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Preface 
 

 

The present report is the first in a series from the strategic research programme : Natural 

Language Processing in Application Oriented Dialogue Systems. The programme is 

sponsered by the Danish Technical Research  Council, and runs for a four year (primo 

1991 - primo 1995) period. The participiants are the Speech Technology Centre (STC) 

(coordinating partner) at Aalborg University, Centre for Cognitive Science (CCS) at 

Roskilde University, and Centre for Language Technology (CLT) at Copenhagen 

University. The objective of the programme is to develop a human-machine spoken 

dialogue system prototype. 

As a first step towards this goal, this report is concerned with a state-of-the-art survey of 

existing spoken language systems, mainly in Europe and the US. 

 

Keywords : 
 

Spoken language systems, human-machine dialogue systems, speech technology, speech 

recognition, natural language parsing, sublanguages, discourse, Knowledge 

acquisition, knowledge representation. 

 

Danish Summary : 
 

Denne rapport er den første i en serie fra Rammeprogrammet "Behandling af Naturligt 

Sprog i Applikationsorienterede Dialogsystemer", og er støttet af Statens Teknisk 

Videnskabelige Forskningsråd. Projektet er fireårigt med start i 1991, og 

projektpartnerne er : Center for Taleteknologi, AUC (projektansvarlig), Center for 

Sprogteknologi, KU og Center for Kognitiv Informatik, RUC. 

 

Projektets formål er at udvikle prototyper af talestyrede menneske-maskine 

dialogsystemer. Herved skal forstås, at systemerne indenfor et begrænset emne er i stand 

til at føre en talt dialog med en person. Som eksempel er valgt informationer om 

indenrigs flytider, -priser mv. 

 

Rapporten gennemgår en række europæiske og amerikanske systemer, som ifølge vores 

vurdering repræsenterer det nuværende "state-of-the-art" på området. Desuden gives et 

overblik over de videnskabelige discipliner og metoder, der benyttes ved udviklingen af 

dialogsystemer med talt input. Taleteknologi, Parsing af Naturligt Sprog, og Kunstig 

Intilligens. 
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0. Introduction 
 

 

 

 

In modern society people communicate with computers in numerous situations in everyday life. 

The communication is often not recognised as such, as when computers are embedded in 

machines such as washing machines, tv-sets, cars, telephone exchanges, etc. The communicative 

aspect of dealing with computers is more apparent when computers are used, e.g., as word 

processors in office environments, as home PCs, in banks, etc., where generel input-output 

devices are used such as keyboard, mouse and screen display. 

 

Such devices are not always the optimal ones to use in human-computer communication, 

however. It is, for instance, much faster to dictate a text than to type it. Since there is an ever 

increasing demand for communication, retrieval and presentation of information for which the 

computer is the natural instrument, the need for human-computer communication devices 

appropriate to the tasks at hand will rise in the future. One example of a natural application of 

computers is long distance database access systems such as home banking and telephone 

information services. Currently, because ordinary users rarely have access to keyboard and mouse 

for operating such systems, tasks are performed either via a human operator or via tedious series 

of telephone keystrokes. 

 

An obvious alternative possibility is to let users communicate directly with the computer by using 

their voice. 

 

Extensive research towards this goal has been undertaken in the last two decades in the areas of 

speech technology, natural language processing and artificial intelligence. This combination of 

efforts has now led to the possibility of constructing computer systems which are capable of not 

only recognising and reacting to single-word commands, but also of recognising, understanding 

and synthesizing human speech and hence to participate in spoken dialogue. At the present stage, 

however, the latter is true only for tasks within a limited and well-defined domain. Research 

centres in Europe, the US and Japan presently focus on integrating the above-mentioned 

disciplines in an effort to develop more advanced spoken dialogue system prototypes. 

 

 

Spoken dialogue systems 

 

As the term "spoken" implies, the mode of interaction in such systems is speech. Some important 

aspects of a spoken dialogue system are that the system is capable of understanding spoken 

language and of reasoning about concepts within a given (limited) domain. For instance, the 

system should be able to pose questions of clarification in order to obtain additional information 

needed for performing a given task. The main modules of a spoken dialogue system are: 

 

_An acoustic decoding module (a speech recogniser) which performs the decoding of the 

acoustic signal into phonetic/linguistic elements.  

 

_A natural language parsing module which analyses the output from the speech recogniser 



and builds a semantic representation of the spoken utterance.  

 

_A dialogue handling module which interprets the semantic representation and decides 

what action to take. This module also keeps track of, e.g., the possible plans and goals of 

the user. 

 

_An answer generation module which generates answers or queries to be synthesized.  

 

_A speech synthesis module which generates synthetic speech (either true text-to-speech 

synthesis or synthesis of pre-recorded human speech). 

 

 

The present project 

 

The present project is aimed at developing a speech understanding system which will allow users 

to obtain information and make reservations on Danish domestic flights. The goal is to develop a 

small prototype within the coming year and then use experiences with this prototype as a basis for 

developing a more advanced prototype. The final objective is to produce a prototype that can lead 

to commercial applications. 

 

The first prototype will be very limited as regards the domain knowledge involved as well as the 

scope of possible communication, primarily because only a small number of words can be 

recognised. These limitations are mainly due to difficulties faced in the speech recognition task, 

where a number of problems still have to be overcome before large vocabularies can be handled 

with little or no linguistic constraints imposed on them. If the first prototype is to produce real-

time answers it will probably be realistic to permit about 400 word forms in the recogniser. 

 

Desirable functionalities of the system to be developed are: 

 

1. Information on departures and arrivals of flights. 

2. Information on prices. 

3. Ticket reservation. 

4. Information on connections to other means of transport. 

 

All these functionalities are within the capabilities of current database technology but the last one 

may be infeasible (at least in the first prototype) due to limitations in the vocabulary size of the 

speech recogniser. 

 

 

Objectives of this report 

 

The present state-of-the-art report has the following objectives: 

 

_to present a short list of spoken dialogue systems representing the current state-of-the-

art (Chapter 1); 

 

_to present an survey of techniques currently applied in the three areas of research 



involved, each of which is addressed by one project partner, namely:  

 

_speech technology, focusing on speech recognition (Chapter 2); 

 

_natural language processing, focusing on parsing techniques and linguistic aspects 

of sublanguages, (Chapters 3 and 4, respectively); 

 

_AI and cognitive science, focusing on discourse handling, knowledge acquisition, 

and formalisms for knowledge representation (Chapters 5, 6 and 7, respectively).  

 

 



To aid readers unfamiliar with the technical terms, an extensive list of terms has been placed at the 

end of the report. Also, it might be advantaguous for readers without detailed knowledge 

of the involved technical concepts to read the sections 2 to 7 about the specific topics 

before returning to section 1. 1.  Examination of existing spoken dialogue 

system architectures 
 

 

 

 

The first implementations of spoken dialogue systems were made about 15 years ago. Since then a 

number of systems have been developed—a detailed list of existing spoken dialogue systems and 

some of their main features is given in Appendix A—but almost all of them are research systems. 

Speech recognition and understanding techniques have still not matured to the point where they 

can be used in computer systems allowing users to conduct a relatively natural conversation 

involving a large vocabulary. If the vocabulary is large, which in this case means more than a few 

hundred words, and a relatively complicated dialogue and discourse structure is permitted, the 

system response will take too long and it will require a large effort to make the system speaker-

independent. If real-time and speaker-independence are required features the vocabulary will be 

small and the dialogue structure very simple. Usually it will only allow for one-word- or at least 

very short replies. 

   Some of the more ambitious and recent research systems from both the US and Europe are 

described below in order to provide an overview of the state of the art. Information on various 

aspects of these systems such as financing, duration, goal, domain, vocabulary, speaker-

dependence and especially system architecture is given to the extent that it is available. 

   In order to compare the performance of spoken dialogue systems it is necessary to have an 

evaluation methodology. Existing evaluation methodologies are described below in section 1.3. 

Finally a conclusion sums up what can be said in general about recent spoken dialogue systems. 

   

1.1 US DARPA systems 
 

MIT: SUMMIT+TINA [Phillips et al. 1991, Goodine et al. 1991, Seneff 1989, Zue et al. 

1991] 
 

MITs (Massachusetts Institute of Technology's) speech understanding system is composed of the 

phone based speaker independent continuous speech recogniser SUMMIT and the NLS-

component TINA. The system has been coupled both to the Air Travel Information System ATIS 

and the VOYAGER applications which assists the user in locating hotels, restaurants and other 

sites in Cambridge, Massachusetts. 

 

SUMMIT transforms waveforms into segment lattices and determines acoustic scores for phone 

candidates. In the most recent version left-right phone context experimentally is taken into 

account using mixtures of diagonal Gaussians. Lexical access is accomplished by a Viterbi search 

connected with syntactic constraints. TINA uses a context-free network grammar coupled with 

constraints on features and augmented with statistical probabilities of transitions. The probabilities 

are generated on the basis of external text corpora relevant to the ATIS- and VOYAGER-tasks. 

 

Three different ways of interfacing SUMMIT with TINA have been explored: 1) A traditional N-



best interface, where syntactic constraints in SUMMIT are provided by a word pair grammar and 

TINA is used as a post-processor, choosing the first sentence candidate that can be parsed; 2) An 

interface where TINA resorts the N-best sentence candidate using parse probabilities. In this case, 

the chosen sentence candidate must not be the same as the first parsable hypothesis provided by 

the N-best algorithm; 3) A "tightly coupled" interface, where SUMMIT uses a backward N-best 

Viterbi search with word-pair constraints and TINA predicts a set of next-word candidates for 

each partial theory during a succeeding A* forward search. The terminal nodes are transformed to 

lists of licensed words and passed on to the recogniser which initiates the A* forward algorithm 

scoring the paths to each word. This interface does not involve parse probabilities. 

 

The parse tree delivered by TINA is walked through for filling semantic frames, which in turn are 

translated to SQL commands for database inquiries.  The walk-through process steps through 

each syntactic node, each of which has a syntactically motivated name (e.g. "dir-object"). Many of 

these names are associated with certain semantic (role) names, for example "dir-object" is 

associated with the semantic name "theme". 

Each semantic name is in turn associated with a number of functions which control how and what 

frames can be filled by the given information.  Thus when walking through the tree, upon 

encountering a "dir-object" the functions associated with "theme" are called upon to instantiate 

some frame.  The resulting mostly empty frame is passed on for further processing, with the 

expectation that it will be filled out with information from other nodes later in the walk-through. 

 

The resulting semantic frames are used as a basis for verbal responses to the user, as input to a 

discourse history (used for providing context to subsequent queries, and for resolution of 

anaphoric references), and as a basis for generation of SQL commands to the backend ATIS 

database. This latter step in the processing of an utterance actually has some interpretive 

capability.  For example, the following frame representing 

a flight might be instantiated from a user's utterance: 

 

[flight qset from: Boston  to: SFO] 

 

This frame is missing the flight number.  The table-driven mechanism used for generating SQL 

commands discovers this missing information, and can respond by generating an SQL query for 

retrieving the flight numbers satisfying the information that is available, i.e. from Boston to SFO 

(San Francisco).  In this way, the mechanism can be said to interpret this frame as a query for 

further flight information.  (See Zue et al. 1991, pp.946-7.) 

 

The system has been tested with a test set containing both "possible" sentences (within the 

domain) and "impossible" sentences which cannot produce an answer from the system. In terms of 

overall scoring using the DARPA metric which favours false rejections ("No Answer" results) for 

misrecognitions ("False Answer" results), the best results were achieved with the "tightly coupled" 

interface. In optimizing the system with different kinds of rejection, problems arose, as many 

possible sentences were rejected.  

 

 

 

CMU : CMU-ATIS SYSTEM [Lee 89 Young & Matissa 91, Young 91] 
 



CMU (Carnegie Mellon University, Pittsburgh) has been one of the leading sites both with regard 

to speech recognition systems (the SPHINX system [Lee 89 ), and speech under- standing 

systems (the MINDS system e.g. [Young et. al. 89). This description is based on the latest version 

(ultimo 1991), as referenced above. 

 

The CMU-ATIS system comprises four separate modules : The SPHINX continuous speech 

recognition system, the PHOENIX natural language interpretation module, the MINDS II 

dialogue control module, and the SOUL knowledge based reasoning system.  

 

The SPHINX speech recognition system is based on a mixture of subword models (triphones) and 

function word HMM models. The language model used is a bigram. The recognition algorithm is 

a 1-best, i.e. the recognition result is one sentence hypothesis. No information about the speaker-

dependence is given. The sentence hypothesis is passed to the PHOENIX module, which is a 

robust case frame parser designed to process spontane- ous speech. PHOENIX produces a matrix 

containing all meaningful phrases in the hypothesis, and a beam of possible interpretations. Using 

a set of slot filling heuristics, as many case frame slots as possible are filled out by recognized 

phrases. 

 A characteristic feature of spoken input is its uncertainty and unpredictability. It is therefore very 

difficult to express, in advance, the expected word and constituent order in whatever formal 

grammar is chosen. The CMU approach to dealing with this difficulty has been to make the 

syntactic and semantic analysis lax and less restrictive compared to other NLP interface systems 

(based on well-formed written input). The few constraints on the input, however, will often lead 

to incomplete linguistic descriptions and thus several interpretations of a given utterance 

(overgeneration). 

In order to extend/enlarge the linguistic description an extra system component SOUL has been 

added to the CMU system, which is called every time the semantic interpretations generated by 

the case frame parser PHOENIX are either ambiguous or inadequate (incomplete). The input to 

SOUL is the output string processed by the recognition module, (with the probability scores for 

the recognized words) and the phrase matrix and the beam of the best interpretations (case slot 

fillings) from the PHOENIX module. 

The improvement/augmentation of the semantic interpretation is done by using domain specific 

and extra linguistic knowledge, (organized into a multilayered frame base systems of hierarchies), 

and inferencing procedures: abductive reasoning and constraint satisfaction techniques, 

respectively.  

The abductive reasoning component uses the extensive knowledge base to refine the semantic and 

syntactic interpretation. On the basis of this augmented representation, candidate phrase matches 

are evaluated in order to find alternative and more meaningful combinations of phrases. 

The constraint satisfaction mechanism spots those combinations which violate domain specific 

constraints. If for instance the user puts as a query: 

 

What is the shortest flight from Dallas to Fort Worth?  

 

the user will be told that the request is unanswerable. As Both Dallas and Ford Worth are served 

by the same airport and as the implemented relational constraints demand that the fillings of the 

origin (Dallas) and the destination (Fort Worth) must be served by different airports, SOUL will 

regard the query as meaningless.  

The SOUL component interacts with the other modules of the CMU system. If SOUL finds one 



single and acceptable interpretation, it passes the result to both the dialogue module and data 

base. However, if SOUL detects a sequence of mis-matched words, the dubious region of the 

SPHINX output is identified and delimited and hypotheses regarding the semantic content of the 

mis-match words are made. These hypotheses are then used to find appropriate nets of lexical 

items, which are merged into a finite state grammar (instead of the generic bi-gram grammar) for 

reprocessing the original input.  

 

Furthermore it should be mentioned that when hooked into MINDS II, SOUL uses additional 

knowledge of inferred speaker intentions (plans,goals) to further augment semantic interpretation 

of the spoken input.  

 

 

 

1.2 European systems 
 

In this section three European spoken language systems whose development began in the late 

'eighties are described: SPICOS II, VODIS II and SUNDIAL. Especially SUNDIAL is of interest 

to the current project. It is the most recent among the three systems, its domain is flight 

information and reservation, and it is intended to operate in real-time. It is very likely that the 

current project could benefit from closer contact with the SUNDIAL project. 

 

 

SPICOS II 
 

SPICOS II (Siemens-Philips-IPO Continuous Speech understanding and dialogue system) is a 

German-Dutch system which is a further development of SPICOS I. The project is funded by the 

German Federal Ministry for Research and Technology. The goal of the project is a man-machine 

dialogue system that is able to understand fluently spoken German sentences and in this way to 

provide voice access to a database. 

 

A prototype has been implemented which allows the  retrieval of the contents of a database 

containing information about the SPICOS project itself, e.g., project members and 

communications such as letters and scientific papers. The mode of communication is cooperative, 

i.e., it is relatively free for the user. The user may—whenever he likes to—switch to another topic 

and he may refer back to previous utterances. In cases of ambiguity or error the system will 

question the user to clarify the problems in the dialogue. 

 

The system allows continuous speech, is speaker dependent and has a vocabulary of about 1200 

full words. It expects grammatically correct input. The input is either one-word replies or 

questions formulated as a whole sentence. 

 

The system consists of the following components: 

 

A speech recognizer  takes as input a speech signal from the user. The acoustic analysis draws 

especially on three sources: an inventory of subword units which are phonemes based on Hidden 

Markov Models; a pronunciation lexicon based on 44 phoneme symbols including symbols for 

glottal stop and silence; and a language model for rejecting reject ill-formed sentences. Three 



different language models have been tested [Ney and Paeseler 1988]: with no language 

constraints, a finite state network, and a stochastic trigram model based on word categories. The 

finite state network seems to produce the best results. However, according to [Niedermair et al. 

