

User modelling in the car

Niels Ole Bernsen

Natural Interactive Systems Laboratory, University of Southern Denmark,
DK 5230, Odense, Denmark

nob@nis.sdu.dk
http://www.nis.sdu.dk

Abstract. The paper presents work on user modelling of car drivers. The paper
presents an implemented solution to user modelling in the car, which includes
an aspect of location-based user modelling.

1 Introduction

The proliferation of mobile systems in the future offers new challenges for user
model-based adaptation technologies. Mobile systems will communicate with their
users in an increasing number of modalities [1], such as input/output speech, in addi-
tion to the customary GUI input/output modalities. Mobile systems may offer loca-
tion-based and situation-based information. Coupled with the user-awareness provided
by user model-based adaptation, opportunities are huge indeed.

This paper describes work on user model-based adaptation in a large mobile system
under development. The system is called VICO or Virtual Intelligent CO-driver. Sec-
tion 2 describes the system’s functionality. Section 3 presents some findings on ge-
neric system tasks for user modelling, user identification, user modelling information,
and criteria for selecting the information to model. Section 4 and 5 describe the VICO
user modelling module. Section 6 describes the next step in our work.

2 The VICO system

Spoken language dialogue systems (SLDSs) are migrating into mobile environments,
such as the car. VICO is such a system, addressing some next-step challenges in the
context of supporting car drivers whilst driving [2]. In brief, the challenges include:
(1) ease of use by a large and heterogeneous user population; (2) processing of fully
spontaneous spoken input, English, German, and Italian; (3) multiple-task assistance:
with navigation to addresses and points of interest in Italy, hotel reservation, restau-
rant reservation, and VICO system information; (4) confidence-score adaptive dia-
logue; (5) GPS-based location-awareness; (6) multimodal interaction through push-to-
talk button and spoken input, and spoken and display (text) output; and (7) integration
of adaptive user models built on-line.

3 General findings

At the start of VICO, we analysed the scope of user modelling for in-car use, taking
into account the particular tasks of VICO (see Sect. 2).

3.1 Generic system tasks

VICO’s generic UM-related tasks are [3]: (1) identify the present driver; (2) retrieve
the present driver’s user model; (3) optionally: create a new user model UM(Dx) for a
new driver, Dx; (4) make appropriate on-line use of the present driver’s user model
during the driver’s dialogue with VICO; (5) collect new information on the driver
during the driver’s dialogue with VICO; (6) update the present driver’s user model
with the new information gathered; and (7) store the user model whenever it has been
updated with new information.

3.2 Driver identification

VICO must determine the car’s current driver since cars often have several different
drivers. Driver identification must be made with near-certainty. If it is uncertain that
VICO has correctly identified the driver, misidentification will happen too often. In
such cases, the driver is likely to be “mistreated” because VICO will adapt to the
driver based on a wrong user model. Similarly, the modelled behaviour of the mis-
identified driver will tend to fudge up the misallocated user model with misleading
information. Since the driver’s user model cannot be invoked before identification,
VICO must identify the driver up front, i.e. as soon as that driver starts the dialogue.
Later identification means less support for the driver, and the updated user model runs
the risk of having missed to collect important information on the driver’s behaviour.

In SLDSs, driver identification design is a non-trivial problem. We have considered
(a) voice identification, (b) a driver’s code, however input to VICO, (c) driver’s
spelled first name, and (d) combinations of (a) through (c). We prefer to use voice
identification-cum-spelling of their first names by first-time users. This combines the
unobtrusive elegance of voice identification with (non-coded) first-name feedback and
avoids having to remember and use a code or spell one’s name on each occasion of
use. This option also allows passengers to speak to the system without being regis-
tered in the UM database – passengers just have to avoid giving the system their first
names.

