in the communication

exchange between the modules are not necessarily revealed.

Top-down testing requires an (almost) final system and the construction of dummies if there

are unfinished parts, but will reveal disagreements on formats and is necessary to make sure

that all the modules behave together as intended.

Testing typically includes three types of test: a glassbox test, a blackbox test and a user test, cf.

Figure 1.1.

Figure 1.1. Typically three different kinds of test are used to test a program. The

glassbox test serves to ensure that all parts of the code can be activated and make

a reasonable contribution to system behaviour as described in the specification.

The purpose of the blackbox test is to ensure that the program behaves in

accordance with the specification and reacts robustly and rationally on input

8 Spoken Language Dialogue Systems - Report 9a

outside the specification. Finally, the user test is meant to test if the specification,

and hence the program, is sound and complete in relation to users‟ expectations as

to which tasks they can perform with the system.

In a glassbox test the internal representation may be inspected. The test should ensure that

reasonable data sets can be constructed that will activate all loops and conditions of the

program being tested. The relevant test data are constructed by the system programmer(s)

along with an indication of which program parts the data are supposed to activate. Via test

print-outs in all loops and conditions it is possible to check which ones were actually activated.

In a blackbox test the program is viewed as a black box. Only input to and output from the

program are available to the evaluator whereas how the program works internally is invisible.

Test data are constructed along with an indication of expected output which is compared to

the actual output when the test is being performed. Differences between expected and actual

output must be explained. Either there must be a bug in the program being tested or the

indicated expected output was not correct. Bugs must be corrected and the test run again. The

test data should include fully acceptable as well as borderline cases to test if the program reacts

reasonably and does not break down in case of errors in input. Ideally, and in contrast to the

glassbox test data, the blackbox test data should not be constructed by the system

programmer(s) who may have difficulties in viewing the program as a black box.

The final test to perform is the user test which measures overall system performance in a

number of respects and provides information on the usability of the system and the success of

the specification. Test data may be constructed by system designers if the purpose is to test a

specific part of the system while avoiding, e.g., known shortcomings. In other cases the

decision on test data is left to the users. Typically, this solution is chosen when a system is

considered almost ready for being used in practice. The user test of the Danish dialogue system

is reported in [Report 9b].

Bottom-up and the top-down test strategies have been used for P1 and P2, although bottom-

up testing was mainly used for P1. Glassbox and blackbox test types have been used in

connection with the tests of P1 as well as P2. The tests are described in detail in the following

chapter.

Spoken Language Dialogue Systems - Report 9a 9

2 Test of system platform and system

components

This chapter describes the test of the P1/P2 system platform and system components both

separately and as an entire system. Since P1 and P2 are rather similar, the applied testing

methods will in many cases be approximately the same for P1 and P2. In such cases we will

refer to them as P1/P2 without distinguishing in detail between the test of the two prototypes.

The P1/P2 systems consist of several components based on the DDL/ICM architecture as

outlined in Figure 2.1. All components have been subject to bottom-up test as well as top-

down test. Glassbox test was only used during bottom-up testing whereas blackbox test was

used along with both strategies. The bottom-up tests were performed at the sites where each

module was developed, i.e. the speech recogniser, the player (part of the reproductive speech

module), the telephone line interface, and the text recogniser have been tested at CPK, the

linguistic analysis module at CST, and the dialogue description and the database at CCS. The

prerecorded phrases (part of the reproductive speech module) were also tested at CCS but

only top-down, and the text recogniser was tested in practice at CCS during the user tests. The

main part of the architecture has been tested at CPK but DDL and DDL-Tool have been tested

at CCS as well along with the implementation of the dialogue description.

Database
Speech
Recogniser

Reproductive
Speech Interpretation

and Control
Module (ICM)

Parser

Dialogue
Communi-
cation
Manager

DDL-Tool

Dialogue
Description

d
ri

v
e
r

d
ri

v
e
r

d
ri

v
e
r

d
ri

v
e
r

d
ri

v
e
r

d
ri

v
e
r

Text
recogniser

Telephone
Line
Interface

Figure 2.1. Overall system architecture of P2.

10 Spoken Language Dialogue Systems - Report 9a

2.1 System platform

The P1 dialogue system is built on top of the dialogue system platform described in [Report

10, Baekgaard 1995]. The architecture of the platform is designed to be modular and open

such that it can be easily expanded, and all modules operating in the dialogue system adhere to

a well-defined protocol. This allows for efficient adaptation and integration of new operating

environments and new special purpose devices. [Report 2, Report 10]. During design and

implementation of the architecture and the main components, generality, flexibility and re-

usability were major concerns. Further, a design criterion was to aim at a high degree of

formalisation.

The main components of the platform are the DDL dialogue description formalism, the DDL-

Tool, the ICM generic dialogue manager and the communication system. Parts of the main

components of the system platform were originally developed in the SUNSTAR project, and

extensive tests were then conducted. Further tests have been performed in the current project.

Most tests were conducted manually either by observing the behaviour of a module when given

certain input (blackbox tests), or by inspecting output like dumps of data structures, compiled

output, and traces (glassbox tests). A number of tests suites were developed that allowed test

results to be reproduced. However, most of the tests carried out during development were

conducted manually and cannot be reproduced automatically.

2.1.1 The DDL-Tool

The DDL-Tool has been tested by independent bottom-up tests of the major functions:

1. The user interface (menus, buttons, drawing facilities, editing on the textual, frame and

graphical levels, the lexica, etc.). Blackbox tests have been conducted by observing that each

element of the user interface behave correctly.

2. Saving and retrieving files (DDL descriptions). Tests have been conducted by observing that

each retrieved file is equivalent to the saved one, and by comparing files retrieved and then

saved.

3. The compiler. Tests have been conducted by inspecting the compiler output, and by

transferring the output to the ICM for analysis.

4. The verifier. Tests have been conducted that valid dialogue descriptions are recognised and

that errors are detected.

5. The debugger. Tests have been conducted by observing that each function of the debugger

works.

2.1.2 The ICM dialogue manager

The ICM has been tested by independent tests of the major functions. There are test suites that

allow tests to be repeated. The ICM is a complex module as it contains many components each

of which is complex and which must interact. The major functions are:

1. Parsing of dialogue descriptions and creation of the internal representation of the dialogue

description;

2. Optimisation of the representation;

3. Parsing of events according to DDL grammars;

System platform 11

4. Interfacing to the NJAL parser;

5. Maintenance of dialogue context (subgrammars, word sets);

6. Interpretation of rules;

7. Procedure activations;

8. Control of handlers;

9. Protocol conversions;

10. Timing;

11. Multi-threading.

These functions have been tested by a number of small DDL test programs that each were

designed to test a specific function. In addition, test programs were designed for testing the

entire system.

2.1.3 The communication system

For the communication system the following tests have been performed:

1. Verification of configuration files being parsed correctly. This is done by inspecting that

dumps of the internal structures correspond to the input.

2. Verification that the commands are handled correctly. This is done by inspecting the

response when commands are sent to the communication system. Since responses depend on

the state of the communication system, a large number of tests have been conducted.

2.1.4 Test modules

Several replacement modules have been developed that allow tests of specific modules or

functions in modules. The following replacement modules have been developed:

1. A reproductive speech output device for Sun work stations that replaces the DSP based

device described in section 2.3.3.1. The two devices have the same interface and functionality

seen from the point of view of the dialogue manager.

2. A text input device that allows text entered at a keyboard to simulate the recogniser. This

device allows unrestricted text input as opposed to the text recogniser described in section

2.3.1. This device is useful for testing a dialogue system where the speech recogniser is

simulated.

3. A pseudo parser that allows semantic representations to be entered from the keyboard (or

taken from a file). The pseudo parser replaces the speech recogniser and the NJAL parser, and

is useful for testing the dialogue model.

When all errors found during the tests had been fixed, the platform was distributed to partners.

During the development of P1 and P2 several bugs were discovered and fixed.

2.2 The speech recognition module

The speech recognition module mainly consists of an acoustic recogniser, acoustic models,

language models, and tools for training or generating these models. The training software for

12 Spoken Language Dialogue Systems - Report 9a

generating acoustic models is not described in this report, because it has not been developed

within the dialogue project, but see [Jacobsen 1991] and [Young 1992].

2.2.1 Test of the speech recogniser

The speech recogniser is a continuous speech recogniser based on Continuous Density Hidden

Markov Models (CDHMM) and the token passing Viterbi decoding algorithm [Young et al.

1991].

The CDHMM model structure has been chosen because of the apparently impressive

performance achieved on systems based on CDHMMs, mainly in the US, during the late

eighties and early nineties. CDHMMs are powerful in speech pattern processing for several

reasons. CDHMMs are parametric models and offer a compact representation of stochastic

signals such as speech patterns. CDHMMs are trainable and methods such as the Baum-Welch

re-estimation algorithm exist for the estimation of CDHMM parameters. Finally, efficient

methods, such as the Viterbi-algorithm, exist for conducting pattern recognition based on

CDHMMs. This provides an attractive basis for the implementation of low-cost real-time

recognisers based on CDHMMs.

The Viterbi token passing algorithm has been chosen because it dynamically generates the

required data structures for representing potential word boundaries and string candidates

during the optimal Viterbi search.

The speech recogniser uses language models for constraining the decoding of the acoustic

signal. In modern speech technology, this is an established method for increasing the

recognition rate. The most commonly used language models are grammars equivalent to the

"type 3" in the Chomsky hierarchy (regular grammars, finite state automata, cf. [Chomsky

1959]). The speech recogniser supports both deterministic and probabilistic language finite

state language models. However, for reasons discussed in section 2.2.2 we have chosen only to

use deterministic models. Please refer to section 2.2.2 also for a description of the test of tools

for generation of finite state language models.

The speech recogniser is an extended version of the SUNCAR batch recogniser

implementation originating from the SUNSTAR project, cf. [Report 8]. As the demand of real-

time speech recognition was mandatory within the present project, a further development of

the SUNCAR batch recogniser was conducted, resulting in the recogniser described in the

present report (the SUNCAR Real-time Recogniser). The SUNCAR Real-time Recogniser is

implemented to run on a PC equipped with an AT&T DSP32C signal processor based board

making use of the 3R Software [Lindberg 1995] for the acoustic processing such as feature

processing, density computation and Viterbi decoding at CDHMM model level.

The SUNCAR Real-time Recogniser is able to execute in real time on a PC running either

DOS or Linux and equipped with an AT&T DSP32C based board. Real time capacity,

however, is limited to approximately 120, 10 state, single mixture CDHMM models, and

grammar finite state networks of less than 450 arcs and 75 states. Real time execution has been

obtained by distributing the Viterbi decoding between the DSP and the host as described in

[Report 8]. If the limits for real-time execution are exceeded, the recogniser switches to non-

real time execution in which the DSP is used for speech signal acquisition and feature

processing, only.

The recogniser acts as a device in the dialogue system as presented in section 2.1. It has

therefore been verified that the recogniser, as a device, comply with the system communication

protocol specification as presented in [Report 8]. This has been achieved partly by simulating

commands from the ICM (blackbox), and partly by inspecting contents of events from the

The speech recognition module 13

driver during processing (glassbox). However, verification of the driver functionality has been

complicated in the present system, as three of the present drivers communicate with the same

DSP32C based PC board, running the 3R software [Lindberg 1995].

The speech recogniser draws advantage of many of the components originating from the 3R

software which was originally designed for isolated word recognition. Within the ESPRIT

SAM project [SAM 1992], test control drivers have been developed for this isolated word

recogniser, and extensive testing has been conducted and reported on that recogniser

according to the standard protocols within the SAM project.

Several formal automated tests of the 3R Software have thus been conducted although test

control drivers for the present (continuous) speech recogniser have not been implemented.

Although the individual modules of the original batch SUNCAR recogniser have been

significantly extended and modified, comparisons on a recognition result basis were still

possible. This has been utilised to verify reliability of recogniser output. This reliability

verification has included real time execution, as results obtained during processing of the

microphone signal were verified against those subsequently obtained from batch testing on the

corresponding speech signal file. Similar blackbox verification procedures have been applied

for verifying the feature processing part of the recogniser.

In conclusion the recogniser has been verified at the acoustic analysis, acoustic matching and

acoustic decoding levels to obtain identical performance compared to the training and testing

software, cf. [Report 5, Report 5a]. Please refer to section 2.2.3 for a description of the

training and test of acoustic models. Unfortunately, this is no valid prediction of the ultimate

recogniser performance observed within a real-life application such as the present P2-

application. This is due to several factors which all will degrade the performance. Examples of

such factors are the fact that the speech signal within an application will be noise-degraded and

the fact that there is no optimal level-adjustment. These examples are most apparent when

using external telephone lines.

2.2.2 Test of tools for generation of language models

In the present system the speech recogniser is constrained by deterministic (non-probabilistic)

finite state language models. Note that the classification of the language models as finite state

("Type 3") grammars within the Chomsky hierarchy implies an important glassbox evaluation,

as the restrictions imposed by each grammar class in the hierarchy are well-described in the

literature, cf. [Chomsky 1959]. Examples of syntactic structures which cannot be described in

finite state models are given in [Report 5].

Deterministic language models are based on binary indicator functions. Such models can

separate grammatical sequences of words from ungrammatical ones, however they do not

assign probabilities to the sequences. Formally, probabilistic models are more "expressive" than

deterministic models, because they generate a likelihood for each sequence of words. On the

other hand, probabilities must be based on observation sequences of finite length, typically one

(unigrams), two (bigrams) or three word sequences (trigrams).

The main reason for using deterministic instead of probabilistic language models in the present

system is the fact that probabilistic models must be trained on large amounts of transcribed

speech data. Such data have not been available within the project because of limited resources.

The recorded and simulated (Wizard generated) speech data used for sublanguage definition

and dialogue modelling, cf. [Report 3, Report 4] are quantitatively insufficient for training of

N-grams. Further, if language modelling is done with pure data-driven techniques, there is no

guarantee that the resulting models will observe the external restrictions imposed by the

14 Spoken Language Dialogue Systems - Report 9a

recogniser as regards number of active words, number of nodes, and number of arcs (cf.

section 2.2.1). For further discussion, see [Brøndsted 1994].

The deterministic language models used by the speech recogniser are generated automatically

from the APSG sublanguage definitions described in section 2.4. The software package that

converts the APSG subgrammars into finite state grammar models to be accessed by the

recogniser is described and documented in [Report 5, Report 5b]. The software package

includes three grammar converters:

1) A program apsg2rtn that converts APSGs into fully equivalent non-augmented (single

feature based) recursive transition network grammars;

2) A program rtn2wp that converts the RTN-output from apsg2rtn into word pair grammars to

be accessed by the speech recogniser;

3) A program rtn2fsn that expands the RTN-output from apsg2rtn into approximately

equivalent finite state network grammars. This converter is equivalent to the built-in RTN

expander of the speech recogniser.

The multiple converter concept has been chosen in order to enable flexible and alternative

experiments with approximation methods. Further, the intermediate RTN grammar format

generated by the apsg2rtn converter has functioned also as input to the software which

generates training databases (sentence generation and selection). Finally, the software package

has served as a tool for debugging and refining the APSG grammars. The built-in debugging

facilities of the software have been described in [Report 5b].

The converters have been blackbox tested with a number of tests sessions, where output from

one module has been used as input to another. The following example describes the separate

steps of a typical test session which also includes the sentence generation and reference file

checking software (sgen and checkref, cf. section 2.2.3.):

a. Conversion of APSG subgrammars to RTN subgrammars with apsg2rtn.

b. Conversion of the RTN subgrammars to word pair subgrammars with rtn2wp.

c. Conversion of the RTN subgrammars to FSN subgrammars with rtn2fsn.

d. Generation of a random set of sentences from the RTN, word pair, and FSN

subgrammars (with sgen).

e. Checking how each set of sentences is covered by the APSGs, RTNs, FSNs and word

pair grammars (with the checkref sentence parser equivalent to the built-in NLP-parser

of the ICM [Report 5b]).

