A Task and Dialogue Model Independent Dialogue Manager

Marcela Charfuelan and Niels Ole Bernsen
Natural Interactive Systems Laboratory (NISLab)
University of Southern Denmark
Campusvej 55, DK-5230 Odense M, Denmark
{marcela,nob}@nis.sdu.dk

Abstract

This paper describes the design, development,
and early testing of a dialogue manager for a
task oriented, multi-domain, multi-lingual, and
multi-modal spoken language dialogue system
for use in the car. The system was developed in
the European project VICO!. Main character-
istics of the VICO dialogue manager are (i) its
task and domain independence, and (ii) a clear
separation of task and dialogue model which is
reflected in a modular and re-usable architec-
ture.

1 Introduction

This paper presents the design, development,
and early testing of a dialogue manager (DM)
for a task-oriented, multi-domain, multi-lingual,
and multi-modal spoken language dialogue sys-
tem (SLDS). The DM handles the tasks of ad-
dress navigation, tourist point of interest naviga-
tion, hotel and restaurant reservation, and infor-
mation about the system itself. The system han-
dles spontaneous input in English, German, and
Italian, and outputs speech and display text in
those languages.

In recent years, the building of task and domain
independent, cooperative, and robust DMs has be-
come increasingly important due to the growing
complexity of spoken dialogue applications (Lin
et al. 99). In the VICO system, for example, a
driver who wants to go to a particular destination
may also want to select and book a hotel at the
destination en route and to make a reservation
of a table in the hotel’s restaurant. Whilst doing
that, the driver might suddenly want to get to the
nearest petrol station.

The VICO DM was designed and developed fol-
lowing a rapid prototyping approach. This ap-
proach has demonstrated its usefulness for de-
signing and testing different dialogue modelling

'Virtual Intelligent Co-Driver: http://www.vico-
project.org. The work reported was partially supported
by the EC project VICO (IST-2000-25426). We gratefully
acknowledge the support.

strategies in a multi-domain framework (Bernsen
& Dybkjeer 99). Our implementation approach
conforms to established software and dialogue en-
gineering techniques (Bernsen et al. 98), such as
use case modelling and object-oriented software
development (Degerstedt & Jonsson 01; O’Neill
& McTear 00). An important factor during devel-
opment was always to keep in mind task and do-
main independence, which should be reflected in a
modular architecture of the DM. The DM should
integrate established and new dialogue manage-
ment techniques whilst keeping the task model
description and the dialogue model description as
independent as possible (Flycht-Eriksson & Jons-
son 00). The main motivation for separating dia-
logue modelling from task modelling was to create
a domain-independent DM architecture in which
the main DM engine is able to control an indef-
inite number of different tasks. Another objec-
tive was that the DM architecture should make it
easy to define new tasks. Special attention was
paid to the representation of the dialogue struc-
ture of a task (dialogue modelling) and its partic-
ular background knowledge (domain modelling).
In what follows, Section 2 presents the VICO DM
architecture and the details of dialogue and task
modelling. Section 3 explains the multi-domain
character of the architecture. Section 4 discusses
rapid prototyping and customisation issues. Sec-
tion 5 presents early evaluation results based on
blackbox experiments. Section 6 presents conclu-
sions and describes future work.

2 VICO Dialogue Manager
Architecture

The main functionality of a spoken DM can be
summarised as follows (Bernsen & Dybkjeer 99):

e when required, initiate meta-communication with
the user, including repair and clarification meta-
communication;

e advance the domain communication, based on a
dialogue structure representation of the meaning-in-
task-context of the user’s input;

TASK MANAGER

DOMAIN HANDLER

TASK MANAGER SCHEDULER

‘ ‘ DOMAIN HANDLER SCHEDULER

Tree dialogue structure | I Task stack

Task dialogue structure (DS) "

Topic history record
~

} Topic history (ToH) ‘<

Semantic frame
~

Task history (TaH) --o-

4{
]

Frame (internal/external communication) ‘

Domain handler agent User model

(DHa) agent
(um)

~

| —
DHa DHa DHa DHa um
Task 2 Task 3 Task n Task 1

L]

External communication protocol
(DB, WWw)

Figure 1: VICO dialogue manager components.

e when appropriate given the user’s input, consult the
system’s domain knowledge base;

e consult the dialogue structure and send the system’s
response to the language and speech generation
components;

e update the context representation (or dialogue

history /histories);

e provide support for the speech and language input
layers to assist their interpretation of the next user
utterance;

e initiate other forms of communication as needed,
such as initial greeting and end greeting.

