
 

 

On-line user modelling in a mobile spoken dialogue system 

Niels Ole Bernsen 

Natural Interactive Systems Laboratory 
University of Southern Denmark 

nob@nis.sdu.dk 
 

Abstract 
The paper presents research on user modelling for an in-car 
spoken dialogue system, including the implementation of a 
generic user modelling module applied to the modelling of 
drivers’ task objectives. 

1. Introduction 
In general, the concept of user modelling addresses issues of 
understanding users in order to make a system useful and 
make user-system interaction user friendly and universal. We 
may distinguish between at least the following concepts of 
user modelling. 

In design-time adaptation to users, we employ various 
methods to anticipate users’ needs, goals, interactive 
behaviour, etc., in order to proactively fit the system to its 
future users. The system may be programmed at design time 
to dynamically respond in different ways depending on the 
user’s behaviour, but it does not offer the user any other ways 
of modifying the system’s behaviour. Secondly, the system 
may be customisable by users who can modify the system’s 
behaviour in various ways, such as functionally or with 
respect to its style of interaction, by selecting among 
customisation options. Thirdly, in user model-based 
adaptation, the system may itself observe the user’s 
behaviour and adaptively modify its interactive behaviour on-
line as a function of the data gathered. Thus, user model-
based adaptation is: on-line, made by system, uses collected 
and stored user information. Two forms may be distinguished: 
(a) historical adaptation: uses implemented user model for 
each user and (b) instant adaptation: uses short-term buffered 
user information. 

In the prototypical form of user model-based adaptation, 
historical adaptation, the system collects and stores 
information on the individual user’s behaviour for later use 
on-line. In instant adaptation, the point is to apply the 
information gathered as soon as possible, i.e. when the system 
knows that the user’s behaviour has a particular property 
which requires adaptation. Systems which do instant 
adaptation may treat the user anonymously. Hybrids between 
historical adaptation and instant adaptation are possible. 

The proliferation of mobile systems in the future offers 
new challenges for user model-based adaptation technologies. 
Mobile systems will communicate with their users in an 
increasing number of modalities [1], such as input/output 
speech, in addition to the customary GUI input/output 
modalities. Mobile systems may offer location-based and 
situation-based information. Coupled with the user-awareness 
provided by user model-based adaptation, opportunities are 
huge indeed [2]. 

This paper describes work on user model-based 
adaptation in a large mobile system called VICO or Virtual 

Intelligent CO-driver. Section 2 describes the system’s 
functionality. Section 3 presents findings on generic system 
tasks for user modelling, user identification, user modelling 
information, and criteria for selecting the information to 
model. Section 4 describes the VICO user modelling module. 
Section 5 describes next steps in our work. 

2. The VICO system 
Spoken language dialogue systems (SLDSs) are migrating 
into mobile environments, such as the car. VICO is such a 
system which has been developed in the European HLT 
VICO project 2001–2003, addressing some next-step 
challenges in the context of supporting car drivers whilst 
driving [3]. In brief, the challenges include: (1) ease of use by 
a large and heterogeneous user population; (2) processing of 
fully spontaneous spoken input, English, German, and Italian; 
(3) multiple-task assistance: with navigation to addresses and 
points of interest in Italy, hotel reservation, restaurant 
reservation, and VICO system information; (4) confidence-
score adaptive dialogue using speech recogniser and natural 
language processing confidence scores; (5) GPS-based 
location-awareness; (6) multimodal interaction through push-
to-talk button and spoken input, and spoken and display (text) 
output; and (7) integration of adaptive user models built on-
line. 

3. General findings 
At the start of VICO, we analysed the scope of user modelling 
for in-car use, taking into account the particular tasks of 
VICO (Sect. 2). 

3.1. Generic system tasks 

VICO’s generic UM-related tasks are [4]: (1) identify the 
present driver; (2) retrieve the present driver’s user model; (3) 
optionally: create a new user model UM(Dx) for a new driver, 
Dx; (4) make appropriate on-line use of the present driver’s 
user model during the driver’s dialogue with VICO; (5) 
collect new information on the driver during the driver’s 
dialogue with VICO; (6) update the present driver’s user 
model with the new information gathered; and (7) store the 
user model whenever it has been updated with new 
information. This generic task list assumes the historical 
adaptation approach (Sect. 1). Instant adaptation requires 
that the system solve fewer generic tasks, i.e.: (1) collect 
information on the present driver during the driver’s dialogue 
with VICO; (2) store the collected information temporarily; 
and (3) make appropriate on-line use of the information. 

As will be demonstrated below, both historical adaptation 
and generic adaptation are relevant to VICO’s potential user 
modelling tasks and, probably, to user modelling in mobile 
environments more generally. 