In addition, the converter software has been compiled by various C++ compilers under various

operative systems using different available debugging tools, cf. [Report 5b]. This has been an

important part of the verification and ensures a high degree of code standards and portability.

The glassbox tests of the converting software has concentrated on the aspg2rtn converter,

because it is a widespread (and well-founded) assumption that unification grammars normally

imply an enormous reduction of rules compared to label-based coding in standard context-free

grammar formats (like RTNs). Consequently, the danger of converting APSGs into strongly

equivalent RTNs is that the RTN output can grow into huge sizes (e.g. in terms of number of

rules, kilo bytes etc.). In general, the conversion algorithm described in [Report 5] which

during the expansion of compound feature based rules attempts to eliminate impossible

instantiations, has proven to be very strong and fast. However, theoretically it is possible to

construct certain APSGs which bring the converter and the platform on which it runs to its

knees.

The speech recognition module 15

The converter software has been designed mainly to support two approximation methods:

1) Generation of word pair language models;

2) Generation of fullgram language models.

A word pair language model represents an approximation method which gives priority to

small-size internal representations. This reduces the computational load of recognition at the

expense of perplexity (recognition rate). A fullgram finite state network gives priority to low

perplexity, however, it tends to exceed the size limits imposed by the DSP version of the

recogniser.

As the development of the system and the APSG subgrammars proceeded it soon became clear

that fullgram language models could only be used for off line tests with the batch version of the

recogniser. The DSP version was not capable of loading fullgram subgrammar sets. Especially,

when fullgram language models were augmented with garbage transitions using the phrase-

spotting or word-rejection facilities of the grammar converters, cf. [Report 5], the number of

states and arcs grew to a size which was not feasible for the real time implementation of the

recogniser. On the other hand, preliminary user tests (non-systematic tests where the system

designers posed as users) made it clear, that pure word pair grammars would be insufficient to

obtain an acceptable transaction success rate with non-trained ("naive") users. The system

simply generated too many false answers when configurated with word pair models.

The non-systematic pseudo user tests indicated that the best right-answer rate was achieved

with language models mixing word pair structures with fullgrams. Only the semantically

significant parts of the APSGs, i.e. the syntactic rules that build structures actually used by

semantic mapping, were converted into fully equivalent finite state language structures. The

rest of the APSG rules was modelled as word pair structures. For instance, considering the

sentence "jeg har kundenummer et hundrede tre og halvfjerds" ("I have customer number one

hundred seventy three"), the APSGs of course apply a syntactic analysis to the entire sequence.

However, the mapping rules only take the ending phrase structure denoting the number into

account ("et hundrede tre og halvfjerds"). When mixing word pair with fullgram structures, the

semantic mapping rules are used to determine whether a certain structure building rule is

semantically significant and must be fully expanded or if it is insignificant and can be reduced

to word pair structures.

Originally, the grammar converting software package was not designed to generate mixed

word pair and fullgram language models based on semantic significance. However, as the

converters allow the system designer to specify axioms and to manipulate parts of APSGs

separately (e.g. NP structures, PP structures, etc.), such language models could be generated

easily with only a minimum of manipulation by hand. In general, the converters have proven to

be a very powerful and flexible tool during the development of the system.

2.2.3 Test of databases and acoustic models

As described in the section 2.2.1, Continuous Density Hidden Markov Models (CDHMMs) are

used to model the acoustic units in the recognition process. The speech recogniser can use

whole- or subword models, as well as a mixture of both. Therefore, the generation of the

training database has aimed at taking a sufficient coverage of both whole words and subwords

into account. As subword units, left-right context dependent phoneme models, denoted

triphones, were chosen.

In section 2.2.1 the derivation of the language model for the speech recogniser is described.

This language model was in turn used to automatically generate the training database. To

16 Spoken Language Dialogue Systems - Report 9a

ensure that the desired coverage was obtained (both for whole words and triphones), an

iterative process was employed, in which an alternative set of sentences was generated, and the

optimal subset with respect to word and triphone occurrences was chosen. The main module of

the sentence database generation software is the sentence generator sgen, cf. [Report 5, Report

5b]. Test of this program is described in the previous section.

The result of the generation process was a set of 702 sentences, the key figures of which are

shown in Figure 2.2.3.1, cf. [Report 5, p. 55]. A total of 23 persons (12 males and 11 females)

were recorded. This figure is too low for speaker independent recognition, but had to be

restricted due to limited resources.

--

CHARACTERISTICS OF THE TRAINING CORPUS:

--

Total number of sentences in the corpus 702

Total number of words in the corpus 3.921

Number of different words 510

Total number of triphones in the corpus 18.695

Number of different triphones 1.370

Percentage of words rep. more than twice 63

Percentage of triphones rep. more than twice 95

Percentage of word boundary triphones 55

--

Figure 2.2.3.1. Key figures for the Training database. All figures are per speaker.

The total vocabulary for the dialogue project is 510 words. Of these, only 210 words are used

in the demonstrator described in the present report. However, as the training tokens (words)

are embedded in sentences, all models for the total vocabulary had to be trained

simultaneously.

The training database has been verified by listening through all recordings. A number of errors

were found and corrected. These were mainly caused by repetitions or deletions of words.

Furthermore, about 5% of the utterances contained saturation errors, introduced in the

downsampling process. The test results shown in the figures below were obtained before this

correction. Later results have shown that the recognition rate increased approximately 1 - 2%

after the corrections, cf. [Report 5a].

In order to verify the quality of the acoustic models (and the recogniser) a test database was

recorded. The recording conditions were the same as for the training database, i.e a

microphone was used in a laboratory with no noise and simulated telephone bandwidth [Report

5]. Whereas the criteria for the training database were mainly connected with linguistic and

acoustic coverage, this was not the case for the test database. The test database was, for

practical reasons chosen to be considerably smaller than the training database. The objective

was to achieve an even division between male and female voices, and between voices that had

previously appeared in the training corpus, and new voices. It therefore only includes 11

speakers. As the language model is subdivided into 10 subgrammars, the test database reflects

this. In most cases, between 30 and 40 sentences per speaker were recorded for each

subgrammar. The test database was generated partly manually and partly with the sentence

generator sgen mentioned in the previous section. The key figures for the test database are

shown in Figure 2.2.3.2, cf. [Report 5, p. 61]. Note that each set is divided into an “inside” and

The speech recognition module 17

an “outside” part. The “inside” sentences are within the linguistic coverage, whereas the

“outside” are not. The classification of sentences into “inside”/”outside” was conducted with

the reference file checker (NLP parser) checkref mentioned in the previous section (for a

further description of checkref, see [Report 5, Report 5b].

--

SUBGRAMMAR “Inside” “Outside” Vocabulary

--

COMMAND 3 5 3

DATE 37 10 74

DELIVERY 9 5 31

DISCOUNT 11 5 19

HOUR 29 10 58

NUMBER 35 10 68

PERSONS 35 10 52

ROUTE 5 5 37

START 30 10 69

YESNO 11 5 26

--

TOTAL 205 75 211

--

Figure 2.2.3.2. Key figures for the test database. All figures refer to sentences.

This section reports only a very brief summary of the baseline test results obtained on the test

database. For a more thorough discussion and presentation of results, see [Report 5]. These

results are, of course, also part of the blackbox test of the speech recogniser. All results are

obtained using word- or phrase spotting techniques, with a number of garbage- and silence

models. As the present version of the dialogue system only uses whole word models, all results

are for word models. Language models are of the word pair grammar type. Three tables are

shown. Figure 2.2.3.3 shows the results for each subgrammar. Figure 2.2.3.4 shows the

average recognition rates, when all subgrammars are combined and used in parallel, and Figure

2.2.3.5 shows a subdivision into male/female and known/unknown speakers.

--

SUBGRAMMAR Word Error Rate Sentence Error Rate

--

COMMAND 3 3

DATE 23 41

DELIVERY 34 55

DISCOUNT 32 53

HOUR 25 40

NUMBER 26 54

PERSONS 18 25

18 Spoken Language Dialogue Systems - Report 9a

ROUTE 15 36

START 13 46

YESNO 23 56

--

AVERAGE 22 43

--

Figure 2.2.3.3. Recognition rates for each subgrammar.

As shown in Figure 2.2.3.2, each subgrammar differs with respect to vocabulary size. This is

reflected in the recognition rates for the respective subgrammars.

--

GRAMMAR Word Error Sentence Error

--

COMMAND 42 30

DATE 28 42

DELIVERY 34 55

DISCOUNT 46 62

HOUR 35 46

NUMBER 28 58

PERSONS 26 34

ROUTE 29 73

START 13 47

YESNO 29 62

--

Figure 2.2.3.4. Average error rates for all subgrammars combined.

When all subgrammars are combined, the average recognition rate drops when compared with

the figures for the individual subgrammars. This is caused by the enlarged search space, and

hence harder recognition task.

As was expected from the low number of speakers represented in the training database, there is

a significant (5 %) drop in performance for unknown speakers.

The results clearly show that improvements of the acoustic decoding are required. No clear

conclusion has appeared, however, as to whether the principle of automatically generating

training sentences is applicable. It ensures that the specified coverage is fulfilled, but on the

other hand the auto-generated sentences are typically semantically deviant and difficult to

pronounce naturally.

--

SPEAKER CATEGORY Word Error Sentence Error

--

KNOWN 19 40

UNKNOWN 24 46

The speech recognition module 19

MALE 21 43

FEMALE 22 43

--

AVERAGE 22 43

--

Figure 2.2.3.5. Recognition error rates for male/female and known/unknown speakers.

2.3 Other devices

This section discusses the remaining devices of the system architecture as illustrated in Figure

2.1.

2.3.1 The text recogniser

The program txtrec is a text recogniser based on grammar constrained pattern matching similar

to the techniques used in modern continuous speech recognition technology [Brøndsted 1995].

The pattern matching algorithm is based on dynamic time warping where local distances

between characters are accumulated to global scores. The syntactic decoding is a token-

passing Viterbi-algorithm similar to the decoding scheme of the acoustic speech recogniser, cf.

section 2.2. The text recogniser uses the same grammar format (e.g. word pairs, fullgrams) as

the speech recogniser. The text recogniser has been designed mainly to support WOZ

experiments (bottom-up tests) where the Wizard types input from the user directly on to the

system, bypassing the acoustic recogniser. In future, the text recogniser may be improved to

simulate acoustic word and sentence recognition rates in order to support predictive

assessment of dialogues under changing recognition performances.

2.3.1.1 Test of the text recogniser

As the text recogniser was designed it was debugged and tested with different input forms. The

tests were conducted as pseudo user tests, where the designer typed the user input types which

can be expected in a real life WOZ experiment:

1) Possible sentences (covered by the grammars) possibly with minor spelling mistakes.

2) "Naive" input where the user has unrealistic expectations to the system and makes a request

which by no means can be answered correctly.

3) Uncooperative input, e.g. nonsense utterances, where the user has absolutely no intention of

using the system for its purpose.

The input-output examples below were generated with the text recogniser configurated with

the Command, Hour, and Route word pair subgrammars. Garbage text patterns (marked with

[*]) were inserted as loops at the start states and the end states of the grammars corresponding

to the standard setup of the acoustic speech recogniser in the dialogue system.

1)

I: jeg vil gerne til odense [I would like to go to odense]

O: grammar Route, score 0.000000: jeg vil gerne til odense [I would like to go to odense]

I: jeg vil gerne til Odense [I would like to go to odense]

O: grammar Route, score -20.000000: jeg vil gerne til odense [I would like to go to odense]

20 Spoken Language Dialogue Systems - Report 9a

I: jegvgerntlodense [Iwoudliketogtoodense]

O: grammar Route, score -52.000000: jeg vil gerne til odense [I would like to go to 0dense]

2)

I: kan jeg have min hund med til odense [can I bring my dog with me to odense]

O: grammar Route, score -200.000000: [*] til odense [* to odense]

I: kan der medbringes husdyr paa odense flyet [can you bring pets on the odense flight]

O: grammar Route, score -279.000000: [*] fra odense [*] [* from odense *]

3)

I: asdlkjs [asdlkjs]

O: grammar Hour, score -66.000000: ja syv [*] [yes seven *]

The user test reported in [Report 9b] has been conducted with the text recogniser.

2.3.2 The TLI Telephone Line Interface device

The task of the TLI device is to enable the dialogue system to connect to an ordinary telephone

connection. This is achieved via the DSP-board which has a special circuit for this purpose

[Ensigma 1990]. Similar to the player- and speech recogniser devices, the TLI consists of two

parts, a DSP-part and an SDD-part, running on the PC-host. The DSP-part is documented in

[Lindberg 1995], and will not be described in further detail here, except for the functionality it

provides.

The basic functionality of the TLI includes: Detection of incoming (user) calls, detection of

user hang-ups, and detection and identification of touch tones (DTMFs). The TLI reacts to

input as described below:

• Ring detection: The DSP is switched to the telephone circuit, and the circuit is polled

for an incoming call.

• Hangup detection: When the connection is established, the incoming signal is

continuously checked for tone input. If a tone is detected, it is verified whether it is a

"telephone busy" signal. If this is true, a hangup has been detected.

• DTMF detection: When a tone signal is detected, it is checked whether it corresponds

to one of the DTMF tone-pair values.

Ring detection is performed every 1 second, and DTMF and hangup detection 6 times per

second.

2.3.2.1 Tests performed on the TLI

Glass box evaluation. The TLI code has been debugged, and the results inspected to verify that

the desired actions take place correctly.

Black box evaluation. A test dialogue has been constructed to verify that the TLI reacts

correctly both with regard to commands from the ICM and hardware manager, and with regard

to detection of calls, hangup and DTMF input. This is the case.

The DTMF-detection algorithm has been tested with internal and external connections, and

also when speech occurs concurrently with the tones. In all cases, the identified frequences

were within the required band of +/-1.5% from the reference values [AT&T Application Note

Other devices 21

1989]. No tests have been conducted to verify whether the specifications for the twist

(difference in level between the two tones), and duration of the tones are met.

The functionality and tests are described in closer detail in [Larsen 1995].

2.3.3 The reproductive speech driver

In the present system speech output is generated by using reproductive (prerecorded) speech

(cf. Section 2.7) rather than a text to speech synthesiser.

2.3.3.1 Test of the reproductive speech driver

The reproductive speech driver (player) acts as a device in the dialogue system as presented in

section 2.1. The implementation of the player was based on the SUNSTAR implementation

and only minor changes have been made: The device driver has been changed to run under the

Linux OS (from the original Venix OS) making use of the 3R Software [Lindberg, 95]. Within

the SUNSTAR project extensive testing was conducted to verify correct queuing of messages

to be replayed, and to verify the compliance with the system communication protocol

specification.

These tests have been replicated in the present project, in part only, by simulating commands

from the ICM (blackbox), and by inspecting contents of events from the driver during

processing (glassbox). However, as was the case with the telephony interface driver and the

recogniser driver, verification of the driver functionality has been complicated in the present

system, as three of the present drivers are communicating with the same DSP32C based PC

board, running the 3R software.

2.4 The linguistic module

This section will focus on how the NLP subsystem of the overall spoken language dialogue

system was tested and evaluated during development.

The NLP module consists of a static linguistic description expressed in APSG grammar rules

and the lexicon, and a program (the parser) which applies the linguistic information. For a

more thorough description of the design of the NLP Module see [Report 7]. As a consequence

of the separation of the static declarative information and the dynamic parser algorithm, this

section has the following structure:

Subsection 2.4.1 presents the evaluation scenario for the NLP Module, in particular the

linguistic information expressed in the grammar and the lexicon.

Subsection 2.4.2 contains a description of different kinds of test data used for testing and

evaluating NLP systems, which throughout the section will function as a frame of reference for

describing how different sorts of data have been used for locating deficiencies, and for

subsequently adjusting them in the lingware part of the overall system.

In addition to outlining the design principles for modelling the specialised sublanguage,

subsection 2.4.3 focuses on how collected data were used as a basis for defining and specifying

the domain-specific sublanguage.