1990] a bigram language model based on categories is used in their project. The three sources 

interact via the search procedure which is a left-to-right time-synchronous Viterbi-like beam 

search. The output from the recognition module is the N-best scored sentence hypotheses. 

 

The linguistic component consists of a lexicon of full words, a syntax represented as an 

augmented phrase structure grammar (APSG), a modified left-to-right top-down chart parser, a 

semantic network for the reduction of syntactically well-formed but semantically inadmissable 

structures, anaphora resolution, generation of semantical representation in a typed logical 

language using lambda formalism suitable for database queries, and a separate representation of 

discourse referents and presuppositions. The parser (left-to-right char parser) checks the top-N 

hypothesis until it meets a well-formed and semantic admissable candidate. The parsing module is 

characterized by the attempt to apply syntactic and semantic constraints simultaneously while 

maintaining the conceptual independence of the two levels (as apposed to prevalent speech 

processing apporaches based on "semantic" grammars). The early application of semantic 

restrictions (including anaphora resolution) is achieved by checking the semantic compatibility of 

content words within the phrase structure rules. By applying all available knowledge as soon as 

possible, the search of the parser is reduced. To simplify the linguistic structures, certain 

restrictions have been introduced such as leaving out relative clauses and passive voice, and 

breaks, ahs and the like are not taken into account. 

 

 

A dialogue handler  coordinates the different parts of the system. It takes the form of a finite 

state network. The dialogue handler controls the dialogue for speaker adaptation, handles one-

word replies and decides on the system's next move, and communicates with the linguistic 

component to process user questions formulated as a whole sentences. 

 

An answer generator produces answers and questions on the basis of information from the 

dialogue handler. This is done through an appropriate transformation of the structure of the input 

question. The answers and questions are then synthesized and output to the user. 

   

References:  [Ney and Paeseler 1988] and [Niedermair et al. 1990]. 

 

VODIS II 

 

The VODIS project (Voice Operated Database Inquiry System) was an Alvey-sponsered 3-year 

collaborative venture between British Telecom, Logica and Cambridge University Engineering 

Department. A key goal was to investigate ways in which higher level knowledge such as syntax 

and dialogue context can be used to improve the performance of existing speech recognition 

technoligies. Two systems have been developed: VODIS I and VODIS II. VODIS II is a further 

development of VODIS I and draws on experiences from that system. The domain is train table 

enquiries and the intended use is as a telephone-based conversational question/answer system for 

the general public. 

The system uses a connected word recognizer and is speaker dependent. 

The system consists of the following components: 



 

The speech recognizer is a speaker dependent, continuous speech recogniser using dynamic time 

warping (DTW), whole word templates, and a Viterbi-like N-best search with token passing. The 

token passing approach has been adapted in the SUNCAR recogniser (cf. 2.2). Dynamically 

exchangeable grammar constraints are applied directly to the recogniser. The constraints are 

characterized as "context-free" grammar rules. However, as all non-terminals dominate a definite 

substring of terminals (a finite state subnetwork), the constraint networks can only model regular 

languages. Due to the Viterbi-like search, which works upon a finite set of link-nodes, real CFGs 

cannot be accessed by the recogniser. The forward, time-synchronous search of the recogniser is 

succeeded by a backward algorithm, which traces back from the terminal state of the syntactic 

constraint network and initializes a chart used by the linguistic module. Vertices are processed 

from right to left by the backward algorithm, whereas the chart parser builds edges bottom-up 

using a traditional left-to-right strategy. In order to reduce the number of vertices of the initialized 

chart (in VODIS called a "word lattice"), the system seems to use time alignment. Hence, the N-

best algorithm of VODIS must be characterized as very inexact. 

 

The linguistic module mainly consists of context-free grammars stored in a rule database and a 

bottom-up chart parser which processes the word lattice from left to right and reconstructs the 

phrase structure trees of the most likely interpretations of the input speech. The phrase structures 

are then converted into a frame and passed on to the dialogue controller.  

 

A frame-based dialogue controller has the central control of the system. It keeps track of the 

dialogue and uses dialogue and domain knowledge to evaluate the alternatives received from the 

linguistic module in order to select a suitable response. Hence the semantic interpretation is very 

primitive. 

 

A speech output subsystem  outputs the response found by the dialogue controller. 

 

The system has been tested in two versions: a version with "strong" and a version with "weak" 

syntactic constraints in the recognition component. In the version with strong constraints, the 

grammars used for parsing seem to be identical to the grammars used for recognition (although 

this is not clear). In the version based on weak constraints, wildcards are placed between the 

syntactic subnetworks in the recogniser. A wildcard is in VODIS a simple thresholding device in 

parallel with word templates. Probably a similar effect can be achieved with garbage models in a 

HMM-based recogniser like the SUNCAR (cf. section 2.2). Performance is evaluated only in 

terms of slot recognition rate (as opposed to traditional speech processing parameters like word 

or sentence recognition rate). Performance tests show a slightly better slot recognition rate of the 

weak constraint approach, when the test material involves non-syntactic input. Otherwise the 

strong constraint approach is superior.  

 

 

References: [Young et al. 1988], [Cookson 1988], and [Young et al. 1991]. 

 

SUNDIAL 
 

The SUNDIAL (Speech UNderstanding in DIALogue) project is an Esprit project planned to run 

for five years from 1989 to 1993 with an effort of about 170 man-years. The goal of the project is 



to build real-time computer systems capable of maintaining  cooperative dialogues with users over 

the telephone. By  cooperative is meant that the conversation should be as natural as possible, i.e., 

the mode of communication should not be strongly directed by the system. 

 

Systems have been developed and prototypes implemented  for four languages: English, French, 

German and Italian. The domain is, for English and French, flight reservations and enquiries and 

for German and Italian, train timetable enquiries. 

The systems are aimed to be speaker independent, to run in real-time and to have a vocabulary of 

1000-2000 words. For the moment (spring 1992) the average response time for a whole system is 

about 10 seconds and the lexicon contains about 300 entries for each language. 

Each system consists of five components: 

 

A speech recognizer receives speech signals from the telephone and produces a word lattice. 

Recognition is based on Hidden Markov Models of phoneme-sized speech units using both 

context independent and dependent phone models. Special cases such as function words and digits 

are modelled separately to improve performance. Also special models for coughs, ums, etc. have 

been created. A word pair grammar acts as a filter on the word lattices produced. 

Experimentation with context dependent bigrams have been carried out and they seem to yield a 

better performance. 

 

The linguistic processing  includes a grammar—for English and French a Unification Categorial 

Grammar (UCG), for German an Augmented Phrase Structure Grammar (APSG), and for Italian 

a Dependency Grammar (DG)—and a parser which extracts a plausible string from the lattice and 

assigns syntactic and semantic representations to it. A left to right bottom-up chart parser works 

with the UCG representation and an island driven parser determines starting points for parsing. In 

the case of UCG the semantics are compiled into the lexicon. In APSG and DG the semantics are 

represented as a semantic net and as case frames, respectively. 

 

The dialogue manager  is a central part of the SUNDIAL project. The dialogue manager has five 

modules: a linguistic interface module which maintains a linguistic model of system and user 

utterances; a dialogue module which keeps track of dialogue history, interprets user utterances 

and decides how the dialogue may continue; a belief module with which the dialogue module 

interacts to find the correct interpretation; a message planning module with which the belief 

module cooperates and which plans a system utterance when it is the system's turn to speak; and a 

task module which checks if sufficient task information has been provided by the user, and 

informs the dialogue module of the current state of the task. Typically, a cycle starts by the task 

module requesting task information from the dialogue module. 

 

A text generator  constructs a detailed linguistic representation including a text which is 

prosodically annotated. The text generator uses the same grammar as the linguistic processing 

module and handles ellipses and anaphora. 

 

A text-to-speech system  synthesizes the output from the text generator. The synthesizer for each 

language is based on existing systems and is either diphone or formant based. 

    
References: [Peckham 1991], [McGlashan et al. 1992], and  [Andry and Thornton 1991]. 

 



 

1.3  Evaluation methodologies 
 

Research in the area of speech technology in recent years has led to a shift of focus from speech 

recognition systems to speech understanding systems. In parallel, evaluation strategies have 

changed, focusing less on word and sentence recognition rates and more on the semantic 

representations and the answers given by the system based on these representations.  

 

Speech recognition systems within the US DARPA community are normally tested with the 

standard scoring software developed by NIST (National Institute of Standards and Technology) 

[cf. Pallet et al. 90]. However, in speech understanding systems based on keyword-spotting, 

wildcard-techniques, error recovery etc., a correct semantic representation does not presuppose a 

fully and correctly recognized sentence. In this case performance scores evaluated by the NIST-

software tell little about the overall performance of the system. 

 

In 1991 a new simple metric for computing overall performance of speech understanding systems 

was introduced within the DARPA community [Goodine et al. 91, p. 846]. This metric 

presupposes a test database with a number of sampled sentences and an equal number of answers 

from the system. The answers are classified into three groups: Correct answers, incorrect 

answers, and No-answers. The latter group might in a specific dialogue system be expressed as 

output to the user like "Please repeat!", "This was not understood, please answer the question ...!" 

etc. Overall performance is computed by the algorithm: 

 

 (correct answers - incorrect answers) / all answers 

 

The algorithm penalizes for incorrect answers, which for users of spoken language systems are 

more confusing than No-answers. The example given below demonstrates how incorrect answers 

and No-answers affect the overall performance score, while the number of right answers are 

constant: 

 

  I                         II 

 

      Cor. answers  :       10     Cor. answers  :       10 

      Incor. answers:       10     Incor. answers:        0 

      No answers    :        0     No answers    :       10 

      ---------------       --     ---------------       -- 

      Perf. (10-10)/20 =     0     Perf. (10-0)/20 =     0.5 

 

 

Test databases for speech understanding systems normally contain both "possible" sentences 

(within the domain) and "impossible" sentences which even in transcribed form cannot produce 

any answer. Hence, there is a trade-off between optimizing for correct-answer-rate (at the 

expense of many impossible sentences producing incorrect answers) and optimizing rejection (at 

the expense of many possible sentences producing No-Answers). However, the capability of 

rejecting "impossible" input is essential in speech understanding systems, as the user, contrary to 

the designers of the system, does not know the exact domain constraints (call to mind the 

anecdote about the user asking the MIT Voyager system: "Where is my dog?" !). 



 

Normally, time is no parameter in metrics for speech understanding systems due to the fact that 

they so far only has been developed for lab tests and simualtions. It should, however, be pointed 

out, that the speech understanding systems discussed in sections 1.1-1.2 are not real-time systems. 

Obviously, In systems where the "realistic" aspect is stressed, also time must be a very important 

parameter. 

 

 

1.4  Conclusion 
 

As judged from current practice, a standard architecture for spoken dialogue systems consits 

ts of 

 

_a speech recognizer often based on  Hidden Markov Models. 

 

_a linguistic module containing among other things a parser which is often a chart parser. 

_a dialogue manager which is the central part having the system control. 

 

_an answer generator. 

 

A common feature is that none of the described systems are real-time systems whereas their 

vocabularies are relatively large. Preferred domains are time table enquiries for flights and trains. 

For the DARPA systems a common evaluation methodology has been worked out in order to 

make it easier to compare the performance of different systems. The systems all draw on (parts 

of) the same vocabulary and are all tested with sentences from the same test database. Although 

the specific approach to the testing of systems may have its weaknesses, as described in section 

1.3, the results can be used as a basis for further investigation of or comparison of different 

architectures and methods. Also new projects outside the DARPA context can easily have access 

to and build on the results. 

In Europe there has been no initiative to work out a common evaluation methodology. Moreover 

on-going projects are not coordinated with each other. In fact it would be desirable to have a 

better dissemination of information on on-going projects, experiences and results so that new 

projects can exploit results and experiences which have been made already. When starting a new 

project within the area of spoken dialogue systems it is very important to be aware of and 

carefully investigate what is going on in other countries in order not just to repeat what others 

already have done. 



2. State-of-the-art speech recognition methods 
 

 

 

 

This section gives an overview of the current techniques for speech recognition. It starts by 

introducing the two most common modelling techniques for the process of acoustic decoding, 

namely Hidden Markov Models (HMMs), and Dynamic Time Warping (DTW). Artificial Neural 

Networks, a technique which has spread rapidly in the last few years, and often used in 

conjunction with the two methods mentioned, is also described broadly. 

 

As an example of a HMM based recognition system the SUNCAR recogniser, to be used in the 

first prototype in this project, is described in section 2.2. 

 

2.1 Current techniques for Automatic Speech Recognition (ASR) systems 
 

ASR systems are categorised into a number of different classes of which the most important are : 

Size of vocabulary, speaker dependedness, and isolated/connected/continuous speech mode. For 

the present project, which is concerned with speech recognition in the context of human-machine 

dialogue systems, only medium sized (up to 1000 words) vocabulary continuous ASR systems 

will be considered. 

 

2.1.1 Basic signal processing 
 

The speech signal is captured by microphone and digitized with sampling rates typically ranging 

from 8,000 Hz up to 20,000 Hz. To extract the spectral information, either a Fourier 

Transformation or a speech production model is applied to the signal. The speech production 

model aims at identifying the reflection coefficients of the human articulatory organs, and it's 

parameters are termed Linear Prediction Coefficients (LPC). A further transformation of the 

Fourier and LPC parameters into the Cepstrum domain is widely used. The feature vectors are 

typically calculated every 5 - 20 ms using a windowing function. To capture the time dynamic 

aspects of speech the incremental (delta) values are often calculated and included in the feature 

vector. Also features such as energy and delta energy are widely used. Altogether, the dimension 

of the feature vector typically ranges from 15 up to 40, with extremes of about 80 [Mariani..]. 

 

Alternative approaches such as artificial neural networks for phonetic classification and speech 

perception (auditory) instead of speech production models are investigated at many laboratories 

e.g. at STC. 

 

2.1.2 Dynamic Time Warping (DTW) 
The DTW technique is based on the principle of matching the speech signal against a set of 

reference templates. The templates are simply examples of each word in the vocabulary, spoken in 

advance by the user(s) of the system, and typically converted into Cepstrum vectors. The term 

"dynamic" refers to the fact that the recognition algorithm is implemented using a dynamic 

programming paradigm. The "time warping" is necessary because it is not possible to do a linear 

alignment of the reference template to spoken utterance. This is due to the fact that when a word 

is pronounced more rapidly or slowly, the duration of some phonemes are fairly unchanged, 



where others (typically vowels) may vary considerably. Therefore, a nonlinear alignment is 

necessary, which allows for "stretching" and "compr 

ession" of different regions of the speech signal. This is illustrated in figure 2.1. 

 

 

 

Figure 2.1 DTW template matching. 

 

DTW ASR systems are more flexible than HMM systems, as new words can be  included without 

training. However, recognition results are generally poorer (because the recognition is not based 

on statistical models, but just reference paterns), and a critical weakness is that the DTW 

technique isn't well suited for speaker independent, as well as subword based recognition. 

 

 

2.1.3 Hidden Markov Models 
 

The most successful acoustic decoding technique for ASR so far has been HMMs. They differ 

from DTW by using stochastic models instead of reference templates. HMM is used both for 

isolated word recognition, as well as for recognition of connected and continuous speech. HMMs 

are well suited for speaker independent recognition tasks, because they are able to effectively 

model the pronunciation variations across different speakers. HMM is a stochastic technique 

based on the assumption that human speech can be modelled as a series of distinct acoustic 

events. A HMM therefore models speech fragments as a number of states with possible transitions 

between the states. See figure 2.2. The states are not directly observable (hence the word 

"hidden"). As can be seen from figure 2.2 it is possible in principle to remain in one state for a in 

principle infinite period of time. Recognition is thus the problem of identifying the model which 

most likely produced a given speech fragment.  

 

 

 
 

Figure 2.2. Five State Hidden Markov Model without skips. The nodes depicts the states, and the 

arcs the transitios between the states. 

 

The basic recognition units are typically whole words or subword units such as context dependent 

phonemes (triphones) or syllables or a mixture of all three. The major drawback of the HMM 

technique is that it requires very large amounts of training material, and corespondingly powerful 

computers to do the training of the models. This problem can be overcome, though, as the 

training is done offline. As models are explicitly trained, it is somewhat cumbersome to add new 

words to existing vocabularies. That is especially true as regards speaker independent systems, as 



it is necessary to use from 50 to 100 different persons to train such a system. 

 

2.1.4 Artificial Neural Networks 

 

(Bliver indsat mandag - lbl) 

 

 

2.1.5 Recognition algorithms. 
 

The algorithms used for continuous speech recognition are based on Bellman's principle of 

optimality, which can be phrased "the optimum path from a given point must be independent of 

the path taken to that point" [Husøy 1991]. This leads to the application of the DTW algorithm 

described above, and the corresponding Viterbi algorithm in the HMM based systems. The 

algorithms guarantees that the found path will be the optimal within the given syntactical 

constraints (and acoustic models) , given in, e.g., a finite state (FS) table.  