In addition to this classical dialogue management
functionality, the VICO DM:
e handles multiple tasks in spontaneous mixed initia-
tive dialogue;

e takes into account combined confidence scores
coming from the speech recognition and natural
language understanding modules by dynamically
modifying the output according to three levels of
confidence (high, medium and low).

In McTear’s classification of dialogue control
techniques (McTear 02), the VICO DM is an
event-driven dialogue manager in which dialogue
continuation is based on the results of contextual
semantic interpretation of the user’s utterance
and on monitoring changes in the system’s belief
state. Or, in the classification of dialogue man-
agement models in (Xu et al. 02), the VICO DM
is a DETE (Dialogue model Explicit Task model
Explicit) model in which both the dialogue model
and the task model are represented explicitly.
The dialogue model is represented as a tree
or a directed a-cyclic graph, and is dependent
on the task. The task model is represented as
a finite-state network which is general for the
tasks defined in the system and which can easily
be extended to describe new tasks. Additional
features of the VICO DM:

e a semantic frame is used for ezternal communication
with the natural language wunderstanding and
response generator modules, and ¢nternal communi-
cation with the DM’s components, such as dialogue
histories, domain agents, etc.

e the DM is divided into two main modules (Figure 1).
The task manager is in charge of basic task control
using its general system task model, and the domain
handler takes care of individual task processing
through specialised domain agents.

2.1 Dialogue Modelling

Often, new tasks get added to multi-task sys-
tems one by one, so the multi-task DM must be
designed for easy addition of dialogue structures
for new tasks. Our approach to dialogue mod-
elling for a new task, such as navigation to points
of interest (POIs), follows a standard cycle: (1)
The task is analysed to determine the complete
set of possible task-level contributions from the
user. If the task requires a domain database, the
user input is (2) translated into a complete set
of database queries for the task. (3) All possible
database returns are analysed, leading to identifi-
cation of a set of abstract database return “cases”
which must be handled by the dialogue structure.
In the POI domain, for instance, one case is the
return of more than three hits from the database,
such as more than three pharmacies in a city. (4)
The main, task-level part of the dialogue struc-
ture is designed based on those cases, including
the design of output for response generation, trig-
gering confidence score levels, and predictions for
the speech recogniser and natural language un-
derstanding modules. (5) The dialogue structure
is augmented with complete step-by-step dialogue
sub-trees for (i) advancing the dialogue to suc-
cessful completion as well as for (ii) bringing the
dialogue back on track through error handling, in-
cluding, for both (i) and (ii), the design of out-

put for response generation, triggering confidence
score levels, and predictions.

The internal representation of the dialogue
model is a tree structure. Tree structures have
been demonstrated to be powerful tools for vari-
ous aspects of dialogue modelling. (Ludwig et al.
98) use trees to describe the semantic coherence of
discourse; (Jonsson 97) uses trees for monitoring
the dialogue and recording the focus of the inter-
action; other examples are (Rudnicky & Xu 99;
Lemon et al. 02)). In the VICO DM, we use trees
to describe the cases into which a task has been
subdivided. The nodes represent expected input
from the user and include the information neces-
sary for the DM to decide which dialogue move
to make next, given reception of expected user in-
put. In section 2.2, we explain the DM’s general
strategy for handling unexpected user input. The
dialogue tree structures are kept in external files
that the DM loads during initialisation. The ad-
vantage of this approach is twofold: the dialogue
structure for a particular task is independent of
the current implementation, and debugging and
experimentation with the dialogue is reduced to
making changes to the tree structure in the ex-
ternal file. Next time the DM loads the dialogue
structures, the changes are taken into account.