Subsection 2.4.4 describes how the test suite was generated and how it was applied, to ensure

that the specified linguistic coverage corresponded to the coverage expressed in the lexicon

and the implemented grammars of the system, and also that the semantic interpretation rules of

the system generated the correct semantic representation.

22 Spoken Language Dialogue Systems - Report 9a

Finally, the last part of this section describes the evaluation of the dynamic part, i.e. the parser

of the NLP Module, cf. [Report 7]. In subsection 2.4.5.1 a brief account of the incremental

implementation of the two parser-algorithms is given. Thereafter in subsection 2.4.5.2 a

description of the two comparative performance tests is given.

2.4.1 The evaluation scenario

Only recently standard methodologies for the evaluation of NLP systems and components have

begun to emerge, cf. [Thompson 1992, EAGLES 1994, Galliers and Sparck Jones 1993]. This

emerging methodology distinguishes i.a. the purposes of the evaluation in the following way:

progress and diagnostic evaluation are used during the development of a system/component,

whereas adequacy evaluation is used to test a system‟s performance with respect to the users‟

needs and would usually be carried out only on completed systems.

The present report deals with the testing and evaluation performed during system development

only, i.e. progress and diagnostic evaluation. The purpose of this type of evaluation is to test

the system‟s conformity to the specifications.

The specifications of the lingware part of the NLP Module state the intended linguistic

coverage in terms of grammatical and lexical coverage. For systems with a limited complexity,

grammatical coverage may be tested by using systematically produced test data (test suites)

which more or less exhaustively describe the domain (in larger NLP systems with a broader

coverage, the length of sentences is normally not restricted, and therefore a potentially

unlimited number of sentences are possible, [Chomsky 1971]), cf. subsection 2.4.2.). Lexical

coverage is tested by checking that the lexical items specified are present, and by testing that

their coding is correct. As the test suites can only partially describe the interaction between

phenomena, tests of more complex systems are often performed additionally by using corpus

data, if available. The present testing involved the use of systematically generated test data

only.

The parser may be tested with the same input data as the grammar, as the parser needs to be

able to handle at least all phenomena appearing in the grammar. As the functionality of the

implemented parser in the present case exceeds the requirement for analysing the grammatical

phenomena appearing in the grammar at present, the test data for the parser - in the initial

phase of the implementation - consisted of constructed sample sentences being beyond the

linguistic coverage of the implemented subsubgrammars of the system.
1

2.4.2 Test data for NLP systems

Several EU-financed ongoing research projects have as their goal the definition of a general

framework for a principled evaluation of NLP systems. The EAGLES initiative (Expert

Advisory Group on Language Engineering Standards) has created a subgroup on evaluation of

NLP products and projects [EAGLES 1994] which deals with the general framework for

evaluation, whereas the TEMAA project (A Testbed Study of Evaluation Methodologies:

Authoring Aids) deals with a concrete application of this framework. Other projects, e.g.

TSNLP (Test Suites for Natural Language Processing) [Balkan et al. 1994], deal with the

creation of test data for certain types of NLP applications.

1 Using a more general grammar which was developed in order to generate sentences stored in a database used

for training the word models of the system. For a description see [Report 5].

The linguistic module 23

In the following paragraphs an overall description of different kinds of test data is given. This

data categorisation is based on the one outlined in [Galliers and Sparck Jones 1993] and will

function as a frame of reference for describing the types of data that have been used in the

development of the NLP Module of the Spoken Language Dialogue System.

According to [Galliers and Sparck Jones 1993] test data, in broad terms can be divided into 1)

corpora (written or spoken), 2) test suites and 3) test collections, the contents of which will be

elaborated below.

In the present context, corpora will be understood as authentic linguistic material, such as

running text or recorded human-human or human-machine dialogues. In the present project

human-human, as well as human-machine corpora were collected, the former by the tape

recordings made at a travel agency, cf. [Report 3], and the latter by Wizard of Oz (WOZ)

experiments.

Depending on the size of the collected corpora and thus of its representativeness, this data type

can be a useful source of information. The dialogue corpora mentioned were used as a basis for

the definition of the coverage of the system, for instance word frequency lists and keyword in

context concordances were made in order to help identifying and defining the domain-specific

subset of natural language, cf. [Report 4]. The two types of collected data, however, were not

on its own suitable for testing the system coverage for the following reasons. The coverage

definition of the system was primarily based on the human-machine dialogues, so the recorded

human-human dialogues - not reflecting the actual coverage of the system - were not

applicable. The corpus examples from the WOZ experiments, although the basic source for

defining the domain-specific sublanguage, only represented a subset of the system coverage

(cf. subsection 2.4.3 below) and were therefore not well-suited as test corpus on its own.

Test suites are defined as artificially constructed material designed to fulfil a specific task, such

as testing a specific component of an overall system to determine whether it performs

according to its specifications. Test suites were used in the present project, an example of this

is checking the agreement between designed and implemented linguistic coverage. Test suites

as built by TSNLP [Balkan et al. 1994] test the grammatical coverage of a system in a quite

exhaustive way, while using a very small vocabulary: In order to check that the system can

handle verb valency correctly, the TSNLP test suites focus exclusively on verbs and their

valence frames. The test suites used in the present project aim at testing grammatical as well as

lexical coverage.

Unlike corpora and test suites, test collections include both input and output data, i.e. the test

input data are associated with a corresponding set of expected outputs or required data. In

other words, the test collection includes a specification of what the system ought to produce as

output. Test collections can be used for automatic checking of conformity with expected

output, but are otherwise no different from test suites.

As an example of a test collection, the data used to compare and evaluate the error recovery

functionality of the two implemented parser algorithms in the overall spoken language dialogue

system consisted of two parts; besides the reference material (what was actually uttered), the

test collection included the expected semantic interpretation of the reference material recorded

manually in advance cf. subsection 2.4.5.2 below (for a complete description of the testing of

the two implemented parser algorithms, see [Report 7]).

Assessment of different kinds of test data is closely related to what kind of activity or purpose

they are used for. According to Galliers and Sparck Jones [Galliers and Sparck Jones 1993],

the data should, ideally, be assessed based on the following parameters: representativeness,

legitimacy and realism. In our case, representative test data have to exhibit the characteristics

of user utterances. Here the distinction between coverage and distribution corpora becomes

24 Spoken Language Dialogue Systems - Report 9a

relevant: coverage has been the main concern in the construction of test material, whereas

distribution, i.e. the frequency of construction types in the utterances have had less influence. A

necessary aspect of representativeness is also the size of the data set. Legitimacy, according to

[Galliers and Sparck Jones 1993], has to do with the fact that data may be representative for

the testing of some dialogue system, but not legitimate in other scenarios (op cit., p. 125). The

question of legitimacy comes up in particular when reuse of data is considered, and hence is

not a major concern in the present case. Realism, finally, is used to focus the attention on the

fact that "data may be representative without being realistic for some task point of view" (op

cit., p. 125). Consequently, [Galliers and Sparck Jones 1993] suggest that this point always be

taken into account separately.

When providing the description of the different types of data applied for testing purposes

during the development of the sublanguage model in the area of domestic flight ticket

reservation, the data will be assessed according to these evaluation parameters. This applies to

the corpus collected via WOZ experiments as well as the generated test suite. With respect to

the application of test collections in the evaluation of the NLP module see subsection 2.4.5.

2.4.3 Corpus-based definition of the sublanguage model

The advantage of using test collections is i.a. that time can be saved by automating the testing

of the correspondence between the intended (manually assigned) and automatically generated

analysis results. This presupposes, however, that a fixed set of sample utterances is generated

once and for all. As the test data were incrementally extended with extra sample utterances in

parallel with the development of the specified linguistic coverage of the NLP module, test

suites were considered more appropriate for the diagnostic and progress evaluation of the

lingware part of the system. In addition, due to the relatively uncomplicated sample utterances

parsed, the inspection of the automatically generated analysis results was easily conducted.

As the test suite was designed and generated in close correlation with the type of system it is

designed to test (i.e. the NLP module of a spoken language dialogue system), we shall start by

giving a brief description of the design criteria for modelling the domain-specific sublanguage

and of how it was actually developed. For a further description of the design of the

sublanguage, cf. [Report 4].

In order to meet the requirements of real-time performance of the overall system and the

constraints set by current speech technology, the design constraints for modelling the

sublanguage within the domain of domestic flight ticket reservation were as follows:

• In order to achieve the optimal speech recognition quality the structural grammars of

the NLP-system should be characterised by low perplexity;

• The number of activated words or word models at a given wait-state should not exceed

100;

• The lexicon size should not exceed 500 words.

As mentioned above, these design criteria are motivated by the functionality of the system's

speech recogniser. Besides being used for doing a linguistic analysis of the utterance, the

syntactic APSG grammar of the NLP Module also serves as input to the generation of the

linguistic knowledge which the speech recogniser has access to during the signal processing. If

the linguistic knowledge expressed in the domain-specific grammar is too complex, the

recognition performance will decrease drastically.

One measure to resolve this problem was to split the subgrammar covering flight ticket

reservation up into smaller and less complex grammars, which, depending on the given event

The linguistic module 25

state, are activated by the Dialogue Handler of the system. Another means was - based on a

collected domain-specific corpus - to apply a bottom-up approach for designing the

sublanguage. Using this method brings about conspicuous drawbacks, as the grammars will be

domain-specific and so not portable to other domains. However, the alternative - the top-

down-approach - in which the detected linguistic phenomena are formalised and implemented

in depth would result in high-perplexity grammars and an activation of a huge number of

lexical entries violating more of the design principles stated above.

Following the corpus-based approach, the user utterances from the simulated human-machine

dialogues thus provided a backdrop for the definition and specification of the domain-specific

sublanguage. By using the corpus as both a coverage and distribution corpus - i.e. as a basis

for identification of the domain-specific linguistic phenomena and for identification of the most

frequently used syntactic constructions - the linguistic coverage of the domain-specific

sublanguage was defined.

Though the corpus collected via WOZ-experiments per se can be said to be both realistic and

legitimate, the small size of the corpus (the number of tokens is about 3800), and its

consequent lack of representativeness, made it necessary to adjust the linguistic coverage based

on intuition and about language in general. Especially within the sub-areas of time and date, an

extension of the coverage was obviously necessary since all dates and hours should be possible,

but of course not all would occur in a corpus, even if the corpus had had a more adequate size.

Furthermore, in application-domains such as the current one, in which the overall usability of

the system is to a large degree determined by the users' possibility of expressing times and

dates, the coverage within these sub-areas was consequently extended to include conceivable

expressions - under due consideration to the design criteria cf. above
2
 (for a description of the

procedure for defining the domain-specific sublanguage see [Report 4]).

During the development of the domain-specific subgrammar, the linguistic complexity in terms

of size and recognition task perplexity was continually monitored to ensure that it did not

exceed the limitations stated above. Based on the automatically converted FSN grammars and

word pair grammars (cf. subsection 2.2.2 above), the syntactic subsubgrammars (in various

phases of the development) were measured.

2.4.4 Testing the lingware part of the NLP module

As mentioned above, systematically generated test suites are primarily used for diagnostic

purposes and applied by researchers and developers of prototypes in order to verify the actual

coverage of their system during development. Before describing in detail the actual generation

of the test suite for checking and debugging the lingware part of the NLP Module, the

objectives of the test suite are given.

The ultimate goal of generating the test suite is to provide a tool for checking the correctness

and precision of the lingware part of the NLP Module. This overall task can be broken down

into the following sub-tasks:

• to ensure agreement between the defined linguistic coverage and the implemented

coverage,

• to check consistency between the grammar rules and the lexical entries, and

• to check the accuracy of the instantiated semantic slots.

2 Coordination and enumerations of times and dates, for instance, were not included in the coverage.

26 Spoken Language Dialogue Systems - Report 9a

The method for generating the test suite can briefly be described as a gradual accumulation of

sets of sentences designed to cover the phenomena defined in the specifications, in isolation

and in combination.

The dialogue model of the prototype system was implemented as a recursive state transition

network in which the subsubgrammars, as arcs, define the vocabulary and syntax available for

the user at a given state. The splitting of the domain-specific subgrammar into less complex

subsubgrammars made it possible - in the generation of the test suite - to reflect the

fragmentation of the overall domain-specific subgrammar. Thus for each subsubgrammar

developed, a test suite of sample sentences expressing the defined linguistic coverage was

generated. These sample sentences were partly extracted from the domain-specific corpus and

partly manually constructed based on domain and linguistic knowledge.

2.4.4.1 Description of the applied test procedure

The general method for testing the syntactic and lexical coverage of each of the

subsubgrammars using test suites, can be outlined as follows. Based on the linguistic coverage

definition of a given subsubgrammar, the various grammatical and area-specific phenomena

plus the lexical entries within a given subsubgrammar were successively developed. After

having formally expressed a given fragment of the domain-specific coverage, the EUROTRA-

rule compiler was used to check for syntax errors in the implemented grammar and lexical

rules. Thereafter, sub-domain sample sentences (as part of the incrementally generated test

suite cf. above) covering the implemented, grammatical phenomenon and the coded lexical

entries were constructed. The batch process version of the developed parser (NJAL)
3
 was then

used to generate the analysis of the sample sentences. The output data from NJAL, was then

submitted to human inspection in order to check the agreement between the output

representation and the specifications of the lingware part of the NLP module.

After having developed a subsubgrammar, its consistency was finally tested by using a sentence

generator programme (SGEN) (for a more thorough description see [Report 5]. Based on the

RTN version of the subsubgrammar (a product of the above mentioned converter program)

and of the lexicon, the SGEN was used for testing the adequacy and precision of the

implemented grammar and lexicon.

To make the method clear, consider the following area-specific expression for stating a date in

Danish:

På mandag den toogtyvende i tredje

[lit: On Monday the twenty second in third]

The area-specific phenomenon expressed in this sentence falls in three parts, which can be

formalised as follows:

Date_Phrase:- Day_of_week_Phrase,

 Ordinal_Phrase,

 Ordinal_Phrase

In order to avoid the acceptance of “incorrect” sentences, the activation of the Date_Phrase

rule was constrained in the following way. The Day_of_week_Phrase is only valid for days of

week in indefinite and singular form. The first Ordinal_Phrase only covers ordinals from første

[first] to enogtredivte [thirty first]. The second one is restricted to ordinals from første [first]

3 As the parser and the lingware part of the NLP module were developed in parallel, the powerful Eurotra

parser (being capable of compiling a superset of the grammar rules defined in the present project) was applied

in the initial phase of the grammar development.

The linguistic module 27

to tolvte [twelfth]. Depending on the type of constraints, the various restrictions were either

coded directly in the lexicon or computed by grammar rules.

After having expressed these restrictions in various ways, test sentences within the extended

coverage of the implemented subsubgrammar were then generated. The test suite thus included

sample sentences covering:

I) på {mandag .. søndag} [on {Monday .. Sunday}]

II) den {første .. enogtredivte} [the {first .. thirty first}]

II) i {første .. tolvte} [in {first .. twelfth}]

The test was conducted stepwise; first the lexical coverage within each area-specific

subconstituent was tested
4
, i.e. in subconstituent (I), it was checked if Monday to Sunday

(expressed in the sample sentences) gave the expected analysis results. Thereafter, the

combination of subconstituents was tested. This was done by parsing one sample sentence

having one representative element from each subconstituent, such as in

På torsdag den femte i fjerde

[lit: On Thursday the fifth in fourth]

After each step the analysis results was inspected and if any of the parsings had failed, the

lexicon (step one) and the subsubgrammar (step two) were adjusted until the parser generated

the expected results.