 

The forward, time-synchronous search of the recogniser consists of four nested loops : 

 

1. for every frame of the speech signal left to right 

{ 

 compute feature vector 

 

 2. for every state of the finite state table 

 { 

  3. for every outgoing HMM transition 

  { 

   initialize start state of HMM with 

   best previous token 

 

   4. for every state of the HMM 

   { 

    propagate token 

   } 

  } 

 } 

} 

trace back from terminal state of the finite state 

table and return best sentence candidate 

 

Figure 2.3. Generic recognition algorithm shown for a HMM based system 

 

It should be noted, that stronger network types like recursive transition networks (RTNs) or 

augmented transitions networks (ATNs) cannot replace the FS table in this algorithm. [Brøndsted 

92]. Allmost all modern continuous speech recognition (CSR) systems are based on the algorithm 

shown in 2.3, though there might be differences as regards the modelled units (e.g. triphones or 

phonemes instead of word forms), the depth of search (N-best instead of 1-best), language models 

(probabilistic models like bigrams, trigrams instead of the structural models mentioned above), 



pruning, rejection etc. 

 

However, in many cases it will not suffice just to identify the most likely sentence hypothesis. 

Further analysis in the dialogue system may lead to a rejection because of, e.g., semantic or 

pragmatic incompatibility. Therefore, the functionality of the recognition algorithm can be 

enhanced with the ability of finding the N-best hypotheses. The A* algorithm [Rich 83] is often 

used for that purpose. This is very costly in terms of computations, so often approximations are 

made to the exact N-best search. 

 

2.1.6 Language Models (grammars). 
 

All continuous ASR systems include language models to constrain the acoustic search space. The 

language model defines the legal sequences of occurrence of the words in the vocabulary. Two 

classes of grammars are currently in use: structural and probabilistic. 

 

A structural grammar is typically represented as a finite state network. This may be derived from 

regular grammars or stronger types like phrase structure grammars (PSG) or ATNs. A very 

simple word pair language model is often derived from one of the grammars mentioned, or from 

(sub)language corpora. 

 

Examples of probabilistic grammars are bi- and trigrams, which are trained, and thus reflects 

(sub)language statistics rather than a predefined syntax constructed by the dialogue designer. The 

language models used within the acoustic recognition process are often very simple due to the 

very computation intensive search procedure. A further linguistic analysis is normally done within 

a natural language processing component of the dialogue system. 

 

 

2.2 STC 3R/SUNCAR recogniser evaluation/description 
 

As it has been decided that the P1 prototype will be based on the SUNCAR recogniser developed 

at STC, a brief account of this module follows, also  as an example of a HMM based CSR system. 

So far only a basic version of the recogniser has been developed.  

 

The SUNCAR is designed to be directly integrated in the SUNSTAR ICM/DDL system. This 

implies, that the recogniser is automatically controlled by the ICM, without concern of the 

dialogue designer. This setup includes automatic download of the active vocabulary and grammar, 

which in this way can be dynamically set throughout a dialogue session. However, the recogniser 

can also be integrated in other environments (e.g. DOS applications) outside the ICM/DDL 

system. 

 

SUNCAR is a speaker independent recogniser based on HMMs modelling whole word forms, 

subword units (e.g. triphones) or a mixture of both, and a 1-best Viterbi search algorithm. A finite 

state table stores syntactic (in case of triphones also phonotactic) constraint rules. At the present, 

the table can only store simple word pair or bigram grammars, finite state grammars and context-

free grammars with finite depth of recursion. The arcs of the finite state table are HMMs (in case 

of triphones chains of HMMs) and the states serves as link nodes in the recognition algorithm. 

Basically the Viterbi algorithm treats the finite state table as a Markov model as the two data 



structures are largely equivalent. Therefore the computation performed over grammar nodes of 

the finite state table in broad terms corresponds to the computation within the HMMs associated 

with the arcs of the grammar network.  

 

A provisional test with a grammar perplexity of 8,14 and a lexicon of 83 word forms (HMMs) 

showed a recognition rate (sentence level) of approximally 90%. The average sentence length in 

the test database was 2,8. It must be pointed out that the recognition rate was achieved in 

controlled environment as regards recording conditions, well-formedness of test sentences, no 

extra-vocabulary words etc. Furthermore, the tests were not truly speaker independant.  

 

[Additonal test results using weaker grammar constraints (null-grammars and word pair 

grammars) will be available soon.] 

 

SUNCAR does not recognise in real-time yet. On a system configuration with a single DSP32C-

board, a near real-time version using a 1-best Viterbi search and a vocabulary of max. 100 word 

can be implemented. It should be pointed out that the large-voabulary speech understanding 

systems discussed in section 1.1 and 1.2. are not real-time systems and that especially the 

American systems seem to have unrestricted access to DSP boards. 

 

The unit "word" (or "word form", "whole word" etc.) can in this context be defined as a speech 

segment that can be pronounced in isolation and modelled in a HMM. Of course, spelling forms 

do not always reflect these units, e.g. "femogtyve" (twentyfive) might correspond to three models 

<fem>, <og>, <tyve>, "til venstre" (to the left) might correspond to only one model <til_venstre> 

etc. Further there are instances of free variation forms like "til" - <te>,<til>, "skal" - <ska>, 

<skal>, or phonetic polysemi like "hvid", "vid" - <(h)vid>. 

 

2.3 Conclusion 
 

The current trends within speech recognition technology can be summarized in : 

 

_Nearly all systems are based on some variation of HMMs. 

 

_Neural networks are being investigated for classification purposes, and are used in 

conjunction with other modelling techniques, such as HMM. 

 

_For CSR systems subword models are used as the basic acoustic units. Context 

dependent phoneme models (generalised triphones) are popular. 

 

_There is a general agreement that large vocabulary CSR systems have to include 

additional knowledge sources in order to perform the recognition task. This knowledge is 

often represented as a language model, which is integrated closely in the recognition 

process. 

 

_The language model imposes syntactical constraints upon the recogniton process. Two 

kinds of models are currently in use. Simple, structural models, such as finite state 

grammars, and simple probabilistic models, such as bi- and trigrams. 

 



_In research laboratories speech understanding systems are currently being developed with 

vocabularies of 1000 - 2000 words. These systems are not real time systems, or in any 

way close to be developed into commercial products. Commercial speech recognition 

systems are typically isolated word recognisers. 3. Syntactic and semantic 

parsing in interactive language understanding systems. 
 

 

 

 

(Corrections still missing form claus/brad) 

 

This section focusses on an important design aspect of natural language understanding systems, 

namely the relative roles of syntactic (structural) and semantic (meaning) parsing. First, how 

parsing systems can differ is discussed generally, followed by an outline how syntactic and 

semantic parsing are used in existing systems. 

 

3.1 How parsing systems differ 
 

A parser can be simply defined as a program which applies or fits a static description (typically 

grammatical rules) to some input (typically language).  In language understanding systems, the 

result is an analysis or representation of the meaning of the input according to the description(s); 

it is another version of the input, either partially or completely translated into another form, i.e.  

the surface (input) form may not be recognizable from the meaning (semantic) representation.  

This is in contrast to purely structural (syntactic) parsing, where the output normally resembles 

the input which the addition of structural and lexical information. 

 

A parsing system may be defined as a parser (or parsers, and possibly with accessory functions) 

with its static description(s). 

 

The distinction between the linguistic description and the parser which applies it is one not always 

made in the literature, which can be a source of confusion:  often the language description is the 

only difference between parsers that seem to parse quite differently, in that they produce different 

results.  For example, the same application method can be used with either a syntactic grammar or 

a semantic grammar, but although the program itself is the same in each case, we would still call 

the former system a syntactic parser and the latter a semantic parser. 

 

Parsing systems can thus be compared in a number of ways at a number of levels, for instance by 

technical details of rule application methods, or by precise comparisons of description types (e.g. 

dependency vs. phrase structure grammars).  Here, the focus is at a higher level of generality, 

namely on the interrelation between syntactic and semantic descriptions in the system's attempt to 

construct an understanding of the input. 

 

3.2 Parsing in language understanding 
 

Language descriptions are either of a syntactic or a semantic nature: a simple BNF syntactic 

grammar exemplifies the former, (some types of) caseframes the latter.  In language understanding 

systems, the latter, semantic descriptions are prioritized, in that all the systems must build some 



kind of semantic representation, whether it be in the form of a frame, a logical language, or a 

representation over a semantic network. 

 

Although syntactic and semantic descriptions are traditionally kept conceptually distinct, they are 

by no means mutually exclusive, and systems vary markedly in the degree to which they integrate 

their semantic and syntactic analyses, or whether they utilize syntactic analysis at all in the process 

of building a meaning representation. This leads to a natural clustering of the systems into 3 

groups: non-integrated systems, which do a structural analysis as an initial step before semantic 

interpretation; fully integrated systems, constructing a semantic representation directly from the 

input elements with help from some type of structural description; and finally systems which map 

directly from the input to the semantic representation utilizing no structural analysis at all. 

 

3.2.1  Non-integrated analysis 
 

Systems which do not integrate syntactic and semantic analyses tend to implement a more 

thorough syntactic analysis than integrated systems. This is no doubt in part due to the fact that 

one motivation for implementing an integrated analysis is to reduce reliance on syntactic 

information, compensated by more semantic information (see discussion of integrated analyses 

below).  In any case, given a non-integrated design, it is easy to see that the initial structural 

analysis must be capable of finding some constituent and dependency structure, otherwise its 

result can be of no assistance to further processing.  Results of the structural analysis are 

examined by procedures for filling some semantic interpretation, this very often being a type of 

caseframe. 

 

The PUNDIT system [Norton et al. 1991] exemplifies a typical modular approach to natural 

language understanding, and has in fact been tested with a variety of speech recognizers (see 

NLD91).  Communication between modules is accomplished by a Dialog Manager, which passes 

speech recognition results on to the PUNDIT parser.  Syntactic argument structure aids the 

subsequent filling of frames (which they call "decompositions"), which are passed on to an 

application module for generation of queries for the ATIS database.  This modular design for 

production of database queries can be found elsewhere, e.g. versions of the TINA system [Seneff 

et al. 1991]. 

 

PUNDIT's decompositions are associated with key verbs, nouns and some adjectives from the 

domain; their arguments (thematic roles) are filled by rules associating them with certain semantic 

classes and grammatical roles.  For example the regimen (i.e. object) of a "from-PP" may be used 

to fill the point-of-departure argument of a "flight" decomposition if the PP occurs within the 

phrase headed by "flight". However argument structure isn't always "transparent" for a number of 

reasons, three of which are mentioned:  (1) the modifying constituents do not always occur 

immediately relative to their heads; (2) speakers use metonomy when specifying objects; and (3) 

the input may be parsed incorrectly, such that PPs are improperly attached. 

 

Instead of modifying the syntactic parser to attack these problems, the developers of this system 

experimented with flexibility in the semantic interpretation stage.  The requirement of close 

syntactic association to head elements was relaxed, so that a syntactic constituent which does not 

fill a role in the caseframe corresonding to its direct syntactic head can be "propagated down" the 

syntactic analysis in an attempt to match it to empty thematic roles corresponding to other parts 



of the structure.  Semantic constraints on potential role fillers are still in effect.  

 

There was also a problem of synonymous input being parsed into non-equivalent decompositions.  

For example, "a flight from Boston" and "a flight leaving Boston" were interpreted in two 

separate ways.  This was ameliorated with the addition of an inference component applied to the 

result of the semantic interpreter.  Through the application of inference rules written by the 

developer, semantically identical elements can be transformed into a regularized format.  In this 

example, "leaving Boston" was transformed into an argument for a "flight" decomposition, instead 

of instantiating its own "leave" decomposition [Norton et al. 1991, p. 126]. 

 

One problem with PUNDIT as described above is that it relies on the presence of head 

constituents for instantiating particular decompositions, and prepositions for marking case fillers.  

These shortcomings can be especially serious in a speech recognition environment, where input is 

often elliptical, and the input signal and recognition of it are imperfect. Prepositions are 

particularly difficult to recognize because they tend to be unstressed and of short duration. 

 

The EVAR dialog system [Brietzmann and Ehrlich 1986]  treats the problem of ellipsis while 

staying within the non-integrated framework.  It is similar to PUNDIT in its overall design:  

syntactic analysis (valence-based, using parsing with unification) is followed by caseframe filling 

by specialized procedures.  Partial input is matched to caseframes using a special function that 

attempts to fill competing frames, then evaluates them according to how well they are filled (how 

many obligatory slots are filled, consistency of constituents, length of time interval not covered, 

etc.) The filling of caseframes can be done without the head element being present, thereby 

tolerating its elision. 

 

3.2.2 Integrated analysis 
 

In the non-integrated systems above, the result of the initial structural analysis can sometimes be 

ambiguous:  the semantic interpretation process can then select the right analysis by finding the 

one best satisfying semantic expectations.  Other systems attempt to make this process more 

efficient by integrating some semantic information with the structural analysis itself, thereby 

eliminating useless parse results from the outset. 

 

There is a trade-off often made by this type of approach:  the efficiency sought by the close 

linking of structural and semantic analyses reduces general applicability of the former.  In other 

words, such a link to the semantics of a specific domain makes the structural analysis inapplicable 

to other domains.  In addition, without a separate general representation of syntactic information, 

the systems that code syntax within semantic representations (e.g. semantic grammars, or syntax 

within semantic caseframes) must repeat the same syntactic information in each applicable 

semantic representation. 

 

Some systems have found ways of integrating syntax and semantics without loss of syntactic 

generality.  In the system described in Hayes et al. 1986, caseframes contain information 

specifying which lexical elements ("heads") and syntactic roles ("syntactic cases") can fill which 

slots in the frame.  Parsing is based on this information within the caseframes; a procedure with 

hard-coded syntactic knowledge seeks through the input for the heads, doing only as much 

syntactic analysis as necessary.  This system avoided modular syntactic and semantic analyses, but 



at the same time kep the syntax distinct from the semantic representations.  However, it had the 

clear disadvantage of a relatively inflexible syntactic analysis locked into the parse procedures 

themselves. 

 

Parsing in the SUNDIAL system [Baggia et al. 1991] does this one better by allowing 

specification of syntactic information outside both the program code and the caseframes, and then 

combining them by compiling the syntactic (dependency) grammar and caseframes together into 

what they call "Knowledge Sources (KSs)".  The result is a kind of semantic grammar, with each 

KS owning "the syntactic and semantic competence necessary to perform a well-formed 

interpretation of a fragment of the input" [Giachin and Rullent 1988, p. 197]. 

 

Based on these KSs, semantic parses of input sentences are generated directly with no intervening 

structural analysis; rather the structure is a part of the semantic representation itself.  The result, a 

"Deduction Instance" or DI, is then handled by actions that decide what to do next:  if the DI is 

missing a case filler, this is either filled in by other existing DIs or broken down into 

subconstituents which themselves can be filled; if the DI is missing a head element, one is 

hypothesized, thereby handling the problem of elided head elements. Additional robustness is 

implemented by a kind of flag on function words (what they call "jollies"), which are treated 

specially under the parse process, e.g. they are not always required to be present [Giachin and 

Rullent 1988, p.198]. 

 

This system seems to preserve the advantages of modularity while making the analysis itself more 

efficient, guided by semantics.  This is however at the cost of implementation complexity:  a 

separate compiler producing the KSs must be developed.  It is also unclear whether the quantity 

of KSs produced is inordinate, for instance if the number of KSs were the product of the number 

of syntactic rules and the number of caseframes. 

 

3.2.3 Semantics without syntax 
 

As language understanding systems typically are used interactively, they need to be both quick to 

react (real time) and robust in the fact of ungrammaticalities:  written input to an interactive 

system is very often structurally ungrammatical, while spoken input is notoriously so (see case 

studies cited in Weischedel and Ramshaw 1987, p.157; see also Carbonell and Hayes 1983 for a 

discussion of error types and recovery methods).  The EVAR and SUNDIAL systems above 

implement robustness while maintaining structural analysis.  Another approach to this problem 

area is to implement a freer interpretative semantic analysis with no (or very little) reliance on 

structural information. 

 

The straightforward case of this is what is called "word-spotting", where key words in the input 

are used to instantiate the semantic frames, but where minimal structural analysis is done.  For 

instance, in entity-oriented parsing [Hayes 1984], the input is scanned for keywords that 

instantiate high-level entities (Hayes' version of caseframes).  Once one is triggered in this way, its 

corresponding arguments are sought in the remainder of the input by further word-spotting.  If no 

high-level keywords are present, there is the possibility for triggering an entity bottomup by 

combining those lower-level entities that are present. 