Action: stop
Resp: 13

Action: stop
Resp: 13

Expect| null
cs=3,/ |Expect| nui ch=s pect]
Action: null
Resp: 12:items],13 - -
2 s=21 | Action:nul Action: null
conf. and/or end
[Expect - Resp: 37 Resp: 38
neg. and new items 7
L ‘com andlor end . conf. andorend 3
Expect] Xpect
neg. and newems &) €572 P neg. and new items®
cs=3
cs=32.1 -
Action: fti Action: fti
- €832,
Action: null Resp: null Resp: null
Cgsle Resp: 2items] Expect| nul Expect| nul
cs=2
e oec confirmation cs=321
neg. and new items Action: fti
Resp: null
Expect| null
cs=1 €s=32,1
- Action: nfti
Action: null
Resp: null
Resp: 6,5
Expect| nul
Expect| route items
Action: fti
cs=32,1
Resp: null
Expect| null

Turn=1 Turn=2 Turn=3

Figure 2: Tree representation of a dialogue model
in VICO.

The VICO DM handles three levels of combined
confidence score from the speech recogniser and

natural language understanding modules. The
levels are a main factor determining the system’s
feedback strategy. When the combined confidence
score is high (CS=3), the user gets implicit con-
firmation of the input; when CS=2 (medium), the
user gets explicit confirmation; and when CS= 1
(low), the system initiates a graceful degradation
approach. The feedback strategy is represented
in the dialogue structure tree as shown in Fig-
ure 2. For each input case, a node in the tree is
defined for each confidence score. Each node in-
cludes information about the response to be gener-
ated and/or about the action(s) to be executed in
the current state of the dialogue, as well as about
the context-dependent expectations to be applied
to the next user input. A single node may be used
for several confidence scores, such as CS=3,2,1.
We use this simplification whenever a particular
action, such as re-calculate task status, must be
executed no matter the confidence score. For most
nodes at which an action is defined, no output re-
sponse and no expectations are indicated since a
new calculation of the dialogue-task status must
be performed by the DM first. After action exe-
cution we must end up at another node and often
in a different task case.

The output responses defined in the dialogue
structure are response templates which the DM
sends to the response generator in order to pro-
duce spoken and display text output. The expec-
tations correspond to types of semantic frame ex-
pected for the next user input. Since the dialogue
structure for the task being solved (active task)
is nearly always consulted after each user turn,
the DM is able to send new expectations to the
natural language understanding and speech recog-
nition modules, facilitating subsequent input un-
derstanding. The expectations are kept turn-by-
turn by the DM in a topic history (Section 3.2)
and are used to “navigate” through the nodes of
the active task tree in order to retrieve the node
corresponding to the the current user input.

2.2 Task Modelling

The presence of an explicit system task model,
separate from the dialogue models, makes the DM
more flexible by making it easier to modify tasks
or add new tasks (Flycht-Eriksson 99). The task
model in the VICO DM architecture is the finite-
state network (FSN) shown in Figure 3. This FSN
is a general engine, fully domain-independent and
able to handle the interaction flow in a particular

task and among different tasks.

Push or Pop task
to/from stack

Current system/task status

EXPECTED_NEW_TASK

Consult dialogue structure
Consult domain handler
Create new TaH, ToH

Identifying system status
or current task status

Execute action

Check CS repetition
Update frame from TaH
update ToH

EXPECTED_CURRENT_TASK

Consult dialogue structure
Consult domain handler
Update TaH, ToH

Ready for a

new frame
Check task status
and task stack

No action

NOT_EXPECTED_CURRENT_TASK

Consult dialogue structure

NLU

NOT_EXPECTED_GLOBAL_SYSTEN

REPEAT_OUTPUT_CURRENT_TASK

Sending response
(ifany) to RG

J
RESUME_POPPED_TASK)
J

%
s

Figure 3: Task model in FSN representation.