Thereafter, the SGEN was used to check the precision of the grammar rules and the lexical

entries in a given subsubgrammar. If, for instance, the developed Date subsubgrammar

accepted an incorrect sentence such as: “på mandag den femogtyvende i sekstende” [lit: on

Monday the twenty fifth in sixteenth], the constraints obviously were too loosely expressed and

hence had to be modified. In order to identify the lack of constraints in the linguistic module,

the next step would be to parse incorrect sample sentences with NJAL, using the analysis result

as a basis for detecting the error. The Boolean attribute value pair for distinguishing between

ordinals that can refer to months and those which can‟t is mth=yes;no. This constraint is

directly coded in the lexicon so in the present case the entry for seksten [sixteen] is either given

a wrong value for mth, or, alternatively, the grammar rule for the Ordinal_Phrase in question

lacks the attribute value; mth=yes and thus does not filter out the “incorrect” ordinals. After

having adjusted the grammar or lexical rules the SGEN programme was run again and so forth

until the generated sentences were “grammatically” correct.

As a consequence of the partitioning of the overall grammar of the system, testing of the

overall grammar - in which side-effects of one implemented phenomenon on other parts of the

grammar are identified - was not required. The procedure described for testing the syntactic

and linguistic coverage of the system was applied in the development of all the ten syntactic

subsubgrammars of the Danish dialogue system.

As described in [Report 7], the syntactic and semantic rules of the NLP-module are separate.

This division - besides making it possible for the grammar writer to develop syntactic and

semantic structures independently - also made it evident to separate the testing of the syntactic

structures and semantic interpretation. As the above mentioned batch process version of the

parser includes the option of turning off the automatic semantic analysis, it was easy to test the

linguistic part of the NLP Module sequentially, i.e. to first test and check the agreement

4 This sequential procedure seemed natural since elliptical user utterances with the scope of one single

subconstituent, for instance, “på søndag” [on Sunday] covered by the Day_of_Week Phrase were part of the

grammatical coverage.

28 Spoken Language Dialogue Systems - Report 9a

between defined coverage and implemented coverage (including checking the consistency

between grammar rules and the lexical entries) and then to check the accuracy of the

instantiated semantic slots. The domain-specific test suites were reused in the testing of

correctly assigned semantic values. Having formulated semantic interpretation rules covering a

given subsubgrammar, the rules were thus tested on the sample sentences in the corresponding

test suite. The syntactic and semantic analysis results achieved by NJAL were then manually

checked for correct assignment of the semantic slots. To illustrate the types of error which had

to be corrected, consider the semantic interpretation rule below which maps the structural

analysis of “Den toogtyvende i tiende” [lit: The twenty second in tenth] into the following

semantic object: sem={month={ones={number=10}}, day={ones={number=2},

tens={number=2}}}

date_p_map = {sem={month={ones={number=A}}, day={ones={number=C}}} /

{cat=date_p}}

 [

 {cat=det},

 {cat=ord_p}

 [

 {cat=ord, scat=date, int=C}

],

 {cat=p},

 {cat=ord_p}

 [

 {cat=ord, mth=yes, int=A}

]

].

The semantics of the rule is the following; the right-hand side of the rule (marked by the „/‟)

represents the syntactic structure which must unify with the structural analysis of the input in

order to activate the semantic role assignment expressed on the left-hand side of the rule. The

inspection of the instantiated semantic slots often revealed, either that the semantic slots were

not given any value at all or that a wrong value was assigned. In the former case which implied

that the rule in question had not been used, the standard error was that the structural

description expressed on the right-hand side of the rule was wrong or too restricted. In the

latter case, that there was some kind of disagreement between the variables (in bold) in the

semantic head and in the structural description of the rule. In any case, the semantic rules were

adjusted until the parsing results showed that the semantic slots were filled correctly.

2.4.5 NLP software testing

The following subsections describe various evaluations of the NLP module software. The

description falls into two parts. First a brief description of the NLP software and its

functionality is given - including an outline of the diagnostic test procedure applied. Thereafter

performance tests comparing the two implemented parsing algorithms based on various test

data are described.

The NLP module consists of the NJAL parser together with an interface procedure and the

lingware. The task of the module is to apply rules defining syntactic and semantic information

in order to fill in relevant semantic objects, i.e. generate a semantic analysis of each input

utterance. The NLP module takes a well-defined set of information as input, and outputs only

the limited semantic information permissible within the interface data structures, (the so-called

The linguistic module 29

semantic objects). Natural language processing is thus not directly integrated with speech

recognition, nor with dialogue management.

The functionality of the NLP module used in the prototype exceeds the requirements of the

prototype design criteria cf. [Report 2], implementing a top-down and a bottom-up syntactic

parsing algorithm applicable to longer input with more complexity than the short elliptical

utterances foreseen for the initial prototype.

Given the application domain, some kind of robust capability for recovering from extra-

grammatical utterances and misrecognised words in a relatively elegant fashion was necessary.

The robustness facility will be touched upon in connection with the description of the

performance tests given below (for a thorough description see [Report 7])

Other factors had a more direct influence at the implementation level. For instance, given the

development environment, it had to be simple and quick to test new grammars, for example by

allowing loading of the grammars and lexicon directly from text files into the parser. This was

done by hard-coding the formalism compilation procedures into the parser itself. In addition,

given the application as part of an interactive spoken dialogue system, real-time or close to

real-time performance was another criterion, so that significant development resources were

invested in optimisations.

2.4.5.1 The debugging of the NLP software

The development process proceeded incrementally, with subcomponents of the parser being

implemented and tested, and then integrated into the parser. To give an example, after the

grammar formalism compiler was developed, it was tested to check if the loading programme

worked according to its specification. This testing was facilitated by the fact that the existing

Eurotra rule compiler could parse a superset of the lingware formalism considered adequately

expressive for the NLP in the Danish dialogue system. Throughout the development process

the possibility of comparison helped detection of errors in the compiler procedure. This last

factor proved to be quite useful, as the parser can be considered an experiment in parsing

design and implementation: to our knowledge, no similar unification-based NL parsers

implemented in the object-oriented C++ exist. Fundamental functions such as unification,

which in Prolog is quite simple to implement, had to be developed from scratch. Having

another system capable of parsing using the same formalism was an essential aid in this

development context.

Once a prototype of the parser was ready, the test suites created for testing the linguistic

coverage (cf. above) were used for testing and debugging the parser. The synchronic testing of

both the prototype of the parser and the lingware part of the system using the same test suite

increased the amount of possible sources of errors and thus complicated the debugging

process. As with the grammar compilation procedure, parser debugging was facilitated by the

existing Eurotra software. The possibility of running the developed subsubgrammars with the

Eurotra parser (cf. above), thus, reduced the effort of debugging.

2.4.5.2 Testing of algorithm performance

Once the implementation of the two parsing algorithms had been debugged, a new

development phase began wherein the performance of the parser was examined for weaknesses

and optimisations implemented. Among these optimisations is the Left-Corner Dependency

Tree, which is basically an indexing structure generated during loading of the grammars for

quick look-up of rules based on the left-most daughter (for a description see [Report 7] pp. 8-

9).

30 Spoken Language Dialogue Systems - Report 9a

The availability of two algorithms operating with the same grammar formalism and data

structures provided the opportunity for conducting various experiments with and accurate

comparison of the parsing algorithms themselves and of their different strategies for

robustness.

In order to evaluate the final performance of the algorithms and of the parser overall, purpose-

specific test suites were created. These were mostly based on the existing test suites for

grammatical coverage, but adjusted to ensure that certain rules were not over-represented

when testing the performance. Especially long sentences (and thereby the rules covering this

type of utterances) were under-represented in the existing test suite and therefore had to be

constructed and included in the specific test suite. The narrow scope and legitimacy of this

kind of generated test suite, makes it infeasible to reuse them in other testing scenarios. Note

that this test was not intended to be a simulation of the real-life conditions under which the

system would be operating, but an internal test of how the parser performs generally given all

types of grammatical input (within the defined linguistic coverage), i.e. sets of input that

require it to apply all the grammar rules and create a complete syntactic analysis of each input

sentence (for a thorough description of the test and its results see [Report 7]).

Another test was run for determining the relative performance of the algorithms when faced

with extra-grammatical (wrongly recognised) input. A test collection was created based on test

results from a baseline test of the recognition component of the system, cf. [Report 5]. Each

utterance was manually assigned the semantic slots, which a human could be expected to

derive from it based on the limited domain. Using the manually assigned semantic objects (of

each utterance) as a basic reference source, the different algorithms‟ analyses of the speech

recognition results of the same sentences were automatically compared.

To make clear the test scenario and the testing method consider the following two examples

from the test results (the test collection examples are based on the Hour subsubgrammar)

Ex. (1)

Ref.: Nej syv halvtreds

[No seven fifty]

Man.: sem={choice=0,hours={ones={number=7}}, minutes={ones={number=50}}}

Hyp.: Halv syv halvtreds

[lit: Half seven fifty]

Pars_td.: sem={hours={ones={number=7}}, minutes={tens={number=3,sign=-}}}

Pars_bu.: sem={choice=0,hours={ones={number=7}}, minutes={ones={number=50}}}

Ex. (2)

Ref.: Nej jeg vil godt have femten minutter i

[No I will like to have a quarter to]

Man.: sem={choice=0, minutes={ones={number=15, sign=-}}}

Hyp.: Nej otte femten minutter i ti

[lit: No eight fifteen minutes to ten]

Pars_td.:

sem={choice=0, hours={ones={number=8}}, minutes={ones={number=15}}}

Pars_bu.:

sem= {choice=0, hours={ones={number=10}}, minutes={ones={number=15, sign=-}}}

The linguistic module 31

The various abbreviations used above, have the following meanings:

Ref = the reference text, i.e. what was actually uttered;

Man = the manually assigned semantic object;

Hyp = the recognition hypothesis, i.e. the recognition result of the reference text;

Pars_td = the automatically generated semantic object (based on the top-down algorithm);

Pars_bu = the automatically generated semantic object (based on the bottom-up algorithm).

Both the top-down and the bottom-up algorithms have a general recovery strategy

implemented, the latter being inherently more robust (working bottom-up with left-corner rule

invocation) which was reflected in the test results. In example (1) the semantic object

generated by Pars_bu (in contrast to the one generated by Pars_td) is partly correct in that the

correct time is found.

Based on the implemented hour-grammar two subconstituents can be found in the speech

recognition hypothesis of example (1); halv syv [half past six] and syv halvtreds [seven fifty].

Since the top-down algorithm uses top-down rule invocation, the grammar rule covering the

subconstituent syv halvtreds [seven fifty] is not predicted and can therefore not be part of the

parse-results. The Pars_bu working bottom up finds (per definition) both the subconstituents

and, as the right-most subconstituent (in the extraction procedure) is given precedence, this

results in the partly correct meaning extraction of the reference text of example (1), namely syv

halvtreds. As illustrated in example (2), the error recovery facility implemented in the bottom-

up algorithm does not always give a successful result. The recognition hypothesis in example

(2) is covered by three grammar rules covering n�, otte femten and femten minutter i ti,

respectively. According to the description given, the Pars_td error recovers the two left-most

subconstituents, while the Pars_bu extracts the left- most and the rightmost constituent.

Compared to the manually assigned semantic object, both the automatic interpretations are

wrong. Example (2) illustrates an overall problem for NLP subsystems in spoken dialogue

systems - whatever error recovery strategy is chosen. If the wrong speech recognition result

(randomly) lies within the coverage of a grammar rule, it will almost always lead to an

incorrect semantic interpretation. and furthermore the possibility of rejecting the speech

hypotheses as invalid is non-existent.

The test results of the two parsers‟ error recovery functionality [Report 7, Chapter 6] showed

that the bottom-up algorithm's error recovery performance is the most robust one.

Basing the test on results collected from a speech recognition baseline test can be said to be an

approximation of testing the NLP-software in realistic conditions. It was therefore considered

to provide a solid basis for assessing which parsing algorithm should be chosen for the overall

Spoken Language Dialogue System. Given the functionality of the speech recognition

component and of the lingware module, the bottom-up parser algorithm proved to the best

suited and consequently was chosen. Whether this decision was the right one will be examined

further in the adequacy evaluation of the overall system.

2.4.6 Conclusion

This subsection has given a description of how the NLP module of the Danish dialogue system

was tested during development. According to the defined terminology for evaluating NLP

systems [Galliers and Sparck Jones 1993, EAGLES 1995], the focus has been on diagnostic

(or glassbox) testing. In broad terms, the purpose of this kind of testing is to ensure

correspondence between specifications and the actual implementation of a subsystem. In order

to achieve this agreement, various test data were used.

32 Spoken Language Dialogue Systems - Report 9a

The testing of the lingware part of the NLP module was exclusively based on constructed

domain-specific test suites, representing the specified linguistic coverage in each

subsubgrammar.

In the development phase of the NLP software, these test suites were reused in the debugging

of the two implemented parsing algorithms. Thereafter, two comparative performance tests of

the two parsing algorithms were carried out. Using the same lingware source, one test

examined efficiency in terms of spent CPU-time. Although based on the already generated test

data, the test suites had to be supplemented with a number of long sentences in order to ensure

a more uniform application of the grammar rules. The other performance test extended the

scope of the internal testing of the NLP-system in that the input data for the implemented

parsing algorithms were base line speech recognition results. This comparative performance

test was based on a test collection which made it possible to conduct the test automatically.

Determining whether the specifications of the NLP-subsystem fulfils users‟ needs, has not been

treated in this section. In connection with the analysis of conducted user tests of the overall

system, it will be evaluated whether the linguistic coverage and the parsing algorithm chosen

will adequately correspond to real-life user demands.

2.5 The dialogue description

The dialogue handling module consists of the ICM and the dialogue description, cf. Figure 2.1.

This section only describes the test of the dialogue description. The ICM is part of the platform

the test of which is described in Section 2.1. The main issues to be tested as regards the

dialogue description are:

• Does it behave as intended with respect to domain communication and is the

behaviour reasonable?

• Does it handle meta-communication as intended and in a reasonable way?

• Does it permit reservations as intended and in an acceptable way?

The dialogue description was implemented and tested through a kind of prototyping. This is

reflected in the division of the test into three phases:

In the first phase (Section 2.5.1) the programmer debugged the program until it functioned

reasonably for basic input. In the beginning, a bottom-up strategy was used but as soon as

possible a top-down approach was used instead and we never returned to the bottom-up

strategy again.

In the second phase (Section 2.5.2) a blackbox test was performed. During this test ordinary

bugs were corrected and a number of shortcomings were identified. These identified problems

were analysed and represented in DR-frames, cf. Appendix A, and solutions were proposed.

Selected solutions were implemented.

In the third phase (Section 2.5.3) a blackbox test using the same input as in the second phase

was run on the improved dialogue description and identified bugs were corrected.

The dialogue description has not been subject to a glassbox test in its proper sense. DDL

which is the programming language used for the dialogue description, contains a (textual level)

print-out function meant for debugging. However, the contents of the test output is only to

some degree automatically generated and must in many cases be written by the programmer.

Furthermore, because of the rapidly changing code it would have been almost impossible to

maintain data for a complete glassbox test. It would have been much too time consuming in

relation to what we would gain and to the resources available. Only for final production

The dialogue description 33

programs a complete glassbox test may be required. So it was decided to concentrate on the

blackbox test and on a user test [Report 9b].

2.5.1 The first test phase

In the beginning of the first test phase the only possible strategy was a bottom-up test.

Resources for constructing artificial test surroundings for testing the dialogue description were

reduced since an already existing program, called cio, from an earlier project at CPK could be

used. cio simulates the interface between the module being tested and the databus (the

Dialogue Communication Manager sometimes referred to as the hardware master manager), cf.

Figure 2.1.

Input from the parser as well as from the database was simulated and had to be provided

manually. In order to simulate input from the parser it was necessary to construct a dummy

parser which would make the indicated assignments of values to fields in semantic objects. This

was done at CPK.

The test data used in the first phase were all constructed by the programmer with the purpose

of eliminating so many bugs that it was possible to perform a basic reservation without the

system breaking down. Therefore this test can neither be called real glassbox nor real blackbox

but is rather a kind of mixture of the two.

Three test files were constructed for the test in this phase. The first one included the minimum

input needed for reservation of a single ticket. The second one was a basic reservation of a

return ticket. The third file was a reservation of a return ticket in which each user utterance

providing information was followed by user utterances asking for repetition and for correction

of the input.