 

This has some advantages in terms of ease of implementation and quick runtime, but has obvious 



disadvantages when one considers modality, negation, passive constructions, topicalizations and 

other syntactic phenomena which affect the meaning of the sentence, but which cannot be 

identified without some kind of structural analysis.  Other systems improve on the word-spotting 

concept by attempting to spot a larger portion of the input. This can be regarded as a type of flat 

sentence analysis, i.e. larger chunks of the input are identified and used to form an analysis of the 

sentence, but no further structuring of the analysis is present.  Pattern-matching is such an 

analysis, wherein patterns are used to specify acceptable contexts for the keywords to be sought.  

The CASPAR system [Carbonell and Hayes 1983] and FlexP [Carbonell and Hayes 1987] 

implement such a pattern-matching activation. 

 

Phrase-spotting, a variation of pattern-matching, also seeks specific word combinations in the 

input, however phrase-spotting has each chunk of text stored as meaning-bearing units. For 

example, "by ten o'clock" could be regarded as a meaning-bearing phrase which can fulfill a time 

specification (argument) in some caseframe.  Thus there is a direct mapping from input to 

semantic representation. 

 

The PHOENIX system [Young and Matessa 1991] parses in this fashion, evaluating all 

possibilities in parallel and producing a representation over a semantic network.  Nodes of the 

network are linked to slots in caseframes, and a scoring mechanism judges which caseframe is 

best filled by the given input.  At this point a routine puts the caseframe representation into a 

canonical form, which is used as a basis for generating database queries [Ward 1990]. 

 

 

3.3 Comparison of approaches 
 

There are some trade-offs systems with no syntax make compared to those with syntactic analysis, 

in that they run the risk of missing important structural cues crucial for interpretation of input.  

For very restricted applications, where one can be reasonably sure of input of a limited 

complexity, this approach can be adequate. 

 

In larger systems, where a greater degree of ungrammaticality can be expected, this approach is 

not as good.  The pattern-matching and phrase-spotting types require input well-formed in other 

ways than structurally.  For example, unless implemented flexibly, the latter types are particular 

about the form of the phrases and patterns, allowing little or no variation.  However even if 

implemented flexibly (for example, by allowing 'close' matches to phrases or patterns), the system 

still has no syntactic information on which to base error recovery in the case of ill-formed input:  

in other words, all words in a pattern or phrase have the same status (except for the keyword in 

patterns), so that the system can have no idea whether a close match missing some key element, 

such as a verb, is a better or worse solution than a close match missing only a preposition or 

determiner. 

 

Non-integrated systems allow error recovery of various sorts, both syntactic and semantic. They 

also have the advantages provided by modularity:  development of various components can occur 

in parallel, and components from one system can more easily be applied to other domains.  

Efficiency is their greatest weakness:  a purely structural analysis can produce several analyses for 

a single input sentence.  An attempt at integration of syntax and semantics which preserves 

advantages of modularity is described, however the effectiveness of the implementation cannot be 



judged based on the available literature. 

 

 

3.4 Conclusion 
 

By definition, systems implementing natural language understanding must construct meaning 

representations of their input.  How various systems go about doing this can differ in a number of 

ways, some technical and some of a more general nature. 

 

This overview focusses on the general question of the integration of semantic and syntactic 

knowledge in language processing.  In this respect, systems can be classified into one of three 

groups: non-integrated structural analysis, integrated structural analysis, and systems with no 

structural analysis. 

 

Some strengths and weaknesses of the three approaches are discussed, however a closer and more 

complete analysis of parsing in language understanding would have to cover details of the 

following points: 

 

_how systems handle metonymous and synonymous input, including lexical ("plane 

leaving|from Aalborg") and structural  synonymy ("plane leaving" vs. "flight that departs"; 

"give me" vs. "I want" vs.  "could I have"). 

 

_in systems with structural analysis, how they utilize syntactic constituents (including 

those not forming complete sentences), and their roles and dependencies 

 

_how robust systems are, i.e. how they maintain lexibility in both syntactic and semantic 

analysis 

 

_how results of parsing can be used for discourse functions, e.g.  anaphora and ellipsis 

resolution 

 

_how efficiently the systems run 

 

_how complete the parsing is, i.e. whether alternative parses can be computed 

 

_how easy the systems' grammars are to train and modify:  for example, whether the 

grammars can be developed independently or are hard-coded into the system (as with the 

CMU-system [Hayes et al. 1986]) 

 

_how powerful the grammars are, i.e.  how much of a domain can they cover, both 

syntactically and semantically. 



4. Sublanguage and Language Analysis 
 

 

 

 

4.1 Introduction  
 

With the realization that commercial product development of machine translation systems with 

broad lexical and grammatical coverage is at present unattainable, interest in defining and 

delimiting subsets of general languages has increased greatly. 

Such "areas" of a general language, often labelled sublanguages, are primarily characterized by 

limited vocabularies and types of linguistic phenomena. It follows that it is much simpler to 

generate a formal linguistic description of such a language.  

 

 

4.2 What is a sublanguage ? 
 

Since the 1960s, there has been basic research to define the concept of sublanguage (SL) formally 

and to identify its boundaries within general languages [Sager et al. 1980]. Many different 

definitions have been suggested, however, most of 

them agree on the following points [McNaught 1992]:  

 

_SL is part of a natural language, although in a specific form 

_SL behaves like a complete language, i.e. it is different from an artificial language 

_SL is often used in special communication situations (expert-to expert) 

_SL is limited to a particular subject domain  

 

The application chosen in the current project (a ticket reservation system) and the related 

communication situation between the user and the system in a natural language fall squarely 

within this definition. Obviously the dialogue between a user and the system will be a subset of 

natural language although having a number of unusual characteristics. For instance, it could be 

expected that interrogative sentences will occur with a disproportionately high frequency in a 

dialogue where a costumer seeks information about domestic flights.  

Moreover, as the user interface is not restricted to some kind of command language or menu-

driven interaction, the sublanguage actually behaves perfectly as a natural language. The 

communication situation between a person seeking information on ticket reservations and the 

appropriate expert system surely differs from any common conversation if only as regards the 

restricted subject domain and the task-oriented dialogue. Finally the ticket reservation system can 

be characterized as being domain-specific, as the universe of ticket reservations is constituted 

lexically of proper names of domestic flight origins and destinations and of expressions specific to 

ordering flight tickets.  

 

One of the main issues in the specialised language debate has been how to differentiate between 

sublanguages and general language. From a theoretical point of view, it has been claimed that the 

most striking feature of sublanguages is that they are closed under transformations [Harris 1968]. 

This notion of sublanguage is like that of subsystem in mathematics. For example given an algebra 

<A, f1,...,fn> where A is a set closed under the operations f1,...,fn, then a subset of A closed 



under the same operations forms a subalgebra of <A,f1,...,fn>. 

The decisive question is, however, if it is by any means possible in practice to identify the 

boundaries between a sublanguage and a standard language in a concrete text example. Research 

into this matter has yet to come up with an answer.  

Therefore because of the fuzziness of the definition of a sublanguage, and since this type of 

general research into sublanguages does not fall within the goals of the present project, a more 

pragmatic approach has been chosen. Thus there will not be a focus on identification of different 

languages, general language or sublanguages, in the corpus in question: when the expected tape 

recorded dialogues from the real world of ticket reservations eventually become available [cf. 

5.1.?], the collected corpus in itself will be regarded as constituting the sublanguage within this 

delimited subject domain. In other words the sublanguage will be extensionally defined without 

trying to differentiate between sublanguage and general language.  

Even this pragmatic approach will probably not immediately define the corpus. As the collected 

corpus will be minor, lack of representativity may lead to an overrepresentation of random 

lexemes and syntactic constructions rather than otherwise highly frequent words and constituent 

order. 

 

 

4.3 How to analyze the corpus 
 

4.3.1 Syntactic analysis. 
 

On a general level a formal representation of a sublanguage can be generated in 2 ways: One can 

start top-down, making a broad and general description of the language in question in the belief 

that it would be easier to constrain such a description than to enhance a narrow description based 

on some specific text-type; or, after having collected a corpus, one can describe a sublanguage by 

making a grammar and then perhaps refining and it after automatically analyzing the corpus. 

The experiences from the EUROTRA machine translation project [Copeland et al. 1991] suggest 

that the former general approach is extremely time-consuming and costly and must be considered 

as being far beyond the available means of this project. Hence, an analysis from the "bottom" is 

likely to be preferred as a collected corpus is made available. This method also corresponds to the 

planned course of the project, wherein a very limited experimental system will be implemented 

initially to be later improved upon and augmented. 

Various relevant automatic or semi-automatic methods will be used for analysis of the corpus. For 

instance it will be necessary to make a frequency list of all the words in the corpus; a program can 

then be used to identify the lemmata in the different occurrences of a word form. Moreover, in 

order to facilitate identification of syntactic patterns, a KWIC (keyword in context) concordance 

of the collected corpus will be made.  

 

Over the past few years a great deal of research has been invested into development of different 

statistical and probabilistic-based programs with special attention given to processing large-scale 

corpora [Tomita 1991]. In this connection it would be straightforward to first apply an automatic 

word tagging program to systematically group the words in the corpus which statistically have the 

same distribution, and then, on the basis of this, make a clustering of constituents. However, since 

the collected corpus is expected to be of manageable size, the statistical processing approach can 

be regarded as overkill. 

In light of this, syntactic analysis will probably have to be made by handcrafting a grammar within 



the chosen grammar formalism in order to detect the inherent linguistic characteristics of the 

sublanguage text. 

It will be necessary to begin by making a description which covers all the linguistic phenomena in 

the collected corpus and then, perhaps statistically, identifying the most frequently applied 

grammar rules in order to get an idea of the most common word orders in the domain specific 

dialogue. Next (as mentioned above) it may be necessary based on general linguistic knowledge to 

adjust the coverage of the grammar and lexicon. 

In parallel with the linguistic analysis, the descriptive power of the formalism chosen (in advance) 

will be evaluated in order to determine whether it is adequate or not for describing the corpus.  

 

Spoken input differs in many ways from written input [Ward 1989]. In this context it is 

particularly interesting to focus on ungrammatical constructions such as "wrong" constituent 

order and repetitions of phrases and terminals. 

As an example: 

 

Jeg vil gerne .. er der flere pladser i flyet til Aalborg? 

 

Kan øh .. kan jeg få en billet til Billund? 

 

 

These deviant constructions can be dealt with in two ways: 

The "ungrammatical" constructions can be represented directly in the grammar, or a failsoft 

mechanism can be implemented in the syntactic parser. Although the former approach gives the 

user (i.e. the grammar writer) more control over how specific constructions are handled, it can 

lead to overcomplication and lack of perspicuity in the grammar. A reasonable compromise is to 

implement only the most common types of ill-formedness in the grammar and let a failsoft 

mechanism handle the rest.  

 

 

4.3.2 Semantic analysis. 
 

As mentioned above, there are several linguistic advantages to handling sublanguage instead of 

general language. Besides a reduction in quantity, semantic restrictions in special languages make 

it possible to describe sublanguages in a more specific and precise way. The semantic constraints, 

thus, make it possible to:  

_reduce polysemy  

_establish semantic word classes 

_define patterns of word classes: frames 

_determine dependencies among frames 

 

When an lexeme is polysemous, i.e. has two semantic readings, the one not belonging to the 

subject matter can be excluded. For instance the reading of plane in a mathematical sense would 

be irrelevant to include in a lexicon of a ticket reservation system. Furthermore when an entry 

within the subject matter has both an abstract and a concrete reading, the latter will often be the 

only one in a sublanguage.  

 

The three latter advantages are particularly useful in the present context, since semantical analysis 



in the system will probably be based on some kind of frames or semantic grammars. A practical 

method of defining the frames or semantic non-terminals is to first determine the various semantic 

word classes of nouns, verbs, adjectives and pronouns specific to the domain. 

 

PASSENGER = {passenger, traveller, we, I} 

TICKET = {ticket, price, flight} 

 

Classes discovered in the corpus which are deemed essential for fulfilment of known goals of the 

system (i.e. ticket and flight information, ordering, etc.) will require some representation as a 

frame or frame slot. These constitute the object frames. The ticket word class will likely be 

represented as an entire frame, since it is a complex set of information while passenger can be 

adequately represented as a single slot. 

The next step would be to identify semantic templates of frames in the corpus. For instance a 

frame concerning ordering tickets could be as follows: 

 

[TICKET    PLANE    PASSENGER    TIME] 

 

In doing this it would probably be useful to identify, synchronously, keywords in the corpus (main 

verbs or other operators) and the semantic word classes their arguments belong to in order to 

locate head concepts (actions) and attached frames revealing the dependencies among and 

relations between domain-specific semantic frames [Hayes 1986]. An example of an action in a 

domain of ticket reservation could be ordering and the lexeme filling the frame; to order. 

 

 

4.4 Sublanguages in dialogue systems with spoken input. 
 

In a dialogue system with spoken input, one must keep in mind that the number of words which 

can be handled by speech recognisers in real time performance is limited. Thus after having 

analysed the taped dialogues and on the basis of general linguistic knowledge extended the 

corpus, it will, for pragmatic reasons, be necessary to reduce the lexicon size. As an example, the 

current MIT Air Travel Information System, (ATIS) domain has a vocabulary of about 500 words 

(speaker independent) [Zue et al. 1991] which to all appearances does not lexically cover a 

sublanguage of air travelling. 

Despite the necessity of reducing the number of words present in the sublanguage it may not 

necessarily restrict drastically the functionality of the system. Several investigations point to the 

fact [Thompson 1992] that the growth in number of different word types in sublanguages flattens 

as the size of the corpus exceeds 500 entries, which indicate that sublanguages compared to 

general language contain many more highly frequent word forms. In this context it is relevant to 

notice that the above mentioned investigations are based on large-scale corpora, which further 

emphasises the importance of making the collected corpus from the taped dialogues representative 

by generalising it lexically and syntactically.   

The construction of the final vocabulary will be a trade-off between the following interdependent 

parameters: 

 

_recognition capacity 

_the functionality of the system  

_frequently applied sentence constructions 



_highly frequent and semantically important words. 



 

5. Domain, dialogue and discourse in spoken language systems  
 

 

 

 

In their 1986 review of natural language interface systems, Perrault and Grosz claim that no 

natural language interface (NLI) systems exist that contain a model of the query dialogue which is 

sufficiently sophisticated and general to handle more than a limited range of discourse-related 

expressions. Most systems handle a few types of such expressions, in particular various kinds of 

referring expressions and elliptical expressions. This is still a fair picture of the situation: no 

general theory has emerged that allows practical computer implementation of a general dialogue 

and discourse handler (cf. also [Carberry 1990, p.242]). There are ambitious and inspiring 

attempts at a description of such a general model (see, e.g., [Grosz and Sidner 1986] and [Grosz 

et al. 1989]), but because “common sense inference” systems are still beyond the state of the art, 

they do not appear to be close to practical application. However, many NLI systems, including 

speech recognition systems, have attempted to handle aspects of discourse and dialogue. 

 

Below is provided, first,  a general description of central terms related to domain, dialogue and  

discourse in (spoken) natural language systems. Second, some specific methods and systems are 

discussed. 

 

 

5.1 Some central terms  
 

Domain, dialogue and discourse are keywords in the understanding of what is communicated 

between a computer and a human being. The domain determines which topics can occur in a 

conversation, the dialogue is the form and text of the conversation, and the discourse concerns the 

structure of and phenomena in the conversation. In the following sections these terms are 

explained in more detail along with other keywords closely connected to them. A general 

reference on these topics is [Smith 1991].   

 

 

5.1.1  Domain  
 

By the domain  is here meant the application area. The computer system must contain represented 

knowledge or data about the area in which it is supposed to be able to conduct a conversation. A 

reservation and information system for domestic flight travels, for instance, must contain data on 

departures, arrivals, fares, etc. Such data are usually represented in a database or knowledge base. 

It is important for the functionality of the system that the database contains a domain description 

that is sufficient to the tasks it supports and that users have a clear image of its capacities and 

limitations. An example could be a reservation system with no knowledge of departures of flights 

on holidays. 

The domain of a system determines the possible conversation topics of dialogue and discourse. If 

the user‟s task is t book tickets, a system with, e.g., domain knowledge on electronic circuits 

cannot be used. It would not be able to handle the user‟s goals and plans successfully. 

 



 

5.1.2  Dialogue 
  

A dialogue  is an interactive communication between two (or more) participants. The dialogue 

has a certain structure to some extent determined by the mode of communication (see below). 

Often the whole dialogue may be seen as being composed of a number of subdialogues. A 

subdialogue  concerns a certain topic, e.g., that of obtaining a customer number so that one may 

be allowed to make reservations. 

 

The breakdown into subdialogues often also means a division of the vocabulary. Certain words 

may primarily belong to a certain subdialogue. This is important in spoken language systems 

where the vocabulary must be divided in a number of, e.g., 100-word lexicons. If the current 

subdialogue can be restricted to a certain 100-word lexicon, search time is saved.   