 

 

3.2. Driver identification 

VICO must determine the car’s current driver since cars often 
have several different drivers. Driver identification must be 
made with near-certainty. If it is uncertain that VICO has 
correctly identified the driver, misidentification will happen 
too often. In such cases, the driver is likely to be “mistreated” 
because VICO will adapt to the driver based on a wrong user 
model. Similarly, the modelled behaviour of the misidentified 
driver will tend to fudge up the misallocated user model with 
misleading information. Since the driver’s user model cannot 
be invoked before identification, VICO must identify the 
driver up front, i.e. as soon as that driver starts the dialogue. 
Later identification means less support for the driver, and the 
updated user model runs the risk of having missed to collect 
important information on the driver’s behaviour. 

In SLDSs, driver identification design is a non-trivial 
problem. We have considered (a) voice identification, (b) a 
driver’s code, however input to VICO, (c) driver’s spelled 
first name, and (d) combinations of (a) through (c). Other 
solutions are possible, such as car key radio signals, several 
(other) biometrical solutions, etc. Among the above, we prefer 
to use voice identification-cum-spelling of their first names by 
first-time users. This combines the unobtrusive elegance of 
voice identification with (non-coded) first-name feedback and 
avoids having to remember and use a code or spell one’s 
name on each occasion of use. This option also allows 
passengers to speak to the system without being registered in 
the UM database – passengers just have to avoid giving the 
system their first names. 

3.3. Which type(s) of information to model? 

Based on analysis of some 25-30 candidate kinds of 
information about driver behaviour which VICO might collect 
and use adaptively, we distinguish between: (T1) information 
on the driver’s task objectives due to task goals, preferences, 
habits, etc.; (T2) information on the driver’s communication 
with VICO; and (T3) information on the driver’s experience 
of various kinds. This information typology helps generate a 
structured space of candidates for observation-based adaptive 
user modelling, each generic type of information subsuming 
several specific information types, such as the driver’s: 
preferences for hotels, restaurants, points of interest, petrol 
brands, or address locations (T1); native language, 
communication difficulties due to strong accent or dialect, 
speech disorders, extreme talkativeness, elaborate politeness, 
frequent cross-talk with passengers, unusual speaking style, 
etc. (T2); and experience in using VICO itself (T3). 

We then identified a set of criteria which should be 
satisfied by the driver information to be modelled. These are: 
(C1) universality: unless other factors advocate in their 
favour, the chosen information should be top quality in terms 
of usefulness to all or most drivers; (C2) quality: the 
information should provide genuine driver adaptivity without 
significant drawbacks; (C3) feasibility: the functionality 
should be implementable without extreme or unpredictable 
effort, the latter being due to, e.g., a needed research 
breakthrough; and (C4) verifiability: the functionality must be 
based on clearly verifiable information about the driver. 

An example of T1 in the typology is: store the driver’s 
past hotel preferences, such as number of stars, price, 
location, hotel chain, etc. Even if not presently told about 
them by the driver, VICO could offer to use those constraints 

as selection criteria when looking for a suitable hotel. Let us 
evaluate the hotel preferences functionality using the selection 
criteria C1 through C4. C4 is met because the driver’s hotel 
preferences become apparent during dialogue with VICO; 
they do not appear to have any significant drawbacks (C2). 
The functionality can be implemented without extreme or 
unpredictable effort (C3). Whether C1 is met depends on, at 
least, (i) how many users of VICO will need to book hotels, 
(ii) how many users will do so en route, and (iii) how many 
users have systematic hotel preferences. We do not know the 
answers at this point. 

It is harder to identify suitable T2 information candidates. 
An example is a system which (instantly) adapts its dialogue 
to drivers having a strong dialect or accent. A major problem 
is that any solution may be at risk as long as we do not have 
efficient ways of diagnosing different possible causes of 
recognition problems. Low confidence scores, many out-of-
vocabulary words, or multiple error corrections, for instance, 
cannot tell if the cause of repeated recognition problems is a 
strong dialect or accent or something different, such as a 
driver who regularly talks to passengers during dialogue (C3, 
C4). T2 solutions might well satisfy C2. And even if not 
benefiting all or most drivers, they might benefit large 
fractions of those drivers who have great difficulty using 
spoken language dialogue systems at all, illustrating the 
exception clause in C1. 

T3 information includes at least one obvious candidate, 
i.e. the driver’s experience with VICO itself. The idea is to 
offer up-front information on VICO’s tasks and how to 
operate VICO to all new drivers independently of whether or 
not a new driver asks for it. Provision of this information 
would seem to rather easily meet C1 through C4. 
Implementation will be simple because VICO only needs to 
determine if the current driver is new to the system. It needs 
not store a record of the driver’s behaviour nor does it need 
UM update algorithms (C3). Contrary to “standard” instant 
adaptation (Sect. 1), however, the system must be able to 
uniquely identify the driver. 