While using the bottom-up strategy, data were formulated as dialogue sequences written in the

Sunstar Network Format (SNF). The example in Figure 2.5.1.1 shows the test sequence for

reservation of a single ticket. The file contents are all written in Courier. Comments (which are

not included in the file) explaining the meaning of each input line are given in brackets.

eve rec icm rsent "yesnoso choice: 1" ;

 (the customer answers yes)

eve rec icm rsent "customerso number ones: 3" ;

 (the user tells that his/her customer number is 3)

eve app icm APP_P1 $01;

 (the database confirms the existence of customer number 3)

eve rec icm rsent "personsso number ones: 1" ;

 (one person is going to travel)

eve rec icm rsent "idso number ones: 3" ;

 (the id-number of this person is 3)

eve app icm APP_P2 ($01 "HD") ;

 (the database confirms the existence of id-number 3; the initials of this person are HD))

eve rec icm rsent "routeso from: ko8benhavn";

eve rec icm rsent "routeso to: a5lborg";

 (the desired route is Copenhagen—Aalborg)

eve app icm APP_P1 $01;

34 Spoken Language Dialogue Systems - Report 9a

 (the database confirms the existence of the route Copenhagen—Aalborg)

eve rec icm rsent "yesnoso choice: 0" ;

 (the customer does not want a return ticket)

eve rec icm rsent "dayso day_of_week: mon dayso date day ones: 11 \

 dayso date month ones: 10" ;

 (desired date of departure is Monday October 11)

eve app icm APP_P3 ($01 ((1993 $0A 11) $00)) ;

 (the database confirms that Monday October 11 1993 is a valid date)

eve rec icm rsent "hourso hour hours ones: 9 \

 hourso hour minutes tens: 4 \

 hourso hour minutes ones: 5" ;

 (desired hour of departure is 9:45)

eve app icm APP_P4 ($01 3 4 (((9 45) 1))) ;

 (the database confirms that 9:45 is an existing departure not sold out)

eve app icm APP_P6 ($01 142 680 4);

 (the database confirms that the reservation is ok; the reference number is 142, the price is 680

 kroner, and the travel will start in 4 days)

eve rec icm rsent "deliveryso delivery: airport";

 (the passenger will pick up the ticket in the airport)

eve app icm APP_P1 $01;

 (the database confirms that the ticket will be sent to the airport)

eve rec icm rsent "yesnoso choice: 0" ;

 (the customer does not want to continue the dialogue)

Figure 2.5.1.1. Bottom-up test input to the dialogue description for reservation of a

single ticket.

The agreement on formats between database and dialogue description could not be tested

automatically during bottom-up test since the two modules could not run together using cio as

test surroundings. However, by comparing the format of the output from the database (input

for the dialogue handling module) with the format of the output from the dialogue description

(input for the database) disagreements could in principle be revealed. Characteristically,

however, format problems were not discovered until an early integrated system test was

performed.

As soon as possible all system modules were integrated and run together as an entire system,

and the bottom-up test was stopped and taken over by a top-down test. The top-down test

allowed the functionality of each module to be tested in its real surroundings and the indication

of input to the dialogue description was facilitated. The speech recogniser was left out in the

top-down test of the dialogue description because it is important that errors can be

reconstructed. The speech recogniser is very sensitive to noise and to the way in which an

utterance is spoken (voice quality and intonation), which means that one cannot be sure to

reproduce input in such a way that it will be recognised as the same input each time. Therefore,

messages from the recogniser were simulated through direct textual input to the parser via the

Dialogue Communication Manager. Leaving out the speech recogniser means that all

misrecognitions which would have been caused by this module are eliminated and that the

same input will always create the same output.

The dialogue description 35

The input to and the output from each module were sent as output to the screen by the

Dialogue Communication Manager, and could be logged in a script file. The typed input had a

format corresponding to what the speech recogniser would produce, i.e. it contained a prefix,

the user utterance and a postfix, and it was sent directly to the parser. An example of input is:

eve rec icm rsent “ja”;

To facilitate indication of input a program was constructed, cf. Appendix B, which would

allow specification of input as ordinary typed utterances, cf. Figure 2.5.1.2. The program

would then expand each piece of input to the format expected by the ICM which would

produce input to the dialogue description via the parser.

The example in Figure 2.5.1.2 shows typed test input in the top-down test for the same

dialogue (reservation of a single ticket) as in Figure 2.5.1.1. Comments are preceded by # and

are included in the file.

test-P1.minimal

prefix eve rec icm rsent “

postfix “;

knows:

ja

customer:

det er kundenummer et

persons:

en person

idnummer tre

route:

rejsen starter i ko8benhavn

til a5lborg

return:

nej det vil jeg ikke

date:

mandag den tre og tyvende i ottende

hour:

klokken elleve ti

reserve:

delivery:

hentes

more:

nej

Figure 2.5.1.2. Top-down test input for reservation of a single ticket.

2.5.2 The second test phase

When the dialogue description allowed the basic reservations specified in the three test files of

the first test phase without system break-downs, a blackbox test was performed. Test data for

this test were constructed by the system designer who had been least involved in programming

the dialogue description.

36 Spoken Language Dialogue Systems - Report 9a

Basically, there were three types of reservation to be tested: single tickets, return tickets and

discount return tickets. A thorough test of each of these types includes test cases with legal

input, borderline cases which may be either legal or illegal, and clearly illegal input. In many

cases it was possible to make an exhaustive test of legal key information, i.e. information which

should be accepted and not cause error messages. By key information is meant the information

asked for by the system, e.g. the name of a destination airport or a customer number. The key

information may be embedded in many different formulations of which only a selection was

tested along with the dialogue description. Different grammatical formulations were not in

focus in the dialogue description test. A thorough test of formulations, i.e. which linguistic

formulations lead to complete and relevant semantic objects, belongs to the parser module test,

cf. Section 2.4.

The dialogue task structure formed the basis for a specification of what to test. Figure 2.5.2.3

shows the final P2 dialogue task structure. The task structure of P1/P2 has changed somewhat

over time but this does not influence the basic idea of how it can be used for constructing test

cases:

P1/P2 has system-directed dialogue, so the system will ask a number of questions which the

user is expected to answer. The types of question asked by the system may be divided into four

categories.

1. The simplest type will invite only a yes/no answer, e.g. “Do you want a return ticket?”

2. A second type is multiple choice questions inviting answers containing elements from

an explicit list of alternatives, e.g.: “Shall the ticket be sent or will the traveller pick it

up in the airport?”

3. A third type of question invites the user to state a proper name or the like, such as an

airport or the user‟s own customer number, e.g. “Please state your customer number.”

4. The fourth type is the most open type, i.e. the one which allows the broadest variety

of formulations but which still concerns a specific topic, such as date of departure,

e.g.: “On which date will the journey start?”

Legal key information in answers to questions belonging to the first three categories can be

tested exhaustively. Legal answers to yes/no questions and to multiple choice questions are

obviously limited in amount. There is also a limited amount of existing customer numbers,

traveller id-numbers, and airport names stored in the database. Only for questions belonging to

the fourth group can the key information be expressed in many different ways. These questions

concern date and time of departure. For this group we selected a number of different date and

time values. Also borderline cases and illegal cases have been tested. Borderline answers are

only possible in the last two categories of questions. Examples of cases which have been tested

for the four example questions immediately above are:

1. Legal: yes / no

 Illegal: I don‟t know

2. Legal: please send it / he will pick it up in the airport

 Illegal: I want the ticket on Monday

3. Legal: all existing customer numbers including the smallest and largest ones

 Illegal: smallest existing customer number - 1 / largest existing customer number + 1 /

1000

4: Legal: August 31 / 31.12 (December 31) / today / on Monday

 Illegal: February 29 1994 / August 32 / 1.13 / yesterday

The dialogue description 37

The three basic reservation types overlap, cf. Figure 2.5.2.1. For instance, customer number

and route are needed in all cases whereas a date for the home journey is only applicable to the

reservation of return tickets and discount tickets.

User meta-communication was tested, i.e. the keywords change and repeat were used in every

possible position.

The constructed test files revealed a number of bugs in the dialogue description. Such bugs

were corrected when they appeared. However, also larger inconveniences were discovered

which could not be repaired on the fly. A couple of these were due to disagreements between

specification and implementation. But the main part was caused by problems not taken into

account by the specification.

Design rationale (DR) frames [Bernsen and Ramsay 1994] were used as a tool for representing

the discovered problems and their analysis, cf. Appendix A. The choice of using DR-frames

must be seen together with our earlier use of DSD (design space development) frames. A DSD

frame represents the commitments made during the design process [Bernsen 1993, Bernsen

and Ramsay 1994]. For instance, the design commitments made during the WOZ experiments

were retrospectively expressed in a DSD frame, cf. [Report 6a]. A DSD frame may be seen as

a snapshot of design commitments made at a certain time in a development process. Usually, a

development process encompasses several DSD-frames. DR-frames, on the other hand, are

used to represent the reasoning between two succeeding DSD-frames. DR-frames represent

problems met with during the development process, violated design commitments some of

which may be new and will be added to the next DSD-frame, and reasoning about how to

solve the problems and why one solution may be preferred to others.

38 Spoken Language Dialogue Systems - Report 9a

reservation system

system already known

introduction

reservation

customer number

number of travellers

traveller id-numbers

route
from

to

return travel

= s ingle:

outhour

= return:

outday

interes ted in discount

outday

outhour

homeday

homehour

delivery

more

= no:

= yes : reservation

= no: close

Figure 2.5.2.1. The P2 dialogue task structure.

The problems discovered during the blackbox test in the second test phase are listed below.

Each problem is treated in much more detail in its DR-frame in Appendix A.

1. Cancellation of a reservation: In P1 it is not possible to cancel a reservation once it

has been confirmed by the system.

2. Correction of an entire reservation: It is not possible to make corrections if the user

encounters errors when the system confirms the entire reservation. Use of the change

command after this confirmation will only allow the user to change the time of

departure because it is the most recent piece of information provided by the user.

3. Break off a reservation: If the desired departure is sold out or if there are no free

departures during the entire day it is not possible to break off the reservation task

(except by hanging up). P1 will continue to ask for a day and a time of departure

until a solution has been found.

4. Restart: The only way in which to stop execution of the current reservation task

before it comes to its natural end is to hang up.

The dialogue description 39

5. Wait: The user cannot suspend the dialogue for a while (e.g. by saying „just a

moment‟ or „wait‟).

6. No price information: Users cannot get the price of the tickets they have reserved.

7. Repetition of customer number: The system asks for a customer number every time a

new reservation task is started even if the user does not hang up in between.

8. Booked departures are not mentioned: If a certain departure is fully booked or the

number of free seats is smaller than the number of travellers it is not mentioned by

the system when it lists existing departures.

9. Unavoidable discount: If the user has indicated to the P1 system that s/he is

interested in discount s/he will only be told about discount departures and s/he will

not be allowed to reserve anything else than discount tickets.

10. No discount when not explicitly asked for: If the user has indicated to have no

particular interest in discount, the system will not offer discount tickets even when

possible given the departures chosen by the user.

11. The system does not understand: All kinds of lack of recognition and understanding

are answered by the message “I do not understand”. This is not very helpful and

rather annoying in cases where the system often has recognition/understanding

problems.

12. Help: There is no way for the user to get help on how to continue the dialogue in

case of problems which may be caused by the user‟s need for more information

before s/he is able to answer the latest system question.

13. Relation between time of day and hour of departure: P1 pays no attention to

whether there should be a correspondence between the time of day the user has

asked for and the exact hour of departure s/he indicates or whether, e.g., 9:30 means

9:30 am or pm.

14. Repetition: In P1 only the latest system question is repeated when the user asks the

system to repeat. In many situations it would be appropriate to repeat the entire most

recent system turn including the provided information.

15. Indication of id-numbers: Id-numbers must be indicated one at a time and if one of

them is not understood the user is asked to start all over again with the id-number of

the first traveller.

16. Lack of flexibility: P1 is very rigid in the introductory phrases leaving no initiative to

the user. The usual situation in a conversation with a human travel agent is much

more flexible for the user because s/he has the initiative and decides what to tell

(often this is a statement providing number of persons, destination and perhaps the

date of departure).

17. Reference numbers: Every time the P1 system is restarted it will also restart the

numbering of reference numbers from one. This is not very appropriate for

demonstrations.

18. Several tickets for the same person for the same flight: It is possible to book several

tickets for the same person on the same flight during the same reservation task.

19. Updating the reservation file: Once a reservation has been written on the reservation

file it cannot be changed in P1. Only new and/or revised reservations can be added.

40 Spoken Language Dialogue Systems - Report 9a

20. Waiting list: The possibility of putting users (or rather travellers) on a waiting list if

there are no free seats for the moment on the desired flight is not offered.

All elements in this list were considered important but resources were not available for

implementing solutions to all the problems. Therefore, only some of them were selected for

repair. We analysed how time-consuming it would be to solve each problem, how critical it

would be for the user test that it had been solved, and whether the problem could be solved

locally at CCS. On the basis of these considerations, solutions to the following problems from

the above list were implemented: (2), 6, 7, 8, (9), (14), 15, 17, 19. Numbers in brackets

indicate that only a partial solution to the problem was implemented.

While implementing the chosen solutions, the programmer discovered and solved other

problems caused by the changes but not immediately foreseen. Also a few new problems were

revealed and added to the above list of problems.

2.5.3 The third test phase

When the implementation of solutions to the selected problems was completed, the system was

run again with the test files from the second test phase. Some of them had been slightly revised

because of changes influencing the task structure.

Two system questions were removed which influenced all return ticket reservations in the test

files. One of the removed questions concerned information on discount. If the user had

expressed an interest in discount tickets s/he was asked if s/he wanted more information on

discount. A positive answer would lead to a lengthy and partly superfluous system turn

providing discount information. In the changed system version, this information was reduced

and reformulated and given whenever the user had expressed an interest in discount.

The second question which was left out concerned the problem that a reservation may include,

e.g., three people travelling out together but only two of them returning together. In the case

of a return ticket reservation for more than one person, the system would ask if the passengers

travelling home would be the same as those travelling out. However, because of functionality

problems which could not immediately be solved, it was decided to remove this question

although an implication was that this kind of reservation had to be handled as two separate

reservations.

During the third test phase a number of bugs were corrected but no new and unknown larger

problems were discovered. However, it became increasingly clear that the use of system-

directed dialogue could be a problem in cases where the information expected from the user

may depend on information s/he will get from the system later in the dialogue, and vice versa.

For example, users may prefer to have information on departure times before they decide on

the date of departure and maybe also on whether they want discount tickets. This knowledge is

also important when testing the system.

2.5.4 Concluding remarks

It is a general problem of files for testing sequences that the order of the test file contents

depends on the program to be tested and must be updated whenever program changes are

made which influence the expected input order, even in cases where the input order is

insignificant and not part of the specification.

A dialogue should not only be tested through a series of user answers which are independent of

one another. The handling of possible dependencies should also be tested.

Spoken Language Dialogue Systems - Report 9a 41

2.6 The application database

As for the dialogue description, the cio program was used for early testing of the database.

When it became possible to run the database together with the other system modules, this was

done except when errors had to be corrected. The recogniser was left out for the same reasons

as mentioned in Section 2.5.1. Using the entire system apart from the recogniser allowed us to

automatically check format agreements between the database and the dialogue description

which is the module the database communicates with.

For each test the interaction with the database was logged. Originally, a test file was

constructed that contained a broad selection of test cases for initial testing of the database

while still using the cio program. However, the file was extended also when running the

database together with the other system modules. Whenever problems were registered which

seemed to be due to the database the precise query was added to a database test file. Selected

cases from the test file were then used as input when errors had to be detected and corrected

and the database was run with cio.

Test cases in the database test file were formulated in the SNF format [Wetzel and Torabli

1991] and each case had the expected output attached as a comment. By comparing the actual

output and the expected output, the correctness of the database answer was evaluated.