to execute

r
L
r
L
{
\

Sending expectations
(if any) to SR and NLU

For SLDS management, FSNs have been used
mainly for describing the dialogue structure
and, more recently, for controlling the dialogue
(McTear 02). Our system task model is compa-
rable to that presented in (Pieraccini et al. 01)
in the sense that our FSN has super-states that
include embedded FSNs, like the one shown in
Figure 3: “Current system/task status”. Indeed,
this super-state is the core of the task model as
it handles the general set of system states. This

set includes:

e EXPECTED NEW _ TASK: the input frame is
expected and can trigger a new task as no other task
is being solved or because in the current active task
this type of frame is not expected;

e EXPECTED CURRENT_TASK: there is a task
being solved and the input frame is one of the
expected frames for that task;

e NOT_EXPECTED_CURRENT_TASK: a task is
being solved (the active task) and the input frame is
not among the expected frames for that task;

e NOT_EXPECTED_GLOBAL_SYSTEM: any task
is being solved and the input frame does not trigger
a new task;

e REPEAT OUTPUT_CURRENT_TASK: a task is
being solved and the user asks for repetition of the
last system output;

e RESUME_POPPED_TASK: the user and the
system have finished the negotiation of a task and
the stack of tasks still has a task pending which is
going to be resumed.

We mentioned in Section 4 that the dialogue struc-
ture for the active task is consulted almost always

after each input frame. This is the case, e.g., the
EXPECTED NEW_TASK state, where a new task
is started and the dialogue structure for this task
is consulted to determine the response to be sent
to the response generator, the expectations to be
sent to the natural language understanding and
speech recogniser modules, and the action that
should be executed, if any.

Depending on whether a task is just start-
ing EXPECTED NEW _ TASK or is active EX-
PECTED CURRENT _TASK, the domain handler
module may have to be consulted (Figure 1, Sec-
tion 3). Whenever domain-dependent procedures,
facts, or reasoning must be applied, such as de-
termining, for a particular task, if there is enough
information to query the external database, the
domain handler takes over. The FSN system task
model itself only executes a general call proce-
dure to the domain handler module. For a small
class of less complex but general cases, the sys-
tem task model does not consult the domain han-
dler. These cases include simple and general pro-
cedures, such as repeating the last system output
or generating suitable output when, for whatever
reason, including speech recognition error, user
not cooperative, etc., the input frame is not ex-
pected in the current task nor in the global sys-
tem.

3 Multi-Domain Architecture

3.1 Task and Domain-Specific Processing

The VICO DM architecture maintains clear sepa-
ration between domain-independent and domain-
dependent procedures. The domain handler mod-
ule is split into several domain agents, one for each
task handled by the system (Figure 1). Only the
help task, due to its simplicity and the fact that
database querying is not needed, does not have a
corresponding domain agent.

The domain handler scheduler receives from
the task manager a semantic frame updated with
the cumulated knowledge in the task history, and
must decide, (i) whether the frame fulfils the re-
quirements for being passed on to a domain agent,
and (ii) which domain agent to call. A require-
ment is, e.g.: do not pass the frame to a domain
agent if the confidence score is not highest or the
frame contains an ambiguity reported by the nat-
ural language understanding module. In these
cases, the frame is returned by the domain handler
scheduler to the task manager which decides the

next dialogue move based on the current dialogue
state and the corresponding dialogue structure.
Once a frame is passed to a domain agent, the
agent may perform reasoning to decide whether
or not to make a database query. Thus, the do-
main handler scheduler and the domain agents
jointly act as filters for evaluating if a database
query can be meaningfully made or if the input
contains errors which must be resolved prior to
database querying. In general, passing the frame
to a domain agent and making a database query is
only done if the domain handler scheduler/agent
are operationally certain of the user’s intended in-
put message (high confidence), no errors or in-
consistencies have been detected, or a particular
input item has been confirmed by the user, e.g.
with an explicit “yes” and CS=3. This strategy
is intended to avoid growing misunderstandings
during dialogue and subsequent, lengthy recovery
sub-dialogues.