 

Mode of communication 
 

The mode of communication  (see, e.g., [Smith et al. 1992]) determines in what order participants 

may speak and who decides what to speak about. The computer may have complete dialogue 

control (the computer is in directive  mode), i.e., only the computer decides what to talk about 

next. This mode is of course comparatively easy to manage because it restricts possible user 

answers so that, in the extreme, only “yes” or “no” could be possible answers.  The opposite of 

this is that the user has complete dialogue control (the computer is in passive mode). This mode is 

very difficult to handle because, among other things, predictions will be very uncertain and the 

user may ask questions which cannot be answered because he has not provided the relevant 

knowledge yet. However, if the vocabulary is small and the domain narrow it will, of course, be 

somewhat easier to make predictions than if many topics of conversation are possible. Finally, 

there is the possibility of having a system with a dialogue control somewhere in between these 

two opposites. 

 

The system‟s form of communication may be polite, non-polite, talkative, etc., which probably 

influences the user‟s way of speaking [Zoltan-Ford 1991, Fraser and Gilbert 1991]. It is therefore 

very important to carefully consider the form of the phrases used by the system in addressing the 

user. 

 

 

5.1.3  Discourse 
 

According to [Grosz et al. 1989] discourse  is the text or dialogue in which a sentence or 

utterance occurs, and which is necessary for its interpretation. It is the relation between a piece of 

text and its meaning. Discourse involves 1) task, plans and goals (the discourse structure), and 2)  

anaphora, ellipsis and focus (the discourse phenomena).    

 

Tasks, plans, and goals   
 

 

The task  is a series of actions or discourse moves performed by the user in order to achieve a 

certain goal. A specific task may be to reserve tickets for Thursday morning 23 April on a flight 



from Copenhagen to Aalborg for three persons who must attend a meeting at 9.30. A task usually 

includes plans and goals. The goal  is what the user intends to achieve (which may include one or 

more subgoals). The goal in the example just mentioned is to obtain tickets that will get the three 

persons to Aalborg in due time. The user probably has  one or more plans for reaching the goal. 

In the reservation example above the user‟s plans could be to ask for departures from 

Copenhagen and arrivals in Aalborg on Thursday mornings and to ask how much time it will take 

to get from the airport in Aalborg to the place of the meeting. Goals and plans strongly influence 

discourse. For goals which occur often it may be possible to construct in advance a number of 

plans which may be used for predicting user answers and for identifying the topic of current 

discourse. 

 

Anaphora, ellipsis, and focus 
 

Anaphora  can be defined, in a very broad sense (including ellipsis), as the use of expressions 

whose meaning (sense and/or reference) cannot be fully determined in isolation, but only by taking 

into account other items with which it has a cohesive relationship, the antecedents.  If the 

dialogue is not to be strictly directed, resolution of some types of anaphora and ellipses (primarily 

at the level of nominals) is probably necessary, since they can be expected to occur frequently. 

The resolution of anaphora and ellipses will impose demands not only on the speech recognition 

module, but also on computation and representation in other parts of the system. Few spoken 

dialogue systems attempt to deal with anaphora in a comprehensive and principled manner. 

 

An anaphor is resolved by matching it against the candidate antecedents represented in the 

discourse history. Matching is done by grammatical features (person, gender, number), and by 

syntactic and semantic constraints. The discourse history is maintained by a focusing system (see 

below). In the case of referential anaphora several different relationships between the anaphor and 

its antecedent can be found. With pronouns identity of reference is the norm; with lexical items 

many other inferential relationships are possible as well. The nature of the relationships is crucial 

to the matching of anaphora with antecedents, i.e., matching is very much dependent not only on 

the semantic representation but also on the domain model, since it is accomplished by inference 

with respect to the “real world”. 

 

Resolution of anaphoric pronouns will probably turn out to be crucial in dialogues that are not 

strictly directed since anaphora are very frequent. The number of  pronouns that the speech 

recognition module must handle appears to be at least 35 or 40. Also, pronouns are short words, 

very much reduced phonologically, and most often unstressed which may complicate their  

recognition. Full-NP anaphora with identical reference need resolution to get proper responses 

from the database. For full-NP anaphora (and especially those that specify an element or subset of 

an earlier set), resolution may not always be necessary in a database application: if the extra 

information they contain is more restrictive than the information that established their antecedents 

(which is often the case), their reference can be found by searching the entire database, rather than 

a previously referenced subset of it. In a small database search may be faster than knowledge 

based resolution of anaphora, but for large applications brains  may beat muscle. Other types of 

full-NP anaphora, however, do seem to need resolution if proper references are to be found. 

Possibly the relatively narrow domain may reduce the problem of dealing with full-NP anaphora. 

 

Ellipsis  is a much more diverse phenomenon than anaphora. English and Danish appear to be 



very different at all three levels at which ellipsis occurs, at least in the expressions applied. 

Generally, nominal ellipsis is less distinct from pronominal anaphora in Danish than in English, 

probably due to the fact that the Danish determiners carry information about gender and number. 

Nominal ellipsis is used so widely in Danish that it is probably indispensable. As far as practical 

implementation is concerned, it is suggested that nominal ellipsis might be considered a kind of 

pronominal reference with added or changed modifiers. Other forms of ellipsis may turn out to be 

necessary as well. 

 

In Danish, verbs can be substituted by “gøre” and by the modal and auxiliary verbs (that can also 

substitute for each other), whereas the arguments and modifiers of the elliptical VP can be 

substituted by “det” or “dette”. Clausal substitution is most often accomplished by “det” or 

“dette” and is also in other ways like verbal substitution. This very non-specific use of “det/dette” 

may cause problems in restricted implementations if it is confused with reference to objects. 

 

Focusing is the process that keeps track of what the discourse is about by maintaining a focus 

state  which is searched for possible antecedents of anaphora. Sidner [1979] and Carter [1987] 

represent the current focus state by six different focus registers. The expected focus may be 

syntactically marked or may be found by ordering the items mentioned in the current sentence by 

semantic roles and by order of occurrence. Items that are referenced anaphorically are preferred. 

The registers are changed according to the development of the discourse.  Dahl [1986] uses a 

similar, but simpler algorithm and discourse representation: syntactic rather than semantic roles 

are used as criteria for focusing and the representation is reduced. Others have applied even 

simpler schemes, sometimes based on recency alone. Grosz and Sidner [1986] propose a 

mechanism like Sidner and Carter‟s for local focusing (or centering) embedded in a more complex 

structure for global focusing. Apparently it has not been implemented. 

 

The choice of focusing algorithm and discourse representation is of course closely tied up with the 

choice of grammar formalism and parsing algorithm, as well as with considerations of system and 

domain restrictions. 

 

5.2 Specific systems and methods for processing discourse 
 

As remarked above, there is a gap between the complicated discourse of human-human 

conversations and what is possible in computer systems. However, some attempts at mechanizing 

discourse already exist. Here, we shall briefly review a few of them, in particular the mixed 

initiative dialogue handling in the spoken language system of [Smith et al. 1992]. 

  

 

5.2.1  Scripts 
 

Script-theory [Schank and Abelson 1977] provided an early and very influential model for 

constructive interpretation of narrative discourse [Smith 1991, p. 384]. Scripts represent 

stereotypical sequences of the smaller events that compose routine activities in a particular 

context. As a formalism, they are a variation of frames directed specifically towards natural 

language processing, and they include the following groups of slots: 

 

1. Roles and properties (of persons and items). 



 

2. Preconditions (for invoking the script).    

 

3. Effects (of going through the script).    

 

4. Actions (that might plausibly be expressed in a single sentence in a narrative). 

 

There is empirical support for the idea of scripts: when presented with a narrative that might 

mentally be represented as a script, subjects reproduce the narrative in an order and with new 

elements that fit with a plausible script rather than the narrative itself [Smith 1991]. But scripts 

lack at least three desirable properties (cf. [Sowa 1984]): 

 

1. Shared substructures. Scripts are indivisible units, and parts of one script cannot be 

transferred to another.  

 

2. Generality. Relationships in a script cannot be abstracted to a more general rule that could 

be applied to other situations. 

 

3. Intentionality. Scripts specify what happens, but do not state the intent or purpose. 

 

Scripts have among other things been used in the story-understanding system SAM [Culingford 

1981]. SAM builds a representation of the entire text by using the relationships indicated by the 

relevant scripts. 

 

 

5.2.2  Scenes 
In order to overcome the deficiencies of scripts, scenes have been introduced as building blocks of 

episodic structures corresponding to scripts. A scene contains the same slot groups as scripts, but 

are characterized by [Smith 1991]:  

 

1. The actions are collocational and frequently co-occur in different  contexts.  

 

2. The effect is an instrumental goal that may help the higher order  goals of episodes. 

 

3. The scenes are context free and may be reused as needed. 

 

Successors to script theory, notably Wilensky‟s theory of plans [Wilensky 1983] and Schank‟s 

theory of memory organization packets (MOPs) [Schank 1981], use scenes. Plans and MOPs 

correspond to episodes, and both theories have counterparts of scenes and actions. Somewhat 

depending on the point of view, scenes seem to correspond to the subdialogues of a spoken 

language dialogue system.    

 

 

5.2.3  DDL   
 

The dialogue definition language (DDL) [Bækgaard 1991] together with the DDL tool 

[Giannantoni et al. 1991] is  aimed at the description, development and maintenance of the 



various interactions between a user and an application. DDL is a compound language 

encompassing three  levels:  

 

_The graphical level:  this is the most abstract level, describing the overall control 

structure of the dialogue via the use of recursive flowcharts.   

 

_The frame level:  this is the medium abstract level, declaring the details of the dialogue 

by filling slots in frame structures. 

 

_The textual level:  this is the most concrete level, implementing the computational parts 

of the dialogue.  

 

The DDL tool provides a graphical, direct manipulation of the dialogue specifications. Until now, 

DDL has been applied to a number of limited applications, e.g, public telephone services 

(database access, voice dialling, PABC control) and voice controlled CAD systems, none of 

which make actual use of natural language. 

 

 

5.2.4  SPAR  
 

Carter [1987] describes a “Shallow Processing Anaphor Resolution” system (SPAR) which is 

apparently the most comprehensive implementation to date. It is based mainly on the work of 

[Grosz 1978], [Sidner 1983] and [Webber 1980, 1983]. SPAR sticks to linguistic knowledge as 

long as possible in dealing with discourse problems and resorts to world knowledge only when 

absolutely necessary. SPAR, however, is a story understanding system, i.e., it has to build its 

model of the world from very general background assumptions alone. NLI systems for database 

applications can relatively safely assume a more specific and closed world and may therefore 

exploit world knowledge to a greater degree. On the other hand, SPAR does not have to deal 

with the multitude of dialogue problems in database querying. 

 

 

5.2.5 The Circuit Fix-it Shop   

 

The Circuit Fix-it Shop is a 125 words, connected word spoken dialogue system designed to aid a 

user in the repair of electronic circuits [Smith et al. 1992]. The system has a mixed-initiative, real-

time, voice-interactive dialogue which makes use of a user model. The dialogue is goal-driven and 

divided into subdialogues each covered by a set of rules. The (sub-)goal is resolved by a theorem 

prover with one of the results: 

 

 

    a general rule;  then process the antecedents of the rule.  

 trivially satisfied;  then return success. 

 „vocalize(X)‟;  then output X verbally (mode), 

       record expected responses, and 

       receive a response (mode): 

  The response may be:   

  _ successful; then return success. 



  _ negative;  then no action. 

  _ confused;  then clarify. 

  _ interruptive; then match and jump to another subdialogue (mode). 

 

Some notes on this central algorithm are: 

 

_The initiative is controlled at the points marked  (mode). Thus, in directive mode verbal 

output is positively stated, responses are expected to be obedient, and interrupts are 

restricted. In passive mode only answers to questions are output, and interrupts to any 

subdialogues are acceptable. 

 

_Interrupted subdialogues may be resumed later. 

 

_Expected responses are compiled from the domain and dialogue controller knowledge 

bases and thesesupport recognition and input interpretation. 

 

The limited vocabulary and small domain clearly facilitates the task of the system. However, the 

system combines mixed initiative dialogues, choice between modes (though fixed during each 

session), (primitive) plan recognition and focusing, resolution of anaphora, predictions utilized for 

recognition and input interpretation (which reduces the overall error rate), and a user model. 

 

5.3 Conclusion 
 

The use of domain, dialogue, and discourse in a spoken language system is more than necessary 

for the proper processing of linguistic data: it may also improve processing efficiency and system 

habitability. Some important parameters to discuss when implementing domain, dialogue and 

discourse are: 

 

_The modularity of the dialogue: can it be broken down into small, manageable 

subdialogues?  

 

_The mode of communication: can the system afford to be passive in the dialogue and 

thus risk very free and abrupt changes of focus from the user, or does the system have to 

exert more or less tight control of the dialogue? 

 

_How might constraints imposed by the discourse be utilized in the speech recogniser? 

And in the parsing? 

 

_The discourse phenomena: which of the anaphora and ellipses must be handled, and 

which can be avoided? And does the focus yield useful constraints? 

 

_The goals: how are the user‟s goals detected? 

 

_The plans: which plans can the system suppose on behalf of the user when trying to 

achieve a specific goal? 

 

_The domain knowledge: should it be restricted to a database that is queried, or might it 



play a more active role because it is strongly related to semantics? 



6. Knowledge acquisition 
 

 

 

 

Building a computer system roughly involves three phases: knowledge acquisition, knowledge 

representation and realization, cf. figure 6.1. In this chapter the focus is on knowledge acquisition, 

whereas other parts of the report concentrate on representation and realization.  

 

 

 

Figure 6.1. The construction of a computer system. Phases, processes and intermediate 

results. 

 

Knowledge acquisition is an iterative process of achieving data from different sources (e.g., books 

and interviews) and producing data on different storage media (e.g., paper and tape). In Section 

6.1 a survey of the data sources and corresponding acquisition methods is given. The data have to 

be systematised (i.e., analysed and structured) on a continuing basis in order to support decisions 

on what to focus on in the next iteration of acquisition. Through a number of iterations, the 

systematisation results in a model of the system to be built and represented in, e.g., natural 

language. Section 6.2 briefly presents some issues of systematisation.  

 

The data material acquired will influence different parts of the system. The parts of a spoken 

language dialogue system most sensitive to the data material are those directly affecting the user 

interface, i.e., the represented natural language (vocabulary, grammar, semantics), the dialogue (in 

particular the mode of communication), the discourse, and to some extent the domain. Simulation 

experiments (especially the Wizard of Oz method) dominate the literature on acquisition for 

natural language dialogue systems and are described in Section 6.3 relatively to the current 

project. Finally, in Section 6.4 a short conclusion is presented. 

 

 

6.1  Data sources and acquisition methods 
 

There are several sources and methods for the acquisition of the knowledge needed. Examples are 

the research literature, material from a company (e.g., a travel agency), interviews with and 

studies of experts in the domain (e.g., travel agents), and experiments. General introductions to 

knowledge acquisition for the construction of computer systems are [Hart 1986] and [McGraw 

and Harbison-Briggs 1989]. For spoken dialogue systems [Fraser and Gilbert 1991] is a useful 

survey. It should be noted that sources and methods are closely related. An example of a source is 

a book and the method is reading the book. The following is a list of sources and methods: 

 

Research literature  concerning systems with (spoken) natural language interfaces (e.g., [Darpa 

1989, Darpa 1990, Darpa 1991]). Through reading of the relevant literature general ideas 

and specific hints of the problems that might occur can be obtained. A state-of-the-art 

survey like the current report is also obtainable. 

 

Printed material  concerning the application domain is obtainable from various  sources. Such 



material gives more precise information for developing the domain model. Concrete 

examples are fare and time  catalogues from airline companies [Danair 1991] and [Danair 

1992]. 

 

Interviews  with experts provide data for the domain and task models, and to some extent the 

dialogue structure. Such an investigation is also part of the system analysis and may give 

an insight into the work processes, etc. of which the system is meant to form a part. There 

are many varieties of interviews, depending on factors such as the number of interviewers 

and the techniques used in conducting the interview itself. The data may be collected on 

tape or as paper-and-pencil notes. Typical, slightly structured interview notes are 

[Dybkjær and Povlsen 1991] and [Dybkjær and Povlsen 1992a], from interviews made 

with travel agents. 

 

Field study recordings of similar manual tasks (human-human phone calls) increase one's 

knowledge of the task model, the dialogue structure, and the spoken language vocabulary 

and structure. A problem is that it may be delicate to obtain permission to record 

customer calls since these may involve confidential material. 

 

Field experiment recordings  of human-human phone calls also provide information on task 

model, dialogue structure and spoken language vocabulary and structure. In this case, and 

in contrast to the field study, some parameters are simulated, e.g., the customers of a 

travel agency may be subjects acting as customers. A field experiment may be used as a 

substitute if a field study is impossible. 