Examples of test cases for the database (with the meaning indicated in brackets) are shown in

Figure 2.6.1:

per icm app app_p0 1; # cust +

 (does customer number 1 exist?)

per icm app app_p1 (BINARY1 $01 BINARY1 $00);

 # route +

 (is Copenhagen—Aalborg a valid route?)

per icm app app_p2 (1 1); # person +

 (if customer number 1 has attached a potential passenger with id-number 1 then

 return the initials of this person)

per icm app app_p3 ((1993 BINARY1 $08 4) BINARY1 $02);

 # date + ((1993 8 4) 2)

 (is Wednesday August 4 1993 a valid date?)

Figure 2.6.1. Examples of database input. # means that the text that follows is a

comment indicating the expected output, e.g. # cust + means that the customer number

exists and is the output from the database.

The database is implemented in C++. Three tools have been very helpful during testing. One

tool is a run-time source level debugger (gdb4) from GNU (The Free Software Foundation

produces copyright public domain software with free source code). When errors were

detected, the debugger was used so that every step in program execution could be watched,

which makes it much easier to localise and correct errors. When the debugger was used, the

database was run separately together with the cio program.

A second tool is a run-time memory debugger called Purify [Purify 1993]. For a given run it

keeps an account of when and where memory is allocated or initialised and when and where

memory is used or de-allocated, and it watches that only memory which has been allocated and

not yet de-allocated is used and that allocated memory is de-allocated when needed. In other

words, it monitors memory leakage and memory usage which is very helpful and efficient.

42 Spoken Language Dialogue Systems - Report 9a

A third tool is a prompt program for test input. This program was written by one of the system

designers, cf. Appendix B.

For a number of basic classes of the database program a glassbox evaluation has been

performed. All methods have been tested with different combinations of arguments in order to

activate all possible parts at least once.

However, the main effort has been the blackbox test. This test has been complete for all simple

queries. For more complex queries, a selection of test cases has been constructed and used.

Legal as well as illegal database input in the semantic sense, including borderline cases, has

been used. Illegal borderline cases and illegal input was, i.a., used to test the messages from the

database which would cause the dialogue description to send out error messages. Figure 2.6.2

shows an example of input from the dialogue description to the database and the database

answer that was returned to the dialogue description. The user said, in Danish, “Rejsen starter

den 26. januar” (the travel starts on the 26th of January). This was misunderstood by the

system which believed that the user said something like “today, the 26th of January”. The

dialogue description asks the database if today is the 26th of January. The database answers

that today (which was actually Friday the 6th of January) is inconsistent with Thursday the

26th of January. The error message generated by the dialogue description and sent to the user

in this case is “today is not the 26th of January”.

PER ICM0 APP0 APP_P3

 LIST (

 LIST (

 VOID

 BINARY1 $01

 INT4 26

)

 VOID

 INT4 0

 STRING10 "UNDEFINED"

) ;

EVE APP0 ICM0 APP_P3

 LIST (

 BINARY1 $0b

 LIST (

 LIST (

 INT2 1995

 BINARY1 $01

 INT1 26

)

 BINARY1 $03

 INT1 20

 VOID

)

) ;

The application database 43

Figure 2.6.2. An example of input to and output from the database.

A problem has been the lack of a real specification of what the database should be able to do.

To begin with, it was considered a small and easy task to create the database. It would just

include information on prices, departure times and customers, and be able to handle

reservations. This may seem very straightforward but turned out to be much more complex

than expected. Furthermore, the demands on the database‟s capabilities have changed over

time. If an extra piece of information must be returned together with other pieces of

information, this requires redesign of the protocols between the database and the dialogue

description. This is a disadvantage made worse by the fact that a taylored query language

rather than a general one has been used.

2.7 Pre-recorded output

The output module consists of two parts. One part, developed at CCS, is a sub-module in the

dialogue description which generates and sends to the player names of output phrases and

words (prerecorded at CCS) in the order in which they are supposed to be concatenated. The

other part, developed at CPK, is the player which replays the pre-recorded words and phrases

corresponding to the received names, cf. Section 2.3.3.

The CCS part of the output module was not tested separately. Rather, it was tested along with

the dialogue description. We tested whether all words and phrases actually had been recorded

and could be replayed and judged whether intonation in the concatenated output phrases was

acceptable. More importantly, the appropriateness of the output phrases in the given

environments was judged. When considered inappropriate, new words and phrases were

constructed, recorded and added or used to replace old ones.

Over time it appeared to be very difficult to maintain a consistent voice. When one listens to

the system‟s output it is clear that not all phrases were recorded under the same conditions.

The output quality could be improved by recording all phrases from scratch on the same day

under the same conditions.

Spoken Language Dialogue Systems - Report 9a 44

3 Conclusion

Glassbox and/or blackbox tests have been performed on the different system components as

well as on combinations of components as described in Chapter 2 above. However, the Danish

dialogue system has not been blackbox tested in its entirety. All parts of the running system,

apart from the speech recogniser, were to a certain extent tested along with the blackbox test

of the dialogue component. Errors found were reported to the site at which the component

containing the error had been developed. When the bug had been fixed the test was performed

again to see how the dialogue behaved.

In the user test presented in [Report 9b], all system components were used apart from the

speech recogniser which was substituted by a text recogniser (cf. Section 2.3.1) and a wizard

who keyed in user responses. This test revealed a number of design problems. However, only

one or two bugs were found.

45 Spoken Language Dialogue Systems - Report 9a

Appendix A: DR-frames

During the test of the dialogue description, problems discovered were represented in DR-

frames (design rational frames) along with an analysis and discussion of possible solutions. This

appendix provides the DR-frames referred to in Section 2.5.2.

Design Project: P2

Prepares DSD No. 8 DR No. 1 Date: 24.5.94

Design problem: Cancellation of a reservation

In P1 it is not possible to cancel a reservation once it has been confirmed by the

system.

Commitments involved

1 The system‟s task is to make it possible for the user to perform booking of

flights between two specific cities and to decide not to book after all if user

desiderata cannot be satisfied.

Justification

Users may change their mind very quickly, e.g. a traveller may tell the secretary while

she is phoning to book that he is not going to travel after all, or the secretary may

have booked for another departure than the desired one because this one was sold

out, then she checks with the traveller if it is OK before hanging up and the traveller

tells her to cancel the reservation. Finally, and more typical, it turns out later that the

traveller is not going to travel after all or wants another departure in which cases a

new call to the system is required.

Options

1 Allow cancellation by introducing the keyword “annuller” (cancel). This

keyword can be used immediately after the system‟s confirmation of the entire

reservation. Although not optimal a restriction to a keyword will probably be

necessary because of the limited active vocabulary.

2 Allow cancellation by explicitly asking the user after the confirmation of the

entire reservation if s/he wants this reservation. This, however, would in most

cases be a redundant question and hence clashed with the design commitment:

Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

3 Allow cancellation as a separate functionality of the system, i.e. let it be a

separate task which can be performed independently of a reservation task.

Resolution: Option 3

Option 1 is better than option 2 since it does not introduce extra turns unless the user

wants to cancel. Option 3 is preferred as solution because like option 1 it does not

introduce redundant interactions but in contrast to option 1 it allows cancellation to

be independent of the most recent reservation task. Furthermore, it does not require

the introduction of a new keyword like “annuller” for grammar and recogniser.

Instead cancellation can be activated after the introduction to the system or after the

question “Do you want more?” by saying e.g. “I want to cancel a reservation.”.

46 Spoken Language Dialogue Systems - Report 9a

Comments

Option 1 clearly would be an implementationally smaller solution than option 3 and

would be closely related to the introduction of the keyword “start forfra” (restart,

DR4): The system will forget all the information provided by the user (except the

customer number), and then in case of cancellation it will ask if the user wants more.

Option 3 requires that the system permits the user to choose between the two tasks

of reservation and cancellation after the system introduction. Moreover, the database

must be able to retrieve a reservation, send it to the dialogue handler and delete it

from the reservation file.

Time estimate for developing and implementing solution

1 week for option 3 (2 days for option 1).

Links to other DRs

2 (correction of an entire reservation), 3 (stop reservation if desiderata cannot be

fulfilled), 4 (restart) and 19 (updating the reservation file).

Documentation

Insert into next DSD frame

Option 3.

Commitment 1 (partially new).

Status

Maybe do the simplest solution.

Design Project: P2

Prepares DSD No. 8 DR No. 2 Date: 24.5.94

Design problem: Correction of an entire reservation

It is not possible to make corrections if the user encounters errors when the system

confirms the entire reservation. Use of the change command after this confirmation

will only allow the user to change the time of departure because it is the most recent

piece of information provided by the user. In fact the problem here is that the system

provides feedback on the time of departure and then immediately after this it provides

feedback on the entire reservation of which the time of departure is a subset. Hence it

is not clear which of the two feedback utterances a user is referring to when saying

“change”. In P1 a change command at this place is always taken to refer to the time

of departure.

Commitments involved

1 Clear and sufficient system reaction when users start meta-communication.

Justification

Without sufficient repair and support mechanisms tasks cannot be satisfactorily

performed when something has gone wrong.

Options

1 Interpret the change command at the place in question to refer to the entire

reservation. Confront the user with each piece of information recorded and ask

Appendix A: DR-frames 47

whether it is correct. In case of incorrect information the user should be

allowed to indicate a new value. Since the time of departure is a subset of the

entire reservation the user will also have a chance to correct this piece of

information.

2 Allow the user to tell which piece(s) of information is (are) wrong. Then it

would only be necessary to check these pieces of information plus the ones

depending on them with the user.

3 As option 1, but start with the time of departure and whenever the user

changes an item s/he is asked whether there is more to be corrected.

Resolution: Option 3

Option 3 may save turns compared to option 1 and option 2 is not feasible because of

the restriction to 100 active words at a time which cannot be relaxed and because we

have very limited time resources.

Comments

The implementation requires that the reference of the change command used after the

feedback on the entire reservation is changed. There must be phrases which will

confront the user with the provided pieces of information one by one and a phrase

asking whether there is more to be corrected.

Time estimate for developing and implementing solution

At least 1 week.

Links to other DRs

19 (updating the reservation file).

Documentation

Insert into next DSD frame

Option 3.

Commitment 1.

Status

Will not be implemented.

Design Project: P2

Prepares DSD No. 8 DR No. 3 Date: 24.5.94

Design problem: Break off a reservation

If the desired departure is sold out or if there are no free departures the whole day it

is not possible to break off the reservation task (except by hanging up). P1 will

continue to ask for a day and a time of departure until a usable one has been found.

More generally the problem can be formulated as follows: A piece of information

from the user is recognised and is semantically meaningful but as regards current

resources it cannot be satisfied.

Commitments involved

1 The system‟s task is to make it possible for the user to perform booking of

flights between two specific cities and to decide not to book after all if user

48 Spoken Language Dialogue Systems - Report 9a

desiderata cannot be satisfied.

Justification

It is really not very realistic that users are forced to make reservations even if they

cannot get what they want and that they can only avoid it by hanging up. The present

solution also means that a user cannot choose to have the out-travel but not the

home-travel (e.g. if the desired departure is sold out) because the only way of

avoiding a home-travel reservation is by hanging up and so the out-travel is not

registered. If the user wants the out-travel s/he must call the system again and ask for

a single travel.

Options

1 If the user‟s desiderata cannot immediately be satisfied, e.g. because a

departure is sold out or there are no morning flights, then the user should be

asked if s/he still wants to continue the reservation (of the home-travel), more

precisely the question could e.g. be if the user wants to reserve for another day

or departure. The exact phrasing and the continuation if the user says no should

depend on where in the dialogue the user is, e.g. if the user cannot find a

suitable home-travel this does not automatically imply that s/he does not want

the out-travel. In other words the user should be given the possibility of

stopping the reservation process in a graceful way and not just by hanging up

and the possibility of reserving only a single ticket even if s/he intended to

reserve a return ticket when s/he called the system.

Resolution: Option 1

Comments

The solution is closely related to cancellation (DR1) and restart (DR4). If the user

does not want to reserve for another day or departure and does not want a possible

out-travel the information s/he has provided should be cancelled (except the

customer number) and s/he should be asked if s/he wants more. If s/he wants the out-

travel this is just confirmed in the usual way and the user is asked if s/he wants more.

Time estimate for developing and implementing solution

3 days.

Links to other DRs

1 (cancellation) and 4 (restart).

Documentation

Insert into next DSD frame

Option 1.

Commitment 1.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 4 Date: 24.5.94

Appendix A: DR-frames 49

Design problem: Restart

The only way in which to stop execution of the current reservation task before it

comes to its natural end is to hang up.

Commitments involved

1 Allow relevant meta-communication facilities.

Justification

If a dialogue is going really wrong or the user thinks s/he has followed a wrong path,

it will be easier and more efficient to just start all over again at once rather than wait

until the system finishes the present task and asks if the user wants to do another

task. And just hanging up requires a new call to the system.

Options

1 Restart could be introduced and triggered by a keyword (e.g. “start forfra”) the

use of which is allowed everywhere just as change and repeat..

2 Let the user tell the system to restart in his/her own words whenever s/he wants

to.

Resolution: Option 1

Option 1 is not an optimal solution but it is feasible within the given active

vocabulary size in contrast to option 2.

Comments

Restart would cause the program to start all over again (i.e. by asking for a departure

airport) and cancel all information provided by the user so far except the customer

number.

Time estimate for developing and implementing solution

3 days. Note that it requires a new word (“start forfra”) for grammar and recogniser.

Links to other DRs

1 (cancellation), 3 (break off a reservation) and 11 (degradation).

Documentation

Insert into next DSD frame

Option 1.

Commitment 1.

Status

Will not be implemented (new word model needed).

Design Project: P2

Prepares DSD No. 8 DR No. 5 Date: 24.5.94

Design problem: Wait

The user cannot suspend the dialogue for a while (e.g. by saying „just a moment‟ or

„wait‟).

Commitments involved

50 Spoken Language Dialogue Systems - Report 9a

1 Allow relevant meta-communication facilities.

Justification

Some of the secretaries who acted as subjects in WOZ 7 really missed a “wait”

function. People often drop in to ask the secretary about something, also when s/he is

in the middle of a telephone call. Or s/he may have to check something concerning

the reservation with the person who is going to travel.

Options

1 Wait could be introduced and triggered by a keyword (“vent”) the use of which

is allowed everywhere just as change and repeat.

2 Let the user tell the system to wait for a moment in his/her own words

whenever s/he wants to.

Resolution: Option 1

Option 1 is not an optimal solution but it is feasible within the given active

vocabulary size in contrast to option 2.

Comments

Wait could be implemented in the same way as timeout warnings just allowing the

user not to respond for a longer time interval.

If it is possible to have the recogniser exploit a prioritised focus list (e.g. just

containing two levels) it might be a good idea to assign a high priority to the meta-

communication commands like “repeat” and “restart” when the user has issued the

“wait“ command.

Time estimate for developing and implementing solution

3 days.

Links to other DRs

3 (break off a reservation) and 4 (restart).

Documentation

Insert into next DSD frame

Option 1.

Commitment 1.

Status

Maybe do the implementation. The word “vent” is already included in the vocabulary.

Design Project: P2

Prepares DSD No. 8 DR No. 6 Date: 24.5.94

Design problem: No price information

Users cannot get the price of the tickets they have reserved.

Commitments involved

1 It should be possible for users to fully exploit the system‟s task domain

knowledge when they need it.

Appendix A: DR-frames 51

2 Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

Justification

Only some users are interested in getting information on the price. Professional users

loose time on an extra dialogue turn if they are asked whether they want it. On the

other hand, for users wanting the price information this may be very important.

Options

1 Provide full price breakdown information at the end of a reservation task.

2 Ask users if they want to know the price of their reserved tickets.

3 Always inform users about the total price of their reservation (but not its break-

down into the prices of individual tickets).

Resolution: Option 3

There is a clash between the two design commitments because of the existence of

different needs in the user population. Option 3 was identified and selected as a

compromise between the two relevant design commitments. Option 3 does not

require extra turn taking but mentions the price briefly.