The domain agents include a generic user model
agent for modelling individual drivers based on
observations of their input behaviour (Bernsen
03). The driver models are used to adaptively
facilitate drivers’ accomplishment of complex in-
put tasks. The user modelling module is applied
to the task of helping drivers make hotel reser-
vations based on their hotel selection preferences
in the past. The hotel reservation agent combines
the output of the user modelling module for a par-
ticular driver with that driver’s initial hotel reser-
vation input, without, of course, overriding any
preferences explicitly stated by the driver. The ef-
fect is that subsequent hotel database search can
proceed on the basis of more constraints than ex-
plicitly provided by the driver.

3.2 Multi-task control

To enable the DM handle several tasks as well as
embedded tasks, two components support the task
manager (Figure 1): (i) the DM uses a set of his-
tories. A task history and a topic history are built
for each new task the task manager scheduler cre-
ates during dialogue; (ii) the task manager sched-
uler keeps track of each new task created or com-
pleted, using a task stack. The task history col-
lects task-relevant information during interaction.
To facilitate user corrections of the knowledge the
system is acquiring turn by turn, clear separa-
tion is maintained between information provided
by the user and information obtained from the
domain handler and/or external databases. The

topic history records the status of the interaction
turn by turn. Our topic history is slightly differ-
ent from the one in (Bernsen et al. 98) because
we use the topic history not only for handling re-
pair and clarification meta-communication but for
handling interaction in general. In fact, the topic
history is used to “navigate” the nodes of the ac-
tive task tree to retrieve the next response, action,
and expectations no matter the status of the task.
Cousider, e.g., Figure 2 and assume two records
in the topic history. The first record shows CS=3
and task case=R1 as determined by the first frame
received. The second record shows CS=2, task
case still R1, and frame type “conf and/or end”
(confirmation and/or end type of frame). The
shadowed nodes in Figure 2 constitute the path
the task manager goes through to retrieve the ap-
propriate node information after receiving, in the
third user input, the frame type “conf. and/or
end” and CS=3.

The DM task stack implements, apart from the
traditional procedures of push, pop, etc., a logic
for handling task interdependencies. When the
system is solving, e.g., a navigation task, cre-
ation (pushing) of a new navigation task should
be avoided until the current one is finished or is
popped by the task manager scheduler. Some
tasks can be pushed one after the other and
popped depending on task completion, as when
the user starts a new task when carrying out the
ongoing task, e.g. by asking to go to a petrol sta-
tions whilst engaged in a hotel reservation task.

4 Rapid Prototyping & Customisation

An advantages of rapid prototyping is to allow us
to test and improve ideas from the early stages
of development. We implemented, tested, and re-
vised a simple-but-complete early prototype be-
fore having specified all the tasks the system
should address. Several experiments were made
with the early prototype and important informa-
tion was gained (Bernsen & Dybkjeer 01). Exam-
ples are that clear separation is needed between
task-dependent and task-independent functional-
ity and that the dialogue manager should be com-
pletely language-independent.

Figure 4 shows our latest DM prototype with
interfaces to other modules. In object-oriented
methodology terms, Figure 4 “instantiates” the
architecture in Figure 1. In fact, during devel-
opment of the VICO DM, we have identified

TASK MANAGER

‘ TASK MANAGER SCHEDULER

DIALOGUE MANAGER

System Tasks

Information
task
Hotel Res.
task
Route I
task

Tasks stack

‘ Task dialogue structure (DS) ‘<—>

Topic history (ToH)

Task history (TaH)

‘ Frame (internal/external com

\1/ DOMAIN HANDLER

‘ DOMAIN HANDLER SCHEDULER ‘

| $

User model
agents
(um)

Domain handler agents
(DHa)

POI task
DHa

]

XML Wrapper/Un-wrapper
External communication protocol

!