 

Experiments  with simulations  of the expected end-system provide data on among other things 

the dialogue structure and the spoken language vocabulary and structure. In connection 

with spoken dialogue systems, simulation experiments are widely used and constitute an 

important methodology for systems development [Fraser and Gilbert 1991]. The 

principles of experimentation used in the current project are described in more detail in 

Section 6.3. 

 

Prototyping  makes possible experiments with running prototypes that are increasingly close to 

the final system. This provides data on the dialogue structure and the spoken language 

vocabulary and structure, but at a more fine-grained level than the simulation experiments. 

The simulation experiments  may be viewed as a sort of early prototyping. How much 

prototyping will be necessary during the implementation of a system partly depends on 

how useful the results from the simulation experiments turn out to be. 

 

The first three sources mainly provide background for the domain and task models. Therefore, the 

early experiments (set up on the basis of these models and the tape recordings) should focus on 

language and discourse. 

   The number of tools for knowledge acquisition is small. Paper and pencil, a tape recorder and 

our senses are the primary tools. There also exist programs for knowledge  acquisition (cf. 

[Gruber 1991]), but they are still at the experimental level and seem to be out of question for the 

purpose at hand. However, in simulation experiments and prototyping some or all of the tasks 

may be effectuated by the computer. 

 



6.2  Systematisation 
 

Concurrently with the knowledge acquisition process the collected data must be systematised to 

serve as approximations to the required model.  

 

It is important to emphasise that the construction of a spoken dialogue system just like many 

other system development tasks is an ill-defined design problem, i.e., there are no ready-made 

procedures for reaching a correct solution, and if a design has been proposed that possibly is a 

solution there is no method to decide if the solution is optimal or even if it is a solution; only time 

may show [Dybkjær 1992]. This has a number of consequences for the nature of a "rational" 

design process: 

 

_There is no single, detailed "design methodology"; each designer or designer group must 

develop important aspects of the design method concurrently with the design.  

 

_Potential "solutions" (presolutions) should be generated; each presolution is based on the 

designer's previous experience in the field and on evaluations of former presolutions. 

 

_Each presolution should be evaluated for the purpose of recycling. 

 

However, even if we cannot definitely decide on the quality of some specific design, there are 

different ways to acquire and structure the knowledge needed and some of these may be better 

than others, given a specific design problem. Norman Fraser [1992] distinguishes between design 

by intuition  (based on one's own knowledge from experience, literature, printed material and 

interviews), design by observation  (field studies and field experiments), and design by simulation  

(based on simulation experiments and prototyping). These are all necessary to the iterative design 

process. 

 

Each of the sources and methods for knowledge acquisition is coupled with "natural" ways of 

data registration. E.g., the simulation experiments for spoken dialogue systems are naturally 

recorded on tape and then transcribed into text (note the dependence on the application). 

However, the actual data analysis and structuring must be made with respect to the solutions 

which are underspecified at acquisition time. 

 

The models implied by the presolutions should be described in flexible, changeable and adequate 

notations such as natural language, drawings and conventions and symbols invented for the 

problem at hand. Only later on more  formal, fixed notations (e.g., first order predicate logic, see 

Chapter 7) should be applied. 

 

 

6.3  Simulation experiments 
 

 

As mentioned above simulation experiments serve to advance the design process beyond the 

observation-based stage and  prior to the introduction of early prototyping. In some cases, 

simulation experiments might help avoiding early prototyping altogether. A simulation experiment 

requires an outline of the system being designed as input and yields as output data which can be 



used (1) in evaluating the system design used in the experiments and (2) as input to a more 

detailed design of the system. The new design may then be tested in further experiments, and so 

on.  

 

A series of experiments thus yields a series of increasingly refined design specifications D1, D2, 

D3, etc. D1 itself, however, being the first one in the series, cannot be based on simulation 

experiments but has to be developed on the basis of intuition and observations of human-human 

dialogues in the domain. Since there are many important differences between human-human 

dialogue and human-system dialogue, the gap between results from human-human dialogue 

observations and D1 have to be filled by intuition. On the other hand, once the series D1, D2, etc. 

is developing, its analysis often leads to specific questions concerning the properties of human-

human dialogue which can be illuminated by analysing results from observation or by iterating 

observational studies. In this section experiments are described related to the system currently 

under development. 

 

A person (the experimenter)—usually a project participant—plays the role of the  spoken 

dialogue system, and others act as users (subjects). An important assumption is that the subjects 

act during the simulation in the same way as they would have done if they were real users 

interacting with a real computer system. Therefore a number of measures are often taken to trick 

subjects into believing that they really interact with a computer system as there seems to be 

evidence that people do not speak in the same way to a computer as they do to a human being (cf. 

[Amalberti 1992], [Zoltan-Ford 1991], and [Fraser and Gilbert 1991]). An example of the 

experimental setup is shown in figure 6.2. 
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Figure 6.2. Components of the experiment. The subject S and the experimenter 

Ecommunicate via the telephone; they cannot see each other, and S may or may not 

believe that E is a computer system. 

 

The subject S and the experimenter E communicate via telephone. They cannot see each other, 

and perhaps S believes that E is a computer or perhaps S believes or knows that E is a person. At 

the very least, S is required to imagine that E is a computer. It is possible to promote the illusion 

by using voice-distorting hardware (e.g., a vocoder) and by having a well-trained experimenter 

speaking with a constant speed in a uniform voice. E is supposed to have practised the relevant 

information  and a set of standard phrases to act as much like a computer as possible. Moreover, 

E will not necessarily understand everything that S says but will declare his lack of understanding 

in cases where, e.g., S during the dialogue moves outside the domain of application. Physically the 

telephones may be arbitrarily placed. The tape recorder is coupled to E's telephone because he is 

the constant element placed at his desk whereas the subjects may be placed  anywhere.  

 

Scenarios 



 

Each subject is given one or more scenarios  to perform. A scenario is a short text describing the 

situation S has to imagine him/herself to be in. On this background it should be clear to S what to 

ask for but not how  to do it. The purpose of the experiment precisely is to record how S actually 

solves the task. An example of a scenario concerning reservation of flight tickets and a dialogue 

between S and E is given below. 

 

_Scenario:  You live in Aalborg and you are to attend a meeting in Copenhagen at 10 

a.m. on Friday, April 4.  

 

_Dialogue:  The phrases used by the experimenter E are taken from [Dybkjær and 

Dybkjær 1992]. 

 

E:  Hello, this is DanLuft‟s travel service for flights between Copenhagen and Aalborg. I can 

inform and reserve. Please state day and direction. 

 

S: When are there flights from Aalborg arriving in Copenhagen on Friday morning April 4? 

 

E: Friday morning, April 4, flights from Aalborg arrive in Copenhagen at 8 a.m. and 9.30 

a.m. 

 

S: Thanks, goodbye. 

 

E: Goodbye. 

 

Usually each subject is given more than one scenario. A fairly large amount of recordings are 

necessary to ensure a certain reliability of the material, in particular if statistical techniques are to 

be used. It may be considered to have the subjects repeat the scenarios after some time and 

compare the results. Similarly, scenario rehearsal may be useful before making the recordings. It 

may be argued that the subject, having practised the scenario at least once before, would act 

realistically because real life-users tend to be thoroughly acquainted with their own situation and 

goals. In an artificial situation it may take some time and experience to reach approximately the 

same state. 

 

It may also be considered to use a number of scenarios the contents of which are more or less the 

same but where, e.g., the information is not given in the same order, or some extra information 

has been added. An example is given below: 

 

_1st formulation:  You are a secretary at the University of Copenhagen. A member of 

staff has to participate in a meeting in Aalborg from Monday, November 25 at 9 a.m., to 

Tuesday, November 26 at 4 p.m.  

 

_2nd formulation: A researcher at the University of Copenhagen must attend a meeting in 

Copenhagen at 8 p.m. on November 26. He also has a meeting in Aalborg starting at 9 

a.m. on November 25, and ending the next day at 4 p.m. You are the secretary who must 

reserve the tickets. 

 



The purpose is to see how this influences the user's choice of words and the dialogue structure. 

According to [Fraser 1992], however, such rephrasings seem to have little influence. 

 

Care must be taken that subjects are faced with scenarios relevant to their own backgrounds, and 

that the scenarios are representative of the intended use of the  system. It may be difficult for 

someone to engage in acting as a person who really wants to reserve a ticket or ask for certain 

information. But is should be possible to avoid putting subjects in completely alien roles. 

 

Phrases 
 

Standard phrases are meant to ensure a certain degree of uniformity in the experimenter‟s 

language (its structure, the words used, its degree of politeness, etc.) and thus to increase the 

level of illusion (machines are expected to be rather one-tracked) and reduce the number of 

parameters of the experiment. For the latter reason the experimenter should only improvise in case 

of unpredicted situations arising within  the domain. If the subjects go outside the domain the 

experimenter should ask the subject to call a human travel agent. 

 

The phrases used by the system are important to customers' perception and use of the system. 

There is evidence that users model the vocabulary and phrase structure of a program's output 

[Zoltan-Ford 1991]. Moreover, the phrases yield a bottom-up approximation to dialogue 

structure and functionality, and to the mode of communication. The phrases have no over-all 

structure or order. However, if the phrases are to be used meaningfully in a conversation they 

cannot be put together in an arbetrary order, functionality not covered by he phrases cannot be 

handled, and, e.g., politeness is determined by their wordings. 

 

The phrases should be adjusted according to changing functionality and dialogue structure, and 

according to the reactions of users (their understanding of and answers to the phrases). The 

phrases should be kept in a friendly language and be specific in the questions they pose (cf. 

[Fraser and Gilbert 1991]). The phrases should on the one hand be long and explicitly repeat 

information in order to obtain brief answers from the users, on the other hand be short in order to 

make the system tolerable to skilled users. This is worth some consideration: perhaps a "user 

adaptive" dialogue can be constructed? Another possibility is to omit parts of the phrases that are 

determinable from the context. Care should be taken, though, that the user understands and 

remembers the information given by the system and what information it asks for. 

 

Note that even though more words may be used in the phrases produced by the system than are 

recognisable by the system, the phrases should guide the customers to use words within the 

system vocabulary. 

 

Of the topics treated in a spoken dialogue system concerning, e.g., flight reservations and 

information at least one poses a problem. Consider the conversation: 

_Customer:  Can you send the tickets to me?   

 

_System:  Yes, your address, please?  

 

_Customer:  It is ... 

 



Here the recogniser has no chance of recognising the words in the address. The system will have 

to resort to other means in such cases (tedious spelling, restriction of reservation to those having 

a customer number, reference to a human operator, not to speak of entirely omitting this function 

in the system) . 

  

Expected results of the simulations 
A series of iterated simulation experiments and refined system specifications should produce the 

following results: 

 

_dialogue structure which allows the user and the system to interactively solve their tasks 

within the application domain in a way which is optimally habitable given the constraints 

on system architecture which do not allow, e.g., unlimited vocabulary  and completely free 

discourse. 

 

_A number of basic characteristics of the sublanguage needed for the application, such as 

vocabulary size, complexity of grammar, and number and complexity of the discourse 

phenomena which the system has to be able to handle. 

 

The results of a specific experimental cycle interacts with the system specification effort in such a 

way that, e.g., if too large a vocabulary has been used by subjects during the experiments then 

giving the system increased control over the dialogue might be a means of reducing the 

vocabulary size; or if some specific kind of discourse phenomenon seems to be unavoidable in 

user-system dialogue, then some way of making the system able to interpret this phenomenon has 

to be identified 

 

 

6.4  Conclusion 
 

The knowledge acquisition process should be iterative and take place concurrently with 

systematisation (data analysis and structuring) and system, domain and sublanguage modelling. 

The simulation experiments are particularly important to the development of spoken language 

dialogue systems because they offer an experimental methodology enabling quite detailed system 

specification. In a spoken dialogue system, important topics for data acquisition are:  

 

_Vocabulary size and composition. 

 

_Complexity of grammar. 

 

_Domain (times, fares, etc.). 

 

_Dialogue structure, in particular realisable and habitable modes of commun-ication. 

 

_Discourse phenomena and structure. 



7. Formalisms for knowledge representation and their realisation 
 

 

 

 

During and after the knowledge and language acquisition the data acquired are structured, and 

gradually a model (of whatever the data concern) is constructed. The model may be described 

using natural language or some other informal notation, or a more formal language (a formalism) 

may be used. This chapter will concentrate on formalisms chosen on the basis of the fact that our 

models are to be implemented in a computer system. The focus is on the (static) representation 

rather than on the (dynamic) construction of models which are discussed in the other chapters. 

   Also, the focus will be on formalisms that are used especially for representing the high-level 

knowledge of language and discourse. 

 

 

 

The description is divided into groups according to the prime features addressed by the 

formalisms. The groups treated here are: 

    

 Group Subgroup 

 

 Logic formalisms Classical logic 

  Non-classical logic 

 

 Associative formalisms Semantic nets 

  Conceptual graphs 

 

 Structured object formalisms Frames 

  Scripts 

  MOPs 

 

 Production formalisms Production systems 

  ATNs 

  Shape grammars 

 

 Uncertainty formalisms   Hidden Markov models  

  Fuzzy logic 

 

 Analogical formalisms Diagrams 

  Dual graphs 

 

 Programming formalisms Programming languages 

 

Some (groups of) formalisms not included are (notations for) speech acts, higher order non-linear 

differential equations, and legal language—neither of which points towards implementational 

issues; or floating point numbers and binary trees—which concern low level implementational 

issues. Please also note that often notation will be ad hoc, developed along with the 



module/theory construction. 

 

In the following sections an introduction to each group of formalisms is given. For each group a 

definition is  given, and important subgroups are briefly mentioned and a representative is chosen 

for a short discussion. The most salient features 

of the group are described and advantages and drawbacks discussed. Also typical areas of 

application are mentioned. As literature on knowledge representation formalisms [Frost 1986] can 

be recommended. Finally the realization of formalisms is discussed. 

 

 

Logic formalisms 
 

A logic formalism contains (cf. [Frost 1986]):  

 

1. A well-defined language for representing knowledge. 

 

2. A well-defined model theory (or semantics) for the meaning of a statement expressed in 

the language (an interpretation). 

 

3. A proof theory which is concerned with the syntactic manipulation and derivation of 

statements from other statements. 

 

Thus logic captures the essence of what is necessary for the representation of knowledge, and 

most other formalisms can be seen as variations of logic, addressing notational (language and 

model theory) and computational (proof theory) efficiency. 

 

First order logic (FOL) is a basic example of logic and is an extension of propositional logic. FOL 

allows the use of predicate symbols, function symbols, variables, constants, and the logical 

connectives _ _ _ _ _ plus the quantifiers _ and _. E.g., the following formula is expressed in 

FOL:  

 

 (*) _ x: smoker(x) _ empty(x) 

 

The model theory of FOL assigns meanings to the 

symbols, e.g., taking a universe U of flights, people, seats, and tickets one might assign  

 

smoker(x) _ x is either a smoker or allowed for smokers. 

empty(x) _ x is an empty seat (on some flight). 

A _ B  _ A and B are both true. 

_ x: P(x) _ There is an x in U such that the predicate P(x) is true. 

 

Then, for example, (*) will be interpreted as “there is an empty seat for a smoker” (which 

incidentally is false on domestic flights). 

 

The proof theory of FOL includes rules like modus ponens which, e.g., enables the inference from 

empty(x) and (empty(x) _ bookingpossible(x)) to bookingpossible(x). 

 



Other logics are often based on FOL because it has some nice and attractive properties: 

 

1. It is sound: A formal deduction system A is sound if all formulas which can be derived 

from a set of formulas S using A, are also logical consequences of S, i.e., are satisfied by 

all truth assignments which also satisfy S.  

 

2. It is complete: If for some formal deduction system A every logical consequence of any 

set of formulas S can be derived from S using A, then A is complete. 

 

The proof theories in second order logic and higher order logic are not complete. However, FOL 

also has its limitations: 

 

1. It cannot handle default knowledge since FOL is a  monotonic logic where new axioms 

must be consistent with old ones.  

 

2. It is not possible to refer to statements or predicate names in other statements. 

 

3. In the real world not everything is either true or false. 

 

4. Incomplete, uncertain, imprecise, vague, and/or inconsistent knowledge cannot be 

handled. 

 

Because of the limitations in FOL a number of other logics have been invented, e.g., temporal and 

tense logics, many-valued logic, higher order logic, intensional logic, modal logic, and non-

monotonic logic. They lack some of the nice properties of FOL but gain in expressiveness. 

Logics have been developed and used within almost any area, and so also within natural language 

processing. Two examples are Horn clause logic and Montague logic. Horn clause logic has a 

proof theory with nice computational properties. Work on natural language processing by, e.g., 

Colmerauer in the early „seventies led to the programming language Prolog which is based 

directly on Horn clauses [Kowalski 1979]. Montague logic is the result of Montague‟s attempt to 

describe meanings—in particular quantification—of ordinary English [Dowty et al. 1981]. 

 

Associative formalisms 
 

An associative formalism is defined by: 

 

1. A net representing intentional semantics, i.e., a directed graph in which the vertices 

represent items (e.g., facts, events, classes, predicates, relations) and the edges represent 

binary relations between the items.  