3.3 Which type(s) of information to model?

Based on analysis of some 25-30 candidate kinds of information about driver be-
haviour which VICO might collect and use adaptively, we distinguish between: (T1)
information on the driver’s task objectives due to task goals, preferences, habits, etc.;
(T2) information on the driver’s communication with VICO; and (T3) information on

the driver’s experience of various kinds. This information typology helps generate a
structured space of candidates for observation-based adaptive user modelling, each
generic type of information subsuming several specific information types, such as the
driver’s: preferences for hotels, restaurants, points of interest, petrol brands, or ad-
dress locations; native language, communication difficulties due to strong accent or
dialect, speech disorders, extreme talkativeness, elaborate politeness, frequent cross-
talk with passengers, unusual speaking style, etc.; and experience in using VICO itself.

We identified a set of criteria which should be satisfied by the driver information to
be modelled. These are: (C1) universality: unless other factors advocate in their fa-
vour, the chosen information should be top quality in terms of usefulness to all or most
drivers; (C2) quality: the information should provide genuine driver adaptivity with-
out significant drawbacks; (C3) feasibility: the functionality should be implementable
without extreme or unpredictable effort, the latter being due to, e.g., a needed research
breakthrough; and (C4) verifiability: the functionality must be based on clearly verifi-
able information about the driver.
An example of T1 in the information typology is: store the driver’s past hotel prefer-
ences, such as number of stars, price, location (city centre, countryside), hotel chain,
etc. Even if not presently told about them by the driver, VICO could offer to use those
constraints as selection criteria when looking for a suitable hotel.

Let us evaluate the hotel preferences user modelling functionality using the selec-
tion criteria C1 through C4. C4 is met because the driver’s hotel preferences become
apparent during dialogue with VICO and they do not appear to have any significant
drawbacks (C2). The functionality can be implemented without extreme or unpredict-
able effort (C3). Whether C1 is met depends on, at least, (i) how many users of VICO
will need to book hotels, (ii) how many users will do so en route, and (iii) how many
users have systematic hotel preferences. We do not know the answers at this point.

It is harder to identify suitable T2 information candidates. An example is a system
which adapts its dialogue to drivers having a strong dialect or accent. A major prob-
lem is that any solution may be at risk as long as we do not have efficient ways of
diagnosing different possible causes of recognition problems. Low confidence scores,
many out-of-vocabulary words, or multiple error corrections, for instance, cannot tell
if the cause of repeated recognition problems is a strong dialect or accent or some-
thing different, such as a driver who regularly talks to passengers during dialogue (C3,
C4). T2 solutions might well satisfy C2. And even if not benefiting all or most drivers,
they might benefit large fractions of those drivers who have great difficulty using
spoken language dialogue systems at all, illustrating the exception clause in C1.

T3 information includes at least one obvious candidate, i.e. the driver’s experience
with VICO itself. The idea is to offer up-front information on VICO to all new drivers
independently of whether or not a new driver asks for it. Provision of this information
would seem to rather easily meet C1 through C4.

Guided by the above analysis, we have implemented a general-purpose UM module
which currently facilitates drivers’ hotel selection dialogue through knowledge of their
hotel preferences in the past.

4 Location-dependent and location-independent adaptivity

The following driver hotel preference behaviour feature-value pairs are collected and
used by the UM:
! type [VALUE = HOTEL]
! hotel name [VALUE = NAME]
! hotel address [VALUES = ADDRESS ITEMS]
! number of stars [VALUES = 1, 2, 3, 4, 5]
! hotel chain [VALUE = NAME]
! hotel location [VALUES = TOWN, OUTTOWN, COUNTRYSIDE]
! max. prices for single (S)/double (D) rooms [VALUES = S: X and D: Y Euros]
! restaurant in hotel [VALUE = TRUE, FALSE]
! protected parking [VALUE = TRUE, FALSE]
These attribute-value pairs are of two very different kinds, i.e. the generic hotel prop-
erties 1, 4, 5, 6, 7, 8, and 9, and the specific hotel properties 2 and 3. Generic hotel
properties may belong to any particular hotel. Specific hotel properties imply all prop-
erties of a particular hotel: once you choose a particular hotel, e.g. by its name, you
choose all its properties. The UM thus cannot use specific hotel properties to support
the driver’s hotel selection task independently of where the driver happens to be. Only
generic hotel properties can be used for location-independent user model-based driver
support. Thus, the hotel selection UM has two distinct adaptive functionalities. The
first, location-independent, functionality offers hotels having the generic properties of
hotels which the driver has preferred in the past. The second, location-dependent,
functionality offers the specific hotels which were preferred in the past if and only if
the driver is in the area in which those hotels are located.