Hotel Res.
task DHa

Route task
DHa

Hotel Res.
task UM

Il |

v

RESPONSE
GENERATOR (RG)

SPEECH
RECOGNISER (SR)

NATURAL LANGUAGE
UNDERSTANDING (NLU)

CAR WIDE WEB (CWW) ‘

UM-DB ‘

Figure 4: The dialogue manager in the VICO system context.

task-independent procedures for:
e negotiating, handling a task;

e handling of dialogue histories, i.e. task history and
topic history;

e representing the dialogue structure in terms of
turns, confidence scores, actions, responses and
expectations (the tree structure);

e consulting the dialogue structure (general handling
of actions, responses, expectations at any point of
the dialogue);

e calling or activating domain agents;

e repetition, resumption, greeting procedures.

We have identified task-specific procedures for:

e internal processing in a particular domain agent;

e internal processing in a particular user model.

The steps necessary for customising (or adapting)
the current architecture for a new task are:

e define the semantic frame (slots for the new task)
and new cases corresponding to new slots;

e define the new task’s default expectations (expecta-
tions that can trigger the new task);

e define a dialogue model for the new task, cf. Section ;
e implement new actions if necessary;

e implement and add a domain handler if necessary.

We do not claim to have developed the “definitive”
object-oriented DM architecture. The above is
a first attempt that requires more work, revision
and evaluation, but results so far look promising.

5 Dialogue Manager Evaluation

Black box DM evaluation is a complex undertak-
ing. It requires other system components, at least
the response generator and data base access, as
well as a large and, to the extent possible, sys-
tematic set of well-prepared input cases for test-
ing many semantic input variations, given that it
is virtually impossible to cover all the input com-
binatorics. As observed in (Alexandersson & Heis-
terkamp 00), the DM must not fail on any input,

the DM should be robust (no crashes, no loops)
before integration in the dialogue system and in
particular before the system is tested with real
users. We made controlled tests to determine how
robust our DM prototype is and which improve-
ments are necessary before user testing. We used
an earlier version of our VICO natural language
understanding module, our VICO response gen-
erator, access to the (partner-provided) database,
and no speech recogniser. Diagnostic error anal-
ysis, of course, must take into account the errors
introduced in the loop by those other modules.
In the first test, we did not simulate speech
recognition errors so we assume perfect recogni-
tion and confidence score level=3 (highest). The
test was intended to test the system’s ability to
handle as many input cases as possible for naviga-
tion to an address (route), navigation to a point
of interest (POI), hotel reservation, and restau-
rant reservation. Table 1 presents the results.

Task Number of | Transac. Transac.
dialogues | success % | failure %
Route 31 87.0 12.9
POI 27 66.6 33.3
Hotel res. 19 31.5 68.4
Total 7 66.2 33.7

Table 1: Transaction success testing.

Table 1 shows that the hotel reservation task,
in particular, needs revision. Diagnostic analysis
showed that most (64.7%) of the errors occured in
the hotel domain agent when checking and com-
pleting dates. Other errors were introduced by
the natural language understanding module.

To test the mixed initiative dialogue and grace-
ful degradation capabilities of the system, the fol-
lowing test was made. We selected a sub-set of
user inputs per task and ran these mainly with
medium and low confidence scores, primarily us-

Task Route POI Hotel res.
Confidence score medium | low | medium | low | medium | low
Average number of turns % 38.2 26.4 33.3 33.3 37.7 28.8
Implicit verification turns % 20.0 14.2 21.4 30.7 0 0
Explicit verification turns % 55.0 0 64.2 0 58.3 38.0
Dialogue degradation turns % 20.0 57.1 28.5 69.2 16.6 71.4
Transaction failure (average) 25.0 50.0 0 25.0 50.0 100.0
Transaction failure (average total) 37.5 12.5 75.0

Table 2: Mixed initiative and graceful degradation testing.

ing high confidence scores to introduce progress in
the dialogue to enable task completion. Some in-
put scenarios included consecutive repetitions of
medium and low confidence scores and no high
confidence scores in order to force the degradation
strategy to finish the dialogue gracefully. Table 2
presents the results.