Comments

Since P1 already computes the price it will be easy also to output this information to

the user.

It would be a possibility to allow the user to obtain additional price information (a

breakdown into the prices of individual tickets) via the help function (see DR 12).

Time estimate for developing and implementing solution

Less than 1 day.

Links to other DRs

12 (help).

Documentation

Insert into next DSD frame

Option 3.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 7 Date: 24.5.94

Design problem: Repetition of customer number

The system asks for a customer number every time a new reservation task is started

even if the user does not hang up in between.

Commitments involved

1 Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

52 Spoken Language Dialogue Systems - Report 9a

Justification

It is annoying for the user to be asked several times about something which the

system actually already knows.

Options

1 Only ask for a customer number during the first reservation task performed in a

dialogue. If more than one reservation task is performed within a dialogue then

only check the customer number with the user for every new reservation task

by mentioning the number from the first task and asking if it is still this one.

2 Like option 1 but the system should only mention the customer number it will

use and proceed directly to its next question without awaiting an answer from

the user. If the customer number is not the one to be used the user must say

“change” and hence initiate meta-communication to be allowed to indicate

another customer number.

Resolution: Option 2

Option 2 is preferred since this solution saves a system and a user turn in contrast to

option 1 and hence is more efficient. Moreover, provided a fragile speech recogniser

extra turn taking should be avoided if possible.

Comments

Implementationally option 2 is handled by transferring the customer number to the

new task object with status (DA, UI) when switching to a new task after finishing the

current reservation task.

Time estimate for developing and implementing solution

2-3 days.

Links to other DRs

Documentation

Insert into next DSD frame

Option 2.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 8 Date: 24.5.94

Design problem: Booked departures are not mentioned

If a certain departure is fully booked or the number of free seats is smaller than the

number of travellers it is not mentioned by the system.

Commitments involved

1 Take users‟ relevant background knowledge into account.

Justification

The risk is that the user knows one of the fully booked departure times and asks why

Appendix A: DR-frames 53

it has not been offered. The system will probably not be able to understand this

question.

Options

1 Always insert the phrase “not fully booked” in the system‟s formulation of the

information.

2 Insert the phrase “not fully booked” in the system‟s formulation of the

information only if some of the departures in fact are fully booked.

3 List all relevant departures but add “fully booked” or “only X free seats left”

after those departures which are either sold out or have too few free seats left

for the number of travellers mentioned by the user.

Resolution: Option 3

Option 2 is better than option 1 because it may be misleading to use the phrase “not

fully booked” when there are no departures which are fully booked. However, option

3 is considered better than option 2 because it provides more complete information.

Comments

The dialogue handler receives from the database information on fully booked as well

as not fully booked departures and on the number of free seats. In front of fully

booked departures and departures with too few free seats the relevant one of the two

new phrases mentioned under option 3 should be inserted in the output to the user.

Time estimate for developing and implementing solution

2 days.

Links to other DRs

9 (discount).

Documentation

Insert into next DSD frame

Option 3.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 9 Date: 25.5.94

Design problem: Unavoidable discount

If the user has indicated to the P1 system that s/he is interested in discount s/he will

only be told about discount departures and s/he will not be allowed to reserve

anything else than discount tickets.

Commitments involved

1 It should be possible for users to fully exploit the system‟s task domain

knowledge when they need it.

2 Provide clear and sufficient information to users on which possibilities they

have when it is not otherwise obvious.

54 Spoken Language Dialogue Systems - Report 9a

Justification

The user may know that a certain departure exists but is not aware whether discount

is possible. If the user has indicated that s/he is interested in discount and chooses a

departure for which discount cannot be obtained s/he will be puzzled by being told

that this departure does not exist and may hence pose questions which the system is

unable to understand or answer.

Options

1 When a user e.g. asks for a departure in the morning then let the system

provide all possible departures but clearly indicate which ones can be used if

the user wants discount.

2 The system should list non-discount departures only if there is no departure

providing the desired discount.

3 Only list discount departures if the user has asked for discount but make clear

that they are discount departures.

4 The system should not reject a user reserving for a departure for which

discount is not possible. Instead it should tell the user that s/he cannot obtain

discount if she insists on that departure and ask if that is okay.

Resolution: Options 1+4

This problem could be solved by choosing options 1+4 , 2+4 or 3+4. Options 1+4 are

preferred because option 1 at once tells the user all the possibilities, including those

which are possible if s/he decides not to have discount after all. This may of course

be redundant. On the other hand it is a very local solution. The choice of options 2 or

3 would require considerations on how to handle a situation in which a user rejects

the offered discount departures, i.e. how should then the non-discount departures be

made available to him/her.

Comments

The implementation will include a change in the database so that it always informs

the dialogue handler on discount as well as non-discount departures and also a couple

of output phrases must be changed.

Time estimate for developing and implementing solution

3-4 days.

Links to other DRs

8 (booked departures are not mentioned).

Documentation

Insert into next DSD frame

Options 1+4.

Commitment 2.

Status

Do the implementation.

Design Project: P2

Appendix A: DR-frames 55

Prepares DSD No. 8 DR No. 10 Date: 24.5.94

Design problem: No discount when not explicitly asked for

If the user has indicated not particularly to be interested in discount the system will

not offer discount tickets even when possible given the departures wanted by the

user.

Commitments involved

1 Provide clear and sufficient information to users on which possibilities they

have when it is not otherwise obvious.

2 Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

Justification

Users should not feel that they are tricked to pay more than necessary because the

system withholds information.

Options

1 If the user has made a reservation which would allow him/her to get discount

the system should ask if s/he wants this.

Resolution: Option 1

The decision to insert an extra question is a trade-off between the two mentioned

commitments. There is a risk in some cases to have a redundant interaction.

Comments

An implementation would require the system to keep track of what kind of discount

is possible for the departures chosen in case of return tickets. This requires the

database to deliver this information. If discount is possible an extra question should

be inserted immediately before the confirmation of the entire reservation (and before

the price is computed).

Time estimate for developing and implementing solution

4 days.

Links to other DRs

9 (discount).

Documentation

Insert into next DSD frame

Option 1.

Commitment 1.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 11 Date: 25.5.94

Design problem: The system does not understand

56 Spoken Language Dialogue Systems - Report 9a

All kinds of lack of recognition and understanding are answered by the message “I do

not understand”. This is not very helpful and rather annoying in cases where the

system often has recognition/understanding problems.

Commitments involved

1 Clear and comprehensible error messages and repair support from the system.

Justification

The more precisely users can be told what went wrong and possibly also how to

repair it the better the chances are to solve the problem and hence to proceed

successfully in the dialogue.

Options

1 Introduce graceful degradation. For a more detailed description of this see

[Bernsen et al. 1994].

2 Introduce a more varied kind of error messaging. We propose the following

variations in system messages when a given user input cannot be

recognised/understood a number of times in succession:

The first time: just tell that the system did not understand it and ask for

repetition.

The second time: tell that the system did not understand the input and ask the

question again.

The third time: tell that the system did not understand the input and provide

examples of appropriate answers to the question which the system has asked.

The fourth time: tell that the system still does not understand the input and ask

if the user wants to continue in spite of understanding problems. If yes then go

to step 2, i.e. ask the question again, or reset the degradation, i.e. start from

step 1.

Resolution: Option 2

Option 1 is the best solution but would require too much restructuring to be feasible

within the given time limits of P2. Option 2 is less optimal but seems to be a good

approximation and would be feasible provided the limited project resources and may

certainly increase user satisfaction.

Comments

An implementation will require the dialogue handler to keep track of how many times

in succession communication fails. In addition to this there is nothing new for step 1

except perhaps a change of the phrase. Step 2 just requires that the latest question

can be repeated. Step 3 will take some time since example answers must be

elaborated for each possible question in the dialogue. In fact step 3 includes the first

step towards a help function. A simple version of “help” could just execute the non-

error message part of step 3. If the user does not want to continue in step 4 all

information provided by the user so far should be cancelled except the customer

number and the user should be asked if s/he wants more, i.e. step 4 is actually a

switch to the top task.

Time estimate for developing and implementing solution

2 weeks (at least, since there are many phrases).

Links to other DRs

12 (help) and 3 (stop reservation if desiderata cannot be fulfilled).

Appendix A: DR-frames 57

Documentation

Insert into next DSD frame

Option 2.

Commitment 1.

Status

Will probably not be implemented.

Design Project: P2

Prepares DSD No. 8 DR No. 12 Date: 26.5.94

Design problem: Help

There is no way for the user of getting help on how to continue the dialogue in case

of problems which may be caused by the user needing more information before s/he is

able to answer the latest system question.

Commitments involved

1 Ability to communicate that system or user understanding has failed.

2 Separate whenever possible between the needs of novice and expert users

(user-adaptive dialogue).

Justification

Without sufficient repair and support mechanisms tasks cannot be satisfactorily

performed when something has gone wrong. There are major differences between

novice and expert users, one such difference being that expert users already possess

the information needed to understand system functionality.

Options

1 A context dependent help function may be a way of adapting a system to

novices which is otherwise meant for experts in that it provides no explanations

of concepts which perhaps are not well-known to everybody. For example it

could be a possibility to provide the explanation on red and green discount only

via the help function so that users do not have to listen to it every time they

want to reserve discount tickets.

Resolution: Option 1

Comments

The introduction of a help function will require a careful analysis of what the systems

answers should be in each case where help can be activated. Furthermore, it should

be analysed if some of the explanations in P1 should then be left out and only be

obtainable via the help function.

Time estimate for developing and implementing solution

3-4 weeks (part of the work on new phrases could be shared with DR 11).

Links to other DRs

11 (the system does not understand).

58 Spoken Language Dialogue Systems - Report 9a

Documentation

Insert into next DSD frame

Option 1.

Status

Will not be implemented.

Design Project: P2

Prepares DSD No. 8 DR No. 13 Date: 26.5.94

Design problem: Relation between time of day and hour of departure

P1 pays no attention to whether there should be a correspondence between the time

of day the user has asked for and the exact hour of departure s/he indicates and

whether e.g. 9:30 means 9:30 am or pm. In fact the problem has three variations

which may be exemplified by:

(1) If a user has asked for morning departures and then indicates an hour of departure

which turns out only to be possible in the evening then P1 will simply make a

reservation for this evening flight.

(2) A user may ask for morning departures and then reserve an evening departure.

(3) If the user has not indicated a specific time of day but only mentions a time of

departure, e.g. 8:15 then first 8:15 am is tried and if there is no departure then 8:15

pm is tried.

Commitments involved

1 Provide sufficient feedback on each piece of information provided by the user.

2 Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

Justification

In many cases sufficient feedback is just a repetition of the key-information provided

by the user, such as time of departure, but if there is some kind of indirect

contradiction feedback may only be sufficient if this conflict is made clear to the user

and accepted by him/her.

Options

1 Always ask users when there seems to be a contradiction or in cases where it is

unclear what the user means.

2 (1) If the user indicates an hour of departure which may be in accordance with

the time of day s/he has asked for except that there are no flights e.g. am but

only pm at the indicated hour then the system should check with the user if s/he

really wants this departure.

(2) If the user explicitly asks for an existing hour of departure which is not in

accordance with the time of day s/he has indicated to be interested in then

accept and only provide the usual feedback (i.e. repeat the hour and then go on

to the next question).

(3) If the user has not indicated a specific time of day but only mentions a time

Appendix A: DR-frames 59

of departure, e.g. 8:15 then the system should see if there is a departure at 8:15

am. If not, then it should try 8:15 pm. If there is a departure at one of these to

hours then the system should just provide the usual feedback (no matter which

of the possibilities existed).

Resolution: Option 2

Option 2 is considered to be the best solution since it is assumed that always asking

the user explicitly will mean redundant interaction in nearly all cases of variations 2

and 3 whereas for variations 1 it is much more doubtful whether the user really wants

the departure the system has found since it is the system that introduces an

inconsistency between time of day and hour of departure. In variation 2 the user (or

the recogniser) introduces the inconsistency and in variation 3 there is no time of day

with which the hour of departure can be in conflict.

Comments

The implementation requires that the system keeps track of which time of day (if any)

the user has indicated. If the user indicates an hour of departure which may be am as

well as pm then the departure found should be compared to the indicated time of day,

if any. If there is a contradiction the system should check with the user.

Time estimate for developing and implementing solution

3 days.

Links to other DRs

Documentation

[Dybkjær, 25.5.94]

Insert into next DSD frame

Option 2.

Commitment 1 (partially new).

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 14 Date: 26.5.94

Design problem: Repetition

In P1 only the latest system question is repeated when the user asks the system to

repeat. In many situations it would be appropriate to repeat the entire most recent

system turn including the provided information.

Commitments involved

1 Clear and sufficient system reaction when users start meta-communication.

Justification

When the system has provided information, such as a telephone number or a list of

departures, followed by a question and the user says “repeat” it is very likely that it is

the information the user asks to have repeated and not only the question.

Options

60 Spoken Language Dialogue Systems - Report 9a

1 Always repeat the most recent system turn entirely.

2 Analyse carefully if there are situations in which it will be most reasonable only

to repeat the question and perhaps part of the information, i.e. a context

dependent repetition.

Resolution: Option 1

Option 1 is chosen because it is less time consuming and the profit as regards

functionality of choosing option 2 is assumed to be small.

Comments

An implementation will be somewhat time consuming because the dialogue history of

P1 does not record enough information to support the solution. The recording of the

entire latest system utterance must be done in a principled way.

Time estimate for developing and implementing solution

2-3 weeks.

Links to other DRs

Documentation

Insert into next DSD frame

Option 1.

Commitment 1.

Status

Will not be implemented. Wait until P3.

Design Project: P2

Prepares DSD No. 8 DR No. 15 Date: 26.5.94

Design problem: Indication of id-numbers

Id-numbers must be indicated one at a time and if one of them is not understood the

user is asked to start all over again with the id-number of the first traveller.

Commitments involved

1 Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

Justification

Superfluous interaction is boring and inefficient for the user. The more fragile the

speech recogniser is the more reason there is at least not to ask users to start all over

again in case of no recognition.

Options

1 Allow users to indicate all id-numbers in one utterance.

2 Ask for id-numbers one at a time but only ask for repetition of those which are

not understood.

Resolution: Option 2

Appendix A: DR-frames 61

Option 1 will, if the user utterance is recognised at once, reduce the number of user

and system turns if there is more than one traveller. However, this solution will

require the grammars to be changed and user utterances will become longer. The

speech recogniser has problems with “long” utterances and the error rate can be

foreseen to grow which may lead to a situation in which the user often will have to

ask for correction or the system will have to ask for repetition. Option 2 will be much

simpler to implement, given P1, the utterance length will not be increased but a

number of annoying repetitions avoided.

Comments

The most primitive implementation of the solution will be to insert the “not

understood” handling as a further hack into the handling of “Person?” (which

includes “Person get”. Another fairly primitive implementation will require a local

restructuring of P1. A more general implementation requires a principled

restructuring of P1 as regards the handling of sub-tasks. The latter possibility will be

too time consuming. The second possibility is preferred to the first one because it is

not so much of a hack.

Time estimate for developing and implementing solution

1-2 days for the second possibility mentioned under comments.

Links to other DRs

Documentation

Insert into next DSD frame

Option 2.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 16 Date: 26.5.94

Design problem: Lack of flexibility

P1 is very rigid in the introductory phrases leaving no initiative to the user. The usual

situation in a conversation with a human travel agent is much more flexible for the

user because s/he has the initiative and decides what to tell (often it is a statement

providing number of persons and destination and perhaps date).

Commitments involved

1 Maximise the naturalness of user-interaction with the system.

2 Unless a naturalness criterion cannot be met for feasibility reasons, it should be

incorporated into the artifact being designed.

Justification

Probably the system would appear much more natural to users when some flexibility

could be allowed in the beginning of a reservation dialogue because then it would

correspond much to what is typical in human-human reservation dialogues, namely

that the travel agent takes over and asks questions when the user has stated a couple

62 Spoken Language Dialogue Systems - Report 9a

of facts on what s/he wants.