 

2. A set of interpreting processes operating on the net. 

 

3. Parsimony, i.e., the same piece of knowledge should only be represented once. 

 

Thus, realization is an important aim of associative formalisms. In particular, the nets are 

intentional and embody no general principles concerning the relation between the concepts and 

the real world objects (extensional relations). 



 

A number of associative formalisms exist: semantic nets, conceptual graphs, conceptual 

dependency graphs, partioned nets, and structure inheritance nets. The most dominant of these is 

semantic nets which often are used synonymously with associative formalisms. 

 

Semantic nets have been developed within natural language processing and have—when 

compared to associative formalisms in general—an extra syntax analyzer (parser) that builds the 

net from natural language (cf. [Ringland and Duce 1988, Brachman and Levesque 1985]). Edges 

represent binary relations, e.g.: 
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N-ary relations as “The travel agent books a hotel” may be represented in the following way: 

 

Contains Data for

Postscript Only.

 
A semantic net is a flat structure. A node cannot be opened like a frame (see section 3) and has no 

contents. It just represents an item. There is no natural hierarchy. This  causes problems if one 

wishes to represent " and $. Some of the problems may be solved by introducing partitions which 

are a kind of scopes. 

   It is a drawback that semantic nets are not well-defined but may be interpreted just as one likes. 

Moreover, semantic nets quickly grow confused with relations in all directions. An advantage is 

that information on a given item is usually concentrated in one place and can be found   by 

investigating the relations of the node representing the given item. 

 

Apart from semantic nets one of the most well worked-out associative formalisms is conceptual 

graphs. In [Sowa 1976] they are intended as a means of creating a database interface where the 

user should be able to communicate with the database using natural language. According to 

[Sowa 1984] conceptual graphs emphasize semantics and are very often used for representing 

natural language. 

 

Associative formalisms may seem intuitively appealing. The representations reflect (conceptual) 

relations very directly, and certain types of inference seems to become nearly trivial. To establish a 

precise interpretation is, however, no trivial task, see, e.g., [Woods 1975]. Among other things 

default knowledge is difficult to handle, and the distinction between types and tokens may cause 

problems. 

 

Associative formalisms—especially semantic nets—have been used in various areas, e.g., natural 

language processing and computer vision. 

 



Structured object formalisms 
 

The common characteristics of the formalisms in this group are: 

 

1. Represented knowledge is organized in frames (large structures) with slots (attributes 

defining the frame) and fillers (the actual values).  

 

2. A structure is treated as a single object rather than as a number of individual parts. 

 

Typical structure formalisms are case frames [Fillmore 1968], frames [Minsky 1975], scripts 

[Schank 1977], and MOPs [Schank 1981]. They are inspired by psychological evidences and try 

to explain or simulate these. However, though only scripts and MOPs were immediately directed 

towards realization, they have all become mechanized in various disguises. 

 

The most important subgroup is frames. A frame consists of a frame-name and some slots and 

fillers. Not only single properties but also procedures and other frames may be attached to slots. If 

no value is filled into a slot a default value may be assumed. A simple example is: 

 

   Name of frame: driver 

   Slot:   Filler: 

   Age   condition: x: 18 _ x _ 70 

   Mood 

   Number of legs  default: 2 

   Qualification   generic: has driver‟s licence 

 

A frame system is a network of nodes (frames) and relations organized in a hierarchy. A frame at 

some given level in the hierarchy may inherit properties from higher-level  frames since higher-

level frames are more general. Frames may be related in different ways, e.g., as kind of, part of, 

siblings, disjoint, or similar. 

 

Frames are intuitively appealing and easy to understand. They are fairly expressive, e.g., the 

representation of default knowledge causes no problems here. 

 

There are many good ideas in the structured object formalisms such as general patterns and 

special instances, inheritance, and shared substructures. But there are problems in the realization 

of the ideas, perhaps because of the absence of a well-defined model theory on which to base the 

representations, e.g., Minsky was unclear in his writings on the subject. 

 

Structured object formalisms have been used within a number of different areas. Especially frames 

have several areas of application. E.g., they have been used within computer vision, natural 

language processing, and space planning. Case frames, scripts, and MOPs, on the other hand, 

were developed for use in natural language processing and their usage seems to be restricted to 

this area. Scripts and MOPs are elaborated in Chapter 5 on discourse. 

 

Production formalisms 
 

A production formalism is characterized by: 



 

1. A database with specific information on the given problem. 

 

2. A rule base containing rules representing general knowledge of the problem domain. 

Every rule consists of a condition part C and an action part A: 

 

  if (C satisfied) then (do A) 

 

3. An interpreter (inference engine) that chooses and applies rules. 

 

Production formalisms are all aimed at realization. Archetypical production formalisms are 

production systems (e.g., EMYCIN and HEARSAY-III [Waterman 1986]) and Prolog [Kowalski 

1979]. 

 

ATNs (augmented transition networks) and shape grammars are other examples of production 

formalisms. An ATN [Woods 1970] is a recursive transition network to which are added some 

extra features. Shape grammars [Stiny 1980] are a special kind of production rules where the 

condition part as well as the action part consist of shapes. 

 

Production formalisms may be used for recognizing as well as generating patterns. They have a 

number of advantages: 

 

1. Low-level modularity. Rules may easily be added, changed, or deleted without affecting 

other rules. 

 

2. Representing knowledge as a set of production rules is a natural and appropriate method 

for many problem domains. 

 

3. The easily readable form (if—then) may be used for explanations. 

 

But certainly they also have disadvantages: 

 

1. A set of rules has no internal structure and cannot immediately be grouped. 

 

2. Matching is inefficient because of the lack of structure. 

 

3. It may be difficult to predict the behaviour of a system by a static analysis (and hence 

should not be  used for areas where safety is critical). 

 

4. The system must contain represented knowledge on the use of rules, e.g., it may be 

implicit in the order of the rules, but hence it is unclear where control knowledge is 

represented. 

 

Production formalisms are applied within many areas. Production systems are used in expert 

systems to the extent that the paradigm of knowledge base systems is often used synonymously 

with production systems. ATNs are used within natural language processing, and shape grammars 

are a powerful tool within space planning. 



 

Uncertainty formalisms  
 

An uncertainty formalism is characterized by: 

 

_The use of a continuous set of numbers expressing uncertainty or belief (in contrast to a 

discrete, finite set of truth values). 

 

ncertainty formalisms range from statistics (e.g., Bayes‟ theorem and Hidden Markov Models 

[Rabiner 1988]) over neural nets to fuzzy logic, and are often used in connection with other 

formalisms, such as production systems. 

 

Fuzzy logic [Giles 1982] is an uncertainty formalism. It has emerged from an attempt to develop a 

logic that models the fuzziness of natural language, e.g., predicates like young and big, and 

quantifiers like almost and some. Fuzzy logic is based on fuzzy set theory which is again based on 

the idea that an object x belongs to a fuzzy set A not just completely or not at all but with a 

certain grade of membership. 

 

Uncertainty formalisms have performed reasonably, e.g., hidden Markov models dominate speech 

recognition, and expert systems like MYCIN and PROSPECTOR [Waterman 1986] have become 

well-known. However, systems based on uncertainty require tedious training (Hidden Markov 

Models) or ad hoc assignments (MYCIN). If observations are sparse and the problem domain 

open the meaning of the numbers become problematic to define. How do we convert from human 

terms to numeric uncertainty factors? E.g., what does “It is very likely that” mean? And how do 

we normalize such numbers across people‟s scales (cf. [Rich 1983])? 

 

Analogical formalisms  
 

It is not really correct to speak of analogical (or direct) formalisms since it is rather the way in 

which something is represented than the formalism used for it which makes it an analogical 

representation. An analogical representation directly mirrors the world. There must be a direct 

correspondence between parts, properties, and relations in the representation and in what is 

represented. An analogical representation may very well be made by using a non-analogical 

(propositional) formalism, e.g., by involving order. Analogical representations are characterized 

by the following points: 

 

1. Analogy. The structure of the representation reflect the relational structure of the 

represented situation.  

 

2. Simulation. Analogical models may be manipulated by arbitrarily complex procedures 

which often carry out a kind of (physical or geometrical) simulation. 

  

In contrast to this, propositional representations have the following characteristic features: 

 

1. Abstraction. Statements are true or false without geometrical or analogical similarity.  

 

2. Inference. Propositional models are often used for the derivation of new statements by the 



use of inference rules. 

 

Often also the following two points will be characteristic for analogical representations: 

 

1. Connection. Every item in a represented situation is found once with all its relations to 

other items.  

 

2. Continuity. The representation is analogical with continuity in movement and time in the 

physical world. 

 

whereas propositional representations may be characterized by: 

 

1. Dispersion. An item may be found in several statements. 

 

2. Discreteness. Usually statements are not used for representing a continuous change. 

 

However, the two kinds of representation will not always differ in these latter points. Moreover, 

often it is possible to make a transformation from one representation to another without loss of 

information. 

 

Diagrams are used for an analogical representation in [Funt 1980]. Here diagrams represent 

blocks in a blocks world. 

 

Dual graphs are a general concept in mathematics, but e.g., in [Grason 1968] an interpretation is 

imposed which makes the representation analogical. Dual graphs are here used for representing 

floor plans. 

 

An advantage of analogical representations is that they are easy to understand because they mirror 

the world directly, and structure is the same as contents. But analogical representations also have 

important limitations. It is not easy to make abstractions, focus on certain items, and leave out 

information and add it later. Analogical representations are not correct if something is missing 

(e.g., a map with a missing road). They are not just more or less complete. 

 

Many applications of analogical representations exist, e.g., within computer vision and theorem 

proving. However, analogical representations do not seem useful for languages since these are 

abstract. 

 

Programming formalisms 
 

A programming formalism or language is a notation for the precise description of computer 

programs or algorithms [Illingworth 1983]. A programming language is also a formalism for 

representing knowledge but it is different from all the above mentioned formalisms. A 

programming language incorporates general purpose concepts (e.g., integer and array) which 

traditionally are closer to the executing machine than to the problem domain. All programming 

languages perform on a computer. 

 

Examples of programming languages are machine code, assembler, C, C++, Pascal, Lisp, Prolog, 



Standard ML and Miranda. Each language has a number of properties each of which it may share 

with one or more other languages. Such properties are low-level or high-level, efficiency,  

portability, imperative or declarative, procedural or non-procedural, solution oriented or problem 

oriented, etc. E.g., low-level languages like machine code are efficient but not portable since they 

are tailored to specific computers. This is in contrast to high-level languages like Miranda. These 

languages are portable but not so efficient because they must be compiled or interpreted which 

takes time. 

 

Therefore, given a formalism, there are many different possibilities of implementation. At one 

extreme an interpreter for the formalism may be written, at the other extreme a specialized 

program hardwiring the formalism may be implemented. This is an instance of the general choice 

of the division between input and program (cf. [Naur 1974]). 

 

Formalisms which are not programming formalisms are at a higher level of abstraction. It is 

usually easier to start at this level to formalize the main concepts and terms with which it would 

be natural and most easy to work. Therefore one should start there to look for a suitable 

formalism with good metaphors. If such a one cannot be found it must be tailored. The important 

thing is that it is easy to handle the natural concepts of the problem. This will at the end be less 

time-consuming than blindly choosing some inadequate formalism and perhaps skipping a level if 

the formalism is a programming language. Then indeed some formalisms are more well-suited for 

a certain problem than others. 

 

It should be well-known that programming languages in general have been used for solving 

problems within many different domains. Some programming languages are more well-suited for 

the solution of a given problem than others, just as it is the case with other formalisms. Cobol, 

e.g., is primarily used for the implementation of administrative systems. Prolog has often been 

used for natural language processing, and Lisp within artificial intelligence. C was originally 

developed for implementation of operating systems but has today widely different areas of 

application. 

 

Realization 
 

Realization means to bring ones models to execute on a machine, in our case on a computer. The 

realization is the last phase ending in the final computer system. However, realization is 

considered also in the early phases. Already during the knowledge acquisition phase realization is 

to some extent taken into account, just as intended users, cost-benefit, areas of application, etc., 

are considered in this period and affects what data are acquired. It would be fairly stupid not to 

think of realization early in the system development since we might then end with models which 

cannot be mechanized and which must be rejected. 

   During the knowledge representation phase the acquired data are used as the basis for models 

represented, e.g., in natural language. These models then goes through a formalization process 

and are turned into formal models. A formal model is a representation of the intended system 

parts in some formal language, here called a knowledge representation formalism. Finally, this 

representation  serves as a basis for the implementation process in the realization phase, and the 

result is (hopefully) a computer system. 

 

Knowledge representation formalisms were described in the above sections. They have all been 



used in computer systems and hence they are closely related to the realization. The programming 

languages of course already execute on a computer. 

 

There are three ways in which to mechanize the mentioned formalisms. We may build an 

interpreter, or we may build a compiler, or we may handcode each object represented in the 

formalism using an existing programming language. The last possibility will probably only be used 

if we just want to use the formalism in question once for a single task. 

 

Some of the formalisms can hardly be discussed without mentioning their realization (e.g., 

production formalisms). Other formalisms such as logic also have an existence in themselves. 

Some representations are well-defined (logic). Others have no formal theory, and this leads to a 

number of different interpretations and uses in implementation (semantic nets, frames). There are 

also elements which can be formally represented but which cannot be exploited in a computer, 

e.g., some of the features of higher-order logic. There are formalisms which have primarily been 

used by a narrow group of persons and within a restricted domain. Examples are Schank‟s scripts 

and Sowa‟s conceptual graphs which have been used for natural language processing. Contrary to 

this formalisms such as logic, production rules, and frames have been used by lots of persons and 

within a wide variety of fields. 

 



8. Conclusion 
 

 

 

 

The goal of the current project is the integration of speech and natural language into a spoken 

dialogue system capable of giving reasonable responses to user answers and questions within a 

limited domain chosen to be Danish domestic flight reservation and information. 

 

This report has focused on the architecture of existing spoken dialogue systems and on the 

techniques and methods used in constructing the different parts of such systems. A summary of 

important aspects of system architecture and design process is given below and it is discussed 

what consequences the current state-of-the-art may have for the ongoing project. 

 

 

8.1 Architecture of spoken dialogue systems 
 

A spoken dialogue system typically consists of the following five components: a speech 

recognition module, a natural language analysis module, a dialogue manager, an answer 

generation module and an answer synthesis module. The emphasis is usually on the first three 

mudules. The answer generation often consists in converting database retrievals into natural 

language, and for the synthesis already existing system components are used. 

 

The techniques for speech recognition seem to be relatively standardized. Recognition is almost 

always based on statistical methods and in particular on Hidden Markov Models. Moreover, a 

number of comparable test parameters such as perplexity, error rates and speed are widely used. 

This, however, does not mean that speech recognizers are very advanced. Real-time recognizers 

are rare and have small vocabularies (or large error rates). Small, user adaptive, spoken command 

recognizers have had the greatest success so far. Although faster and bigger computers may 

improve the recognizers as regards speed, it is desirable to experiment with new methods in order 

to, e.g., decrease the search space or increase the likelihood of finding the best sentence 

hypothesis. Systems like MINDS and Circuit Fix-it Shop exploit linguistic knowledge and 

knowledge of dialogue in the recognizer and this seems to lead to smaller error rates. It is not 

quite clear, however, whether such improvements also lead to improved efficiency and speed.  

 

Current natural language analysis techniques are based on work on machine translation, story 

understanding, grammatical analysis by machines, etc. Only limited commercial success has been 

achieved so far unless one also counts simple spell checkers. Natural language analysis includes a 

syntactic as well as a semantic part. The methods and techniques for syntactic analysis are the 

most well-developed. Much work still remains to be done in semantic analysis before really 

successful systems can be created. Usually, the semantic problems closest to syntax are dealt with 

most extensively, probably because they are the easiest ones to handle. Linguistic knowledge is 

sometimes used in the speech recognizer. This is usually done statically and is restricted to n-

grams and finite automata. 

The dialogue manager normally controls the system. This module takes care of dialogue and 

discourse but the management is often restricted to state transitions in a finite automaton. These 

very elementary techniques are probably used because the problem area is so large and open that 



it is difficult to know what more specialized techniques would be adequate. Some systems !e.g, 

MINDS, SPICOS and Circuit Fix-it Shop! use techniques from computer science (theorem 

proving) and discourse theory (resolution of ellipsis and anaphora, focusing and plan recognition). 

However, these techniques are easier to use in limited applications not involving a spoken 

interface.  

 

 

8.2 Design of a spoken dialogue system 
 

The design of a spoken dialogue system may be viewed as a traditional system development task. 

Apart from the phases concerning knowledge acquisition, formalization and realization depicted in 

figure 6.1, the design process also includes more general considerations of application: 

 

 

_It must be clear at what group of users the application aims. 

 

_The application should only be developed if the expected user group is large enough and 

there is a potential need for exactly that application (unless the aim is pure research). 