4. Application description 
Guided by the above analysis, we have implemented a 
general-purpose UM module and applied it to facilitate 
drivers’ hotel selection dialogue through knowledge of their 
hotel preferences in the past. 

4.1. Location-dependent and location-independent 
adaptivity 

The following driver hotel preference behaviour feature-value 
pairs are collected and used by the UM: 

• type [VALUE = HOTEL] 

• hotel name [VALUE = NAME] 

• hotel address [VALUES = ADDRESS ITEMS] 

• number of stars [VALUES = 1, 2, 3, 4, 5] 

• hotel chain [VALUE = NAME] 

• hotel location [VALUES = TOWN, OUTTOWN, 
COUNTRYSIDE] 

• max. prices for single (S)/double (D) rooms [VALUES = 
S: X and D: Y Euros] 



 

 

• restaurant in hotel [VALUE = TRUE, FALSE] 

• protected parking [VALUE = TRUE, FALSE] 

Analysis showed that these attribute-value pairs are of two 
very different kinds, i.e. the generic hotel properties 1, 4, 5, 6, 
7, 8, and 9, and the specific hotel properties 2 and 3. Generic 
hotel properties may belong to any particular hotel. Specific 
hotel properties imply all properties of a particular hotel: once 
you choose a particular hotel, e.g. by its name, you choose all 
its properties. The UM thus cannot use specific hotel 
properties to support the driver’s hotel selection task 
independently of where the driver happens to be. Only 
generic hotel properties can be used for location-independent 
user model-based driver support. Thus, the hotel selection 
UM must have two distinct adaptive functionalities. The first, 
location-independent, functionality offers hotels having the 
generic properties of hotels which the driver has preferred in 
the past. The second, location-dependent, functionality offers 
the specific hotels which were preferred in the past if and only 
if the driver is in the area in which those hotels are located. 

4.2. User model update and use 

A crucial design issue is how to update the UM with new 
information. If, e.g., the update algorithm averages over the 
past, and if there is a long UM record of staying in 
inexpensive hotels, then the UM may never fully realise that 
the driver has changed hotel preferences. As they are, our 
update algorithm for each generic hotel property takes the two 
latest hotel reservations into account through combination and 
interpolation. As for the driver’s previous choices of specific 
named hotel/location pairs, the UM stores and uses all of 

them, no matter how long ago it was when the driver stayed in 
a particular hotel. 

The context of use of the hotel selection UM is that the 
driver asks VICO to help book a hotel, possibly adding some 
selection constraints, saying, e.g., “VICO, please find a three-
star hotel.” At this point, the hotel preferences UM is being 
applied. 

VICO UM application raises several design issues likely 
to strongly affect user acceptance. Firstly, it seems clear that 
the UM should never override the driver’s stated hotel 
selection constraints. Thus, if the three-star constraint in the 
example above conflicts with the UM, the former should 
prevail by applying conflict resolution. If the driver’s stated 
selection constraints suffice for uniquely identifying a hotel 
through querying the hotels database, the UM should not be 
applied. Secondly, when UM hotel selection constraints are 
being applied in querying the database, possibly as 
complements to the driver-provided selection constraints and 
following conflict resolution, it is important to inform the 
driver that the returned hotel suggestions are the results of 
UM application. Adaptation should be made behind the 
driver’s back. 

In location-based selection support, the UM provides a 
list of past selected hotel/location pairs. If the driver provides 
a location corresponding to a location on the list, s/he is 
offered the corresponding hotel(s). If no location is provided, 
VICO assumes that the driver wants a local hotel. If the car’s 
current location matches a location in the hotel/location pairs 
list, the driver is offered the corresponding hotel(s). 
 

 

 

Figure 1: Embedded user model architecture. 



 

 

4.3. Implementation 

Figure 1 shows the generic VICO user modelling module 
(UM) as embedded in the dialogue manager (DM). External 
module communication between the DM and three other 
modules is shown: the DM receives frames from the natural 
understanding module (NLU), makes database queries over 
the car-wide web (CWW), and eventually sends output to the 
user to be turned into a TTS (text-to-speech) string by the 
response generator (RG). The task manager (TM) controls all 
intra-DM module communication, using the dialogue 
histories (DHi) task history (TaH) and topic history (ToH) to 
store the discourse context. For reasoning about, and making 
database queries with respect to, each task, the DM is 
supported by domain agents of which only the hotel task 
domain agent (HDA) is shown in the figure. 