5 User model update and use

A crucial design issue is how to update the UM with new information. If, e.g., the
update algorithm averages over the past, and if there is a long UM record of staying in
inexpensive hotels, then the UM may never fully realise that the driver has changed
hotel preferences. As they are, our update algorithms for generic hotel properties take
the two latest hotel reservations into account. As for the driver’s previous choices of
specific named hotel/location pairs, the VICO UM preserves and uses all of them, no
matter how long ago it was when the driver stayed in a particular hotel.

The context of use of the hotel selection UM is that the driver asks VICO to help
book a hotel, possibly adding some selection constraints, saying, e.g., “VICO, please
find a three-star hotel.” At this point, the hotel preferences UM is being applied.

VICO UM application raises several design issues likely to strongly affect user ac-
ceptance. Firstly, it seems clear that the UM should never override the driver’s stated
hotel selection constraints. Thus, if the three-star constraint in the example above
conflicts with the UM, the former prevails by applying conflict resolution. By implica-
tion, if the driver’s stated selection constraints suffice for uniquely identifying a hotel
through querying the hotels database, the UM is not applied. Secondly, when UM

hotel selection constraints are being applied in querying the database, possibly as
complements to the driver-provided selection constraints and following conflict reso-
lution, the driver is informed that the returned hotel suggestions are the results of UM
application. This allows the driver to decide whether the suggestions match current
preferences. Adaptation should be made behind the driver’s back.

In the case of location-based selection support, the UM provides a list of past se-
lected hotel/location pairs. If the driver provides a location corresponding to a loca-
tion on the list, s/he is offered the corresponding hotel(s). If no location is provided,
VICO assumes that the driver wants a local hotel. If the car’s current location matches
a location in the hotel/location pairs list, the driver is offered the corresponding ho-
tel(s).

VICO’s historical UM consists of a managing module, a reasoning module for up-
dating the user model of each driver, and a database. Only the reasoning module is
UM task-specific. The database has (i) a record of the drivers known to VICO, (ii) a
record of all observed, UM-relevant past driver behaviour organised per driver and
sub-divided into the different UM tasks performed by VICO, and (iii) a record of
updated UMs per driver, sub-divided into the UM tasks performed by the system.

6 Conclusion and future work

The VICO UM module has been integrated into the hotel reservation task domain
agent module. Our next task is to test with real users in order to evaluate the UM’s
update algorithms and the principles behind its on-line use.

7 Acknowledgement

The VICO support by the EU HLT Programme is gratefully acknowledged. I would
like to thank Aziz Joumady and Dymitro Kupkin who implemented the VICO UM
module, and Laila Dybkjær who specified the hotel reservation task.

References

1. Bernsen, N.O.: Multimodality in Language and Speech Systems - from Theory to Design
Support Tool. In: Granström, B., House, D., Karlsson, I. (eds.): Multimodality in Language
and Speech Systems. Dordrecht: Kluwer Academic Publishers (2002a) 93-148.

2. Bernsen, N.O., Dybkjær, L.: A Multimodal Virtual Co-Driver’s Problems with the Driver.
In: Dybkjær, L., André, E., Minker, W., Heisterkamp, P. (eds.): CD-ROM Proceedings of
the ISCA Tutorial and Research Workshop on Spoken Dialogue in Mobile Environments,
Irsee, Germany. Bonn, Germany: International Speech Communication Association (2002).

3. Bernsen, N.O.: Report on User Clusters and Characteristics. VICO report D10, NISLab,
August (2002b).