 

_It must be carefully considered what funtionalities the users will need.   

 

_The chosen solution should be compared with other potential solutions. E.g., when 

choosing a spoken dialogue system alternatives such as providing the users with mouse, 

keyboard, and monitor  instead should be considered. 

 

_The user interface is one of the most important things of a computer system. A poor user 

interface may be disastrous to the usability of a system. Much work has been done on the 

design of user interfaces for computer systems but mostly on systems including monitor, 

keyboard and mouse. The design of spoken interfaces requires a special emphasis on 

language, dialogue structure and discourse. Current design efforts rely heavily on Wizard 

of Oz simulation experiments. However, most experiments are constructed with regard to 

ideal systems with approximately full natural language understanding capabilities  within 

some specified domain. 

 

8.3 The current project 
 

The general conclusions from this state-of-the-art survey of spoken dialogue systems with respect 

to the current project are the following: 

 

_It will be necessary to develop a special version of the Wizard of Oz method aiming8 at a 

realistic system in technological terms, i.e., a system with limited capabilities. 

 

_It must be carefully considered where standard methods and techniques should be used 

and where experiments with new possibilities would be appropriate. 

 

_The implementation should be open to great variation within each of the modules. We 

should aim at a feasible system but also at a system which yields numerous possibilities for 



experimentation. 

 

_The first prototype should realize a fairly small system with just a few hundred words, a 

simple syntax, and a relatively system-directed dialogue. With today's technology it should 

be feasible to develop such a system which will run in approximately real-time. 

 

_The habitability of a spoken dialogue system should be judged in its own right, against 

other similar spoken dialogue systems, and against systems with no speech interaction but 

with similar functionality. 

  



Appendix A.  Survey of existing systems 
 

 

 

 

A survey of most of the spoken language based computer systems reported in the literature is 

given below. The list is ordered in alphabetical order. 

 

For each system is provided (as far as the information is available): the name, the domain, and the 

main references; for the recogniser, number of words in the vocabulary, speaker dependence, type 

of speech recognised, and time for recognition; explicit knowledge, its representation, and its 

integration with the recogniser; and additional notes. Systems described in chapter 1 refer by 

[Chapter 1]. 

 

The list is only complete to the extent that we have found the information in the literature. In case 

more than one reference is stated the first one is our main source. Unless otherwise mentioned the 

systems do not run in real time. 

 

 

APHODEX (Acoustic-PHOnetic Decoding EXpert 

system) [Haton 1988, Carbonell 1988]: administrative information system. Recogniser: 

several thousands words, "many" speakers, and continuous speech. 

 

ARGOT: 
 

Circuit fix-it shop [Smith et al 1992]: Real-time support for the repair of electronic circuits. 

Recogniser: 125 words, speaker independent, connected words. The recogniser is 50% 

correct at the utterance level whereas the overall system interprets 81.5% of the 

utterances correctly. Language and dialogue: Domain, task and user models are used in 

the discourse handling and the dialogue state is used to delimit the lexicon in the speech 

recogniser. Representation: Domain, dialogue control and discourse are programmed in 

Prolog, the parser in C. Note: See Section 5.2. 

 

DIALOGIC: 
 

FDmDialog [Kitano 1991]: Speech-to-speech real-time translation system for the domain of 

conference registration. Language and dialogue: Uses acoustic-phonetic, linguistic and 

discourse knowledge. The architecture has massive parallel processing, a connectivistic 

network, multilevel parse trees, and marker-passing. 

 

Dragon: Note: predecessor to the HARPY system. 

 

Ernest [Sagerer et al. 1988]: Train travel system. Representation: Uses semantic nets for the 

representation of linguistic knowledge. 

 

EVAR [Niemann et al. 1987]: German intercity train inquiries. Recogniser: 3918 words, 

speaker (simulated) independent continuous speech. 36 of the 64 German phones are 



used. Language and dialogue: Some acoustic-phonetic and linguistic knowledge, perhaps 

anaphora, but little dialogue control. Only built-in information used in the recogniser. 

Representation: HMM (EMM) in the recogniser, semantic nets, case frames, and ATN for 

the language handling. Implemented in Lisp, C and Fortran. Note: not blackboard. 

Lexicon unit is spelling. 

 

GUS [Bobrow et al. 1977]: Travel information system.  Language and dialogue: domain and 

dialogue reasoning attempted. 

 

HAM-ANS (Hamburg Application-Oriented Natural Language System) [Mctear 1987, 

Hoeppner 1984]: Applied to hotel reservations, databases and image analysis. Recogniser: 

Simulated. Language and dialoogue: A user model is maintained. Ellipsis resolution and 

quantifier handling is included. The dialogue structure is rather fixed. Representation: 

Semantic nets are used. Note: Typed dialogue.  

 

HARPY [Erman et al. 1981]: General 1011 word speech recognition system. 

 

Hearsay-II [Erman et al. 1981]: Document retrieval system. Recogniser: 1011 word models, 

speaker dependent, connected speech. Note: Blackboard architecture. Comparable to 

HARPY. 

 

HWIM (Hear What I Mean) [Erman et al. 1981, Woods 1983]: Travel planning system. 

Recogniser: 1097 word models, speaker dependent. Representation: Restricted ATN 

grammar. Implemented in Algol-60. 

 

KEAL-NEVEZH (KEAL, new) [Mercier et al. 1988]: Recognition of numbers, pseudo-

LOGO commands, and interfacing for yellow pages database.Recogniser: Speaker 

dependent continuous speech. 

 

MAX [MAX 1991]: Real-time EEC information system in practical use. Recogniser: 16 

words, speaker independent, isolated words. Representation: Domain information in 

database. Note: Synthetic speech. 

 

MINDS (Multi-Modal Interactive Dialog System) [Young et al. 1990]: Air traffic information 

system (ATIS). Recogniser: speaker independent, connected speech. Language and 

dialogue: Uses syntax, discourse, dialogue, user domain knowledge, and goal and task 

expectations. Pragmatic results are used dynamically for constraining the recogniser. 

Representation: Semantic nets are used. Note: The recogniser is based on SPHINX. 

 

PARRY: 

 

SDI: 

 

SOUL/MINDS-II [Chapter 1]: 

 

SPHINX: 



 

SPICOS II (Siemens-Philips-IPO-Continuous Speech Understanding and Dialogue System) 

[Niedermair et al. 1990] [Chapter 1]: Office database system. Recogniser: 1200 words, 

speaker adaptable, continuous speech. Language and dialogue: Anaphora resolution and 

discourse representation is used. Semantic restrictions are used for pruning the search 

tree. Representation: HMM, bigram, chart parser, augmented phrase-structure grammar, 

logic and semantic nets. Implemented in Prolog. Note: Expects grammatically correct 

input. (SPICOS I ran in 20 times real time). 

 

SRI [Erman et al. 1981]: 

 

SUMMIT+TINA [Philips et al. 1991, Goodine et al. 1991, Seneff 1989] [Zue et al. 1991] 

[Chapter 1]: Used for VOYAGER (urban navigation) and ATIS (air travel information 

system) running 3-5 times real time. Recogniser: 350 words in VOYAGER, 500 words in 

ATIS. Speaker independent, continuous speech. Language and dialogue: Apart from 

linguistic knowledge, context and  discourse history is used. Representation: Semantic 

frames, SQL and word pair grammars. Note: Pauses within utterances are allowed. 

 

SUNSTAR: 
 

SUNDIAL [McGlashan et al. 1992] [Chapter 1]: Flight reservations and enquiries in English, 

train enquiries in German and Italian. Curently 10 seconds response, promise is real time. 

Recogniser: 300 words in German, Italian, French and English. Note: Started 1989. 

 

VESPRA: 

 

VODIS II [Young et al. 1991, Cookson 1988] [Chapter 1]: Traffic inquiry system. 

Recogniser: speaker dependent, continuous speech, based on dynamic time warping. 

 

Voice Master Key [Christ 1992]: Real-

time menu control system. Recogniser: 256 words in all, 16 words at a time. Speaker 

dependent and adaptable, isolated words. Note: Commercially available for PC at DKK 

1600 + VAT. 
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List of Terms 
 

 

 

 

(ikke endeligt ajourført). 

 

Brief definitions of common terms related to human-computer interfaces based on speech and 

natural language are given. Danish equivalents and page references are provided. Cross references 

are slanted.   

 

allophone (allofon): A variant of a phoneme or basic sound. 

 

anaphora (anafor): 

 

application (applikation): ``Application'' is ambiguosly used for the whole 

  system (user, task, ...) as well as for the (usually computer based) 

  back-end. 

 

apprentice (l_rling) [Fraser and Gilbert 1991]: Person who assists a wizard; 

  also used of software tools used by the wizard. 

 

architecture (arkitektur): Primarily the system architecture, i.e., the 

  specification of the system components and their interaction. 

 

bigram (bigram): Statistical description of the word pairs that can possibly 

  appear in (speech based) input to a computer system. 

 

connected word recognizer (genkender af sammenk_dede ord): A speech recognizer 

  designed to recognize connected words (it may be applied to the task of 

  recognizing continuous speech with the result of degrading 

  performance). The recognition units within the CWR are normally whole 

  word models. 

 

connected words (sammek_dede ord): Words spoken carefully, but with no explicit 

  pauses between them. 

 

continuous speech (kontinuert tale, flydende tale): Words spoken fluently and 

  rapidly as in conversational speech. 

 

continuous speech recognizer (genkender af kontinuert tale): A speech 

  recognizer designed to recognize continuous speech.  The recognition 

  units within the CSR are normally subword models, but very often 

  hybrid systems are found which contain mixtures of subword and whole 

  word models. 

data (data) [Eriksen et al. 1975]: A formalized representation of facts or 

  ideas in such a form that it may be communicated or transformed by a 



  process. 

 

database (database): A data file which in contrast to a knowledge base 

  consists of explicitly stated facts (whereas rules are implicitly 

  stored), is relatively large, and may only be used for retrieving the 

  facts it contains. 

 

dialogue (dialog): Communication between two (or more) persons or machines; 

  covers language, dialogue structure, topics, ... 

 

discourse (diskurs) [Grosz et al. 1989]: Conversation or argumentation; the 

  larger context; the text or dialogue in which a sentence or utterance 

  occurs, and which is necessary to its explanation. 

 

domain (domæne): A delimited part of a world. 

 

ellipsis (ellipse): 

 

expert system (ekspertsystem) [Waterman 1986]: A knowledge base system based 

  on expert knowledge to attain high levels of performance in a narrow 

  problem area. Expert systems often have explanation facilities. 

 

filler model: A statistical subword model of speech or words outside a given 

  vocabulary. 

 

formant (formant): A resonant frequency in spoken sound. 

 

garbage model (støjmodel): A statistical whole word model of speech or words 

  outside a given vocabulary. Often more than one garbage model will be 

  used in a given speech system. 

 

grammar (grammatik): Description of the (syntactical) structure of a language. 

  In computer science usually a formal description of programming 

  language syntax. 

 

hidden Markov models (skjulte markovmodeller) [Rabiner 1988]: Common 

  statistical modelling technique for acoustic decoding of speech sounds. 

 

human-computer interaction (menneske-maskine interaktion): The communication 

  between a human user and a computer system. 

 

inference engine (inferensmaskine) [Dybkjaer 1988]: That part of a knowledge 

  base system which contains the general problem-solving knowledge. 

  Ideally there is a strict division between the represented general 

  problem-solving knowledge (in the inference engine) and the represented 

  domain knowledge (in the knowledge base). 

 



information (information): Knowledge that may be communicated as data, 

  conciously. 

 

isolated word recognizer (isoleret-ordgenkender): A speech recognizer designed 

  to recognize isolated words. Teh recognition units within an isolated 

  word recognizer are normally whole word models. 

 

isolated words (isolerede ord) \body Words spoken with pauses (typically with 

  duration in excess of 200 ms) before and after each word. 

 

knowledge (viden) [Dybkjaer 1988]: ``Understanding'' or ``information about''; Seneca 

  contrasts `knowledge' to `remembering': ``to remember is to preserve 

  something committed to memory; to know, by contrast, is to make each 

  item your own, not to depend on a model and to be constantly looking 

  back at the teacher''. 

 

knowledge acquisition (videnindhentning, -indsamling, -hjemtagning) [Hart 

  1986]: The acquisition of information from different sources such as 

  general books, articles, material from the work place, recordings, and 

  interviews with and studies of experts. The purpose is to enable 

  modelling of expert knowledge to be represented in a computer. 

 

knowledge base (videnbase) [Dybkjaer 1988]: That part of a knowledge base 

  system which contains the represented domain knowledge. In contrast to 

  a database a knowledge base consists of explicitly stated general 

  rules and facts, is relatively small, and may be used for different 

  purposes while its contents remain unchanged. 

 

knowledge base system (videnbasesystem) [Dybkjaer 1988, Frost 1986]: 

  Traditionally a computer system with a separation into a knowledge 

  base and an inference engine. Most expert systems have this 

  structure. 

 

knowledge-based system (videnbaseret system): The same as knowledge base 

  system. Hopefully, every computer system or programme is based on 

  knowledge. 

 

knowledge elicitation: See knowledge acquisition. 

 

knowledge engineer (videningeniør) [Waterman 1986]: The person who designs and 

  builds the knowledge base system or expert system. 

 

knowledge engineering (videningeniørarbejde) [Waterman 1986]: The process of 

  building knowledge base systems or expert systems. 

 

knowledge representation (videnrepr_sentation) [Dybkjaer 1988]: Modelling. 

  Know\-ledge representation involves: 



 

  -  A domain of discourse, i.e., some physical/abstract (part of a) 

   world.   

 - A language in which to represent knowledge about the world.   

 - Connections (between the world and the represented knowledge): 

  (a) The encoding (representation) of knowledge of some world in 

   some language.  (b) The decoding (interpretation) of 

   represented knowledge.  

 

man-machine interaction (menneske-maskine interaktion): See human-computer 

  interaction (though, in general the machine need not be a computer). 

 

model (model) [Dybkjaer 1988]: Conceptual construction; hypothesis for 

  explaining and predicting (physical) world phenomena; representation of 

  (part of) the world. 

 

natural language (naturligt sprog): Communication instrument used by some human 

  beings. 

 

parser (parser, syntaksanalysator): 

 

perplexity (perpleksitet) [Jelinek 1989, Young et al. 1990]: The average size 

  of the set of words expected next by a speech recognizer. 

 

phoneme (fonem): The basic sound unit in a language. 

 

plan recognition (plangenkendelse) [Carberry 1990]: Under the assumption that 

  the user has a plan of how to obtain his/her goals, reveal that plan. 

 

prerecorded speech (forud-optaget tale): See synthetic speech (b). 

 

project charter (kravspecifikation) [Yourdon 1982]: Project abstract + 

  statement of goals and objectives + customized project life cycle + 

  schedule constraints + technical and procedural constraints + 

  preliminary project scenarios. 

 

recognition unit: A basic unit of speech on which recognition operations are 

  performed. 

 

scalability (skalerbarhed): The possibility of adjusting the size of a system, 

  e.g., by adding or removing functionality, or by improving performance. 

 

speech (tale): Acoustic form of natural language produced by humans. See also 

  synthetic speech. 

 

speech corpus (taledatabase):  

 



subject (subjekt, forsøgsperson): User (of a system) within simulation 

  experiments (e.g., wizard of Oz). 

 

subword models (delordsmodeller): Recognition units are models of smaller parts 

  than words (e.g. phonemes, diphones, triphones, demisyllables, 

  syllables). 

 

syntax (syntaks): See grammar. 

 

synthetic speech (syntetisk tale): (a) Speech generated on the basis of a 

  phonetic interpretation of written text. (b) Computer speech composed 

  of units of recordings of human speech. 

 

task (opgave): That which is to be performed or solved; usually implies a goal. 

 

user (bruger): Person who is using a (computer-based) system. 

 

viterbi search (viterbisøgning): Dynamic programming algorithm for finding the 

  optimal path in a search space. 

 

whole word models (helordsmodeller): Recognition units are models of whole 

  words. 

 

wizard (troldmand) [Fraser and Gilber 1991]: Experimenter. Person who---unknown 

  to the user---simulates (part of) a computer system. 

 

wizard of Oz (Troldmanden fra Oz) [Fraser and Gilber 1991]: This is a technique 

  to check the dialogue before implementation: the computer and the menus 

  are simulated by a person (the simulator) while a user is trying to 

  pretend that s/he uses the real system (or is faked into that belief). 

  Meanwhile the simulator (or a helper) takes notes about the dialogue 

  (structure, errors, ...).  word-pair (ordpar): Simple grammatical 

  representation of the fact that the twoo words may appear in sequence. 

 

word rejection : The abilitiy of a speech recognizer to reject out-of-vocabulary 

  words. 

 

word spotting : The ability of a speech recognizer to detect one or more 

  vocabulary words from an utterance which contains vocabulary words and 

  unconstrained speech. 