Options

1 Allow the user to tell what s/he wants in reply to the system‟s first question

(“Do you know this system?”).

2 Like option 1, but only allow a limited set of information as a maximum, e.g.

number of persons, departure and arrival airports and date.

Resolution: Option 2

Option 2 is a trade-off between recogniser constraints and desired usability. Leaving

more initiative to the user and making it possible to indicate several pieces of

information at a time (i.e. enlarging the focus set of the dialogue handler) will

inevitably increase users‟ utterance length which will provide problems for the

recogniser. Therefore it will not be possible to allow users to provide any

combination of information at this point so option 1 is not feasible. Instead the most

common not too long combinations could be allowed such as “I would like to reserve

two single tickets to Aalborg”.

Comments

The implementation requires an analysis of and a decision on which pieces of

information to allow from the user after the system‟s introductory turn. The pieces of

information which are allowed must be included in the system‟s focus set. The system

may as default proceed like P1 does now by asking a question for one single piece of

information at a time. However, before asking a question it should check whether it

already has the information it is going to ask for. If it already has the information it

should go on to the next question.

Time estimate for developing and implementing solution

3 days (plus new grammars (CST)).

Links to other DRs

Documentation

Insert into next DSD frame

Option 2.

Status

Will not be implemented now. Will perhaps be implemented for P2.

Design Project: P2

Prepares DSD No. 8 DR No. 17 Date: 26.5.94

Design problem: Reference numbers

Every time the P1 system is restarted it will also restart the numbering of reference

numbers from one. This is not very appropriate for demonstrations.

Commitments involved

1 Unless a naturalness criterion cannot be met for feasibility reasons, it should be

incorporated into the artifact being designed.

Appendix A: DR-frames 63

Justification

The only reason for making this change is that it may appear more realistic to people

who attend a demonstration of the system that the first reference number is not one.

If the reference number is one it may seem as if it is the very first time the system is

used.

Options

1 Let the system generate a random number from which to start.

2 Let the system start from a fixed number which is not 1 but e.g. 57.

3 Store the most recent reference number on a file (must be done after each

reservation). When the system is restarted the next reference number will be the

one on the file plus 1.

Resolution: Option 3

Option 3 is chosen because of people attending more than one demonstration.

Furthermore, consider the situation where the system goes down after a user has

made two reservations but still wants to make two more. The user has got two

reference numbers (one for each of the two first reservations). When the system is

restarted and the user performs the two last reservations s/he will get the same two

reference numbers for these two reservations as for the first two ones when choosing

option 2 and this is very likely to be the case also when choosing option 1. However

this problem is avoided by option 3.

Comments

The implementation of the solution will only require a small change in the function

which generates reference numbers plus the introduction of a reference number file.

Time estimate for developing and implementing solution

Less than 1 day.

Links to other DRs

Documentation

Insert into next DSD frame

Option 3.

Status

Do the implementation.

Design Project: P2

Prepares DSD No. 8 DR No. 18 Date: 26.5.94

Design problem: Several tickets for the same person for the same flight

It is possible to book several tickets for the same person on the same flight during the

same reservation task.

Commitments involved

1 Provide sufficient feedback on each piece of information provided by the user.

64 Spoken Language Dialogue Systems - Report 9a

Justification

Serious customers probably would not book more than once for a given traveller.

However, recognition errors may cause this to happen and if the user does not pay

attention to it during the feedback on who is going to travel it will not be corrected.

Furthermore, there may be situations in which two persons try to book for the same

traveller, due to misunderstandings or a user tries to book the same ticket twice

because s/he is not sure that the first reservation task was perform successfully.

Options

1 Let the database check that each id-number is only mentioned once during a

reservation.

2 Like option 1 but also let the database check that none of the travellers has

booked for the same flight previously.

Resolution: Option 2

Option 1 will solve the problem with misrecognitions which are perhaps not

discovered. Option 2 will solve this problem as well as the one with repeated

reservations.

Comments

The implementation will require the introduction of an extra check on id-numbers in

the database. Moreover, when the departure is known the reservation file of the

customer should be checked for already existing reservations for the same flight for

the same traveller.

Time estimate for developing and implementing solution

1 week.

Links to other DRs

Documentation

Insert into next DSD frame

Option 2.

Commitment 1 (partially new).

Status

Will only be implemented if there is time.

Design Project: P2

Prepares DSD No. 8 DR No. 19 Date: 24.5.94

Design problem: Updating the reservation file

Once a reservation has been written on the reservation file it cannot be changed in

P1. Only new and/or revised reservations can be added. This i.a. means that the

solution suggested in DR 1 (cancellation) cannot be implemented without a change to

the reservation file handling. However, a solution to this problem should not affect

the user in any negative way. The moment at which the reservation is written to the

reservation file is important in a realistic system where there may be several users

booking in parallel. Seats are only booked when the reservation is written to the

reservation file. Therefore when the system confirms a reservation it is important that

Appendix A: DR-frames 65

this means that the reservation has been written to the reservation file successfully so

that the system does not have to tell the user later that there were not enough free

seats after all.

Commitments involved

1 Ability to handle and execute user corrections in a proper way.

2 Do not tell the user anything for which there is no evidence.

Justification

If the system promises the user that it can perform corrections not only to separate

pieces of information but also to entire reservations it should be able to do it not only

at the surface but also behind the interface, i.e. correction should be carried out in

reality and not just seemingly since this would never function in a realistic system.

Options

1 Only update the reservation file when a task is finished and the system can be

certain that there are no more corrections to the information provided.

2 Update the reservation file immediately before the entire reservation is

confirmed. When there are changes to the information before the task is

finished then make the changes and overwrite the old reservation on the file if

the changes were acceptable.

Resolution: Option 2

Option 1 would be easier to implement because it requires very few changes to the

present P1 (only a delay of the update of the reservation file). However, a solution to

the problem should not affect the user in any negative way. Option 1 would influence

the moment at which the reservation is written to the reservation file. So option 1 is

in conflict with commitment 2. Moreover, option 1 does not provide a solution to

how to handle previous reservations (e.g. when a user wants to cancel one). Option 2

offers a solution to this problem and does not clash with any of the commitments and

is therefore preferred.

Comments

The moment for writing on the reservation file can be the same as in P1 but option 2

requires the implementation of some simple file handling that will allow the database

to retrieve a reservation from the reservation file and send it to the dialogue handler

and to update a previous reservation.

Time estimate for developing and implementing solution

4-5 days.

Links to other DRs

1 (cancellation) and 2 (correction of an entire reservation).

Documentation

Insert into next DSD frame

Option 2.

Commitments 1+2.

Status

Will not be implemented.

66 Spoken Language Dialogue Systems - Report 9a

Design Project: P2

Prepares DSD No. 8 DR No. 20 Date: 16.6.94

Design problem: Waiting list

The possibility of putting users (or rather potential travellers) on a waiting list if there

are no free seats for the moment on the desired flight is not offered.

Commitments involved

1 Sufficient task domain coverage.

2 Make system limitations clear to users from the outset.

Justification

The possibility of being put on a waiting list is usually offered by travel agencies and

one of our subjects directly mentioned that she missed this functionality.

Options

1 Offer users the possibility of being put on a waiting list in case the desired flight

is fully booked.

2 Inform users in the system introduction that a waiting list is not available.

Resolution: Option 1

Option 1 is obviously the better solution because it fully solves the problem. Option 2

might just add to cluttering up the system introduction with a lot of talk half of which

the user cannot remember after all if the introduction is too long. And there may be

other information on what the system cannot do which it would be just as relevant to

inform about in the introduction as the missing waiting list.

Comments

The implementation of a waiting list would require a new field to be added to each

record in the flight file where the number of free seats are registered. When

reservations are deleted the database should check if somebody is on the waiting list.

If this is the case then the first customer for whom enough free seats are available

should be contacted. The system is not prepared for contacting users itself but it

could print a message to a travel agent on a screen.

Time estimate for developing and implementing solution

5 days.

Links to other DRs

Documentation

Insert into next DSD frame

Option 1.

Status

Will not be implemented. Since the change of reservation task (including cancellation

of reservations) is not implemented it does not make sense to put users on a waiting

Appendix A: DR-frames 67

list .

68 Spoken Language Dialogue Systems - Report 9a

Appendix B: The prompt program

The prompt program was constructed and used during test of the dialogue description and the

application database. The program facilitated indication of input to the ICM module by

automatically expanding ordinary typed utterances into the format expected by the ICM which

would produce input to the dialogue description via the parser. Below is given a very brief

description of the program. It is the description which is available on the system if one asks for

help.

prompt$ prompt -h

 Merges commands from file and standard input to other program.

 Usage:

 prompt {options} file | other-program

 where options are [default]:

 -h Help [this table].

 -v Version.

 and file is input of other-program, with the line format:

 [program-command] [# comment]

 [# 'prefix' command-prefix] // put before subsequent commands

 [# 'postfix' command-prefix] // put after subsequent commands

 [# 'stop' command] // default commands for stop

 [# entry ':']

 and other-program typically expects line-commands.

 While running the following commands may be used:

 <return> : send current message to other-program

 ? : print this description

 '<text> : send <text> raw to program

 /<name> :search for group <name>

 + : next command

 - : previous command

 * : use body of current for editing

 :r : reread input file

 :f : new input file

 :v : toggle view comments

 :c : add comment to current line

 :d : delete current line

 :s : save current line set

 :q : quit

 <text> : insert <text> as body in list

 [<pre> : use <pre> as prefix (for <text>)

]<post> : use <post> as postfix (for <text>)

 The current line is marked by ---

 Press return after all commands

Spoken Language Dialogue Systems - Report 9a 69

References

[AT&T Application Note 1989] Linear Prediction Based DTMF Detection for the WE DSP32

Signal Processor Family. AT&T Application Note, AP89-008DMOS, June 1989.

[Baekgaard 1995] Baekgaard, A.: A Platform for Spoken Dialogue Systems. Proceedings of

the ESCA workshop on Spoken Dialogue Systems, Vigsø, Denmark, May 30 - June 2,

1995, 105-108.

[Balkan et al. 1994] Balkan, L., Netter, K., Arnold, D. and Meijer, S.: TSNLP: Test Suites

for Natural Language Processing. Proceedings of Language Engineering Convention, 6-7

July 1994, ELSNET 1994.

[Bernsen 1993] Bernsen, N.O.: The Structure of the Design Space. In Byerley, P.F., Barnard,

P.J. and May, J. (Eds.): Computers, Communication and Usability: Design issues,

research and methods for integrated services. Amsterdam, North-Holland, 1993, 221-

244.

[Bernsen and Ramsay 1994] Bernsen, N.O. and Ramsay, J.: Design Structure, Process and

Reasoning. The Advancement of a Tool for the Development of Design Spaces. Esprit

Basic Research project AMODEUS-2 Working Paper RP3-ID-WP28, 1994.

[Brøndsted 1994] Brøndsted, T: Stokastisk og heuristisk sprogmodellering, SPS 9, Aarhus

1994.

[Brøndsted 1995] Brøndsted, T.: The text recogniser TXTREC. Internal Note, Center for

PersonKommunikation, Aalborg University, 1995.

[Chomsky 1959] Chomsky, N.: Syntactic Structures, Mouton, The Hague, 1959.

[Chomsky 1971] Chomsky, N: Syntactic Structures, 9th printing, Mouton, The Hague, 1971.

[EAGLES 1994] EAGLES - Evaluation of Natural Language Processing Systems. Draft -

Work in Progress. Eagles Document EAG-EWG-PR.2, July 1994.

[Ensigma 1990] Ensigma Ltd.: DSP32C Telephony Board User Guide, version 1.0, UK

January 1990.

[Galliers and Sparck Jones 1993] Galliers, J.R. and Sparck Jones, K.: Evaluating Natural

Language Processing Systems. Technical Report No. 291, March 1993.

[Jacobsen 1991] Jacobsen, C.N.: SIRTrain Training Software. User Guide, Ver. 2.1",

SUNSTAR Grp2-1-1, 1991

[Larsen 1995] : Lars Bo Larsen "Functional Description of the TLI", Internal note, Center for

PersonKommunikation, Aalborg University, November 1995.

[Lauesen 1979] Lauesen, S.: Debugging Techniques. Software—Practice and Experience,

vol.9, 1979, 51-63.

[Lindberg 1995] Lindberg, B.: "3R Software Reference Guide Ver. 5.0" Center for

PersonKommunikation, Aalborg University 1995.

[Purify 1993] Purify User‟s Guide. Release 2.1, Pure Software Inc.,1309 South Mary

Avenue, Sunnyvale, CA 94087, 1993.

[SAM 1992] ESPRIT Project SAM 2589 - Final Report, Year 3, SAM-UCL-G004, June

1992.

70 Spoken Language Dialogue Systems - Report 9a

[Thompson 1992] Thompson, H. (ed.): The Strategic Role of Evaluation in Natural

Language Processing and Speech Technology. Human Communications Research

Centre, Edinburgh, 1992.

[Wetzel and Torabli 1991] Peter Wetzel and Klan Torabli: Description of the SPC and SNF

Converter. Esprit Project 2094 SUNSTAR, WP II.1.3, March 1991.

[Young 1992]: Young, S.J.: HTK: Hidden Markov Model Toolkit V1.4. Cambridge

University 1992.

[Young et al. 1991] Young, S.J., Russell, N.H. and Thornton, J.H.S.: The Use of Syntax and

Multiple Alternatives in the VODIS Voice Operated Database Inquiry System.

Computer, Speech & Language, Vol. 5, 1991.

Spoken Language Dialogue Systems - Report 9a 71

Project Reports

The following is a list of project reports from the research programme Spoken Language

Dialogue Systems.

1. Larsen, L.B., Brøndsted, T., Dybkjær, H., Dybkjær, L., Music, B. and Povlsen, C: State-

of-the-art of Spoken Language Systems—A Survey. September 1992.

2. Larsen, L.B., Brøndsted, T., Dybkjær, H., Dybkjær, L. and Music, B.: Overall

Specification and Architecture of P1. February 1993.

3. Dybkjær, L. and Dybkjær, H.: Wizard of Oz Experiments in the Development of a

Dialogue Model for P1. February 1993.

4. Povlsen, C.: Sublanguage Definition and Specification. April 1994.

5. Brøndsted, T. and Larsen, L.B.: Representation of Acoustic and Linguistic Knowledge in

Continuous Speech Recognition. January 1994.

5a. Larsen, L.B. and Steingrimsson, P.: Representation of Acoustic and Linguistic

Knowledge in Continuous Speech Recognition. Documentation of Training and Test

Databases. To appear 1996.

5b. Brøndsted, T. and Larsen, L.B.: Representation of Acoustic and Linguistic Knowledge in

Continuous Speech Recognition. Program Descriptions. May 1994.

6a. Bernsen, N.O., Dybkjær, L. and Dybkjær, H.: Task-Oriented Spoken Human-Computer

Dialogue. February 1994.

6b Dybkjær, H. and Dybkjær, L.: Representation and Implementation of Spoken Dialogues.

May 1994.

7. Music, B. and Offersgaard, L.: The NLP Module. April 1994.

8. Lindberg, B. and Kristiansen, J.: Real-time Continuous Speech Recognition within

Dialogue Systems. December 1995.

9a. Dybkjær, L., Bernsen, N.O., Brøndsted, T., Bækgaard, A., Dybkjær, H., Larsen, L.B.,

Lindberg, B., Povlsen, C.: Test of the Danish Spoken Language Dialogue System.

January 1996.

9b. Dybkjær, L., Bernsen, N.O. and Dybkjær, H.: Evaluation of Spoken Dialogues. User

Test with a Simulated Speech Recogniser. January 1996.

9c. Povlsen, C.: Adequacy Evaluation of the Linguistic Module. To appear 1996.

10. Bækgaard, A.: The Generic Dialogue System. January 1996.