The generic UM includes a communication manager 
(BOSS), a database (DB), and an extensible set of task-
specific user modelling modules of which only the hotel 
reservation module (HRUM) is shown. The DB includes a list 
of users known to the system (Users), a series of task-specific 
records per individual user/task pair (Rec), and a series of 
models of individual users per task (UMs). UMs are built 
from Recs by the hotel reservation user module (HRUM) 
using task-specific update algorithms. 

Numbers in Figure 1 shows the progression of 
information exchange during hotel reservation.: 

1. The user begins the hotel reservation dialogue. 

2. As soon as the driver is identified, the TM sends the 
driver’s id to the UM. 

3. The TM sends the UFrame (what the user said), the 
UMFrame (empty frame which UM has to fill), and the 
empty CityHotelPairs list to the UM. 

4. The UM retrieves HRUM from the database (UMs 
table). 

5. The UM sends the filled UMFrame and the filled 
CityHotelPairs list to the TM. 

6. The TM sends UFrame, UMFrame, and the 
CityHotelPairsList to the HDA (DA_hotel). 

7. The HDA queries the CWW with the UFrame data, so 
far not using the UM data. The purpose is to find out if 
the driver’s own request could yield a satisfactory result 
without making use of UM information. 

8. The CWW responds to the query (R1). 

9. If there is any useful information in the UMFrame and 
if the previous DB return (R1) includes more than three 
hotels, then the HDA queries the CWW with the 
additional UMFrame data. 

10. The CWW replies to the query (R2). 

11. The HDA sends the DHa frame which contains 
information about hotels, to the TM. 

12. The TM sends the TMFrame to the response generator 
in order to propose one or several hotels to the driver. 

In the ensuing dialogue, the driver and VICO eventually 
agree on a specific hotel. Then: 

13. The NLU inputs a frame which expresses the user’s 
agreement. 

14. The TM stores this information in the DHI. 

15. The TM retrieves the final frame which contains full 
information on the selected hotel, from the DHI. 

16. The TM sends the final frame to the UM. 

17. The UM stores the frame in the DB’s Rec table, updates 
the user module (HRUM), and stores it as well. 

What happens to the CityHotelPairs list of previous 
city/hotel pairs visited by the driver, is that the HDA looks for 
information on the city in which the user wants to book a 
hotel. If a city is provided by the driver in the first hotel 
reservation input, the HDA checks if the city is in the city-
hotel pairs list. If it is, the corresponding hotels are offered to 
the driver, overriding any driver generic hotel selection input. 
If the city is not in the list, the list is disregarded. If the driver 
did not provide a city, the HDA must wait until city names are 
returned from the DB in response to the query made. If any of 
the returned city names match the cities in the city-hotel pairs 
list, the corresponding hotels are offered to the driver, again 
overriding any driver-provided generic hotel selection input. 
If there is no match, the city-hotel pairs list is disregarded by 
the HDA. 

5. Conclusion and future work 
The generic VICO UM module has been integrated into the 
system’s dialogue manager. We have implemented the 
location-independent part of hotel reservation user modelling. 
Following implementation of the location-dependent part, our 
next task is to test with real users in order to evaluate the 
UM’s update algorithms and the principles behind its on-line 
use. We continue to investigate the most useful and usable 
driver identification solution. 

6. Acknowledgements 
VICO is supported by the EU HLT Programme. The support 
is gratefully acknowledged. I would like to thank Aziz 
Joumady and Dymitro Kupkin who implemented the VICO 
UM module, and Laila Dybkjær who specified the hotel 
reservation task. 

7. References 
[1] Bernsen, N. O., ``Multimodality in Language and Speech 

Systems: from Theory to Design Support Tool”. Gran-
ström, B., House, D., Karlsson, I. (eds.), Multimodality in 
Language and Speech Systems, Kluwer Academic 
Publishers, Dordrecht, 2002a, 93-148. 

[2] M. Bauer, P., Gmytrasiewicz, J., Vassileva, J. (eds), User 
Modeling 2001: 8th International Conference, Springer-
Verlag, Berlin Heidelberg, 2001. 

[3] Bernsen, N. O., Dybkjær, L., ``A Multimodal Virtual Co-
Driver’s Problems with the Driver”. Dybkjær, L., André, 
E., Minker, W., Heisterkamp, P. (eds.), CD-ROM Procee-
dings of the ISCA Tutorial and Research Workshop on 
Spoken Dialogue in Mobile Environments, International 
Speech Communication Association, Bonn 2002. 

[4] Bernsen, N. O., ``Report on User Clusters and 
Characteristics", VICO Report D10, NISLab, 2002b. 


	Introduction
	The VICO system
	General findings
	Generic system tasks
	Driver identification
	Which type(s) of information to model?

	Application description
	Location-dependent and location-independent adaptivity
	User model update and use
	Implementation

	Conclusion and future work
	Acknowledgements
	References