As expected, transaction failure increases with
low confidence score, with a high percentage of
dialogue degradation. We still observe a consid-
erable percentage of transaction success for the
route and POI tasks with low confidence score.
With medium confidence score, the recovery strat-
egy seems to work better. Failure is >25% for
route and POI, but too high for the hotel reserva-
tion.

6 Conclusions

We have presented a domain and task-
independent DM architecture which enables
addition of new tasks through “configuring” new
dialogue structures and new domain agents.
The architecture includes task-dependent dia-
logue modelling to control domain-dependent
procedures, and task-independent system task
modelling for general task execution control
using a high-level automaton for controlling
domain-independent procedures. We found that
a high level of DM modularity can be achieved
once it has been established which modules or
procedures can be generalised and which modules
or procedures definitely require task-dependent
handling. More work is needed to obtain a
robust system. Future work will partly focus on
investigating and developing a clean framework
for handling task interdependencies like those
briefly described in Section 3.2.

References

(Alexandersson & Heisterkamp 00) Jan Alexandersson and Paul
Heisterkamp. Some notes on the complexity of dialogues. In
Proceedings of the First Sigdial Workshop on Discourse and
Dialogue, Hong Kong, China, 2000.

(Bernsen & Dybkjeer 99) Niels Ole Bernsen and Laila Dybkjzr.
Draft proposal on best practice methods and procedures in dia-

logue management. Spoken language dialogue systems and com-
ponents best practice in development and evaluation (DISC) De-
liverable D1.5. http://www.disc2.dk, 1999.

(Bernsen & Dybkjeer 01) N. O. Bernsen and Laila Dybkjaer. Explor-
ing natural interaction in the car. In Proceedings of the Inter-
national Workshop on Information Presentation and Natural
Multimodal Dialogue (IPNMD-2001), Verona, Italy, 2001.

(Bernsen 03) N. O. Bernsen. User modelling in the car. In Pro-
ceedings of the Ninth International Conference on User Model-
ing (UM20083), Johnstown, USA, 2003. Springer Verlag: Lecture
Notes in Artificial Intelligence (to appear).

(Bernsen et al. 98) Niels Ole Bernsen, Hans Dybkjer, and Laila
Dybkjaer. Designing Interactive Speech Systems: From First
Ideas to User Testing. Springer-Verlag, 1998.

(Degerstedt & Jonsson 01) Lars Degerstedt and Arne Jonsson. A
method for iterative implementation of dialogue management.
In IJCAI Workshop on Knowledge and Reasoning in Practical
Dialogue Systems, Seatle, USA, 2001.

(Flycht-Eriksson & Jénsson 00) Annika Flycht-Eriksson and Arne
Jonsson. Dialogue and domain knowledge management in dia-
logue systems. In Proceedings of the First Sigdial Workshop on
Discourse and Dialogue, Hong Kong, China, 2000.

(Flycht-Eriksson 99) Annika Flycht-Eriksson. A survey of knowl-
edge sources in dialogue systems. In Proceedings of the IJ-
CAI’'99 Workshop on Knowledge Reasoning in Practical Di-
alogue Systems, Stockholm, Sweden, 1999.

(J6nsson 97) Arne Jonsson. A model for habitable and efficient
dialogue management for natural language interaction. Natural
Language Engineering, 9:103—-122, 1997.

(Lemon et al. 02) Oliver Lemon, Alexander Gruenstein, Alexis Bat-
tle, and Stanley Peters. Multi-tasking and collaborative activ-
ities in dialogue systems. In Proceedings of the Third Sigdial
Workshop on Discourse and Dialogue, Philadelphia, USA, 2002.

(Lin et al. 99) Bor-shen Lin, Hsin-min Wang, and Lin-shan Lee. A
distributed architecture for cooperative spoken dialogue agents
with coherent dialogue state and history. In Proceedings of the
International Workshop on Automatic Speech Recognition and
Understanding (ASRU-1999), Keystone, Colorado, USA, 1999.

(Ludwig et al. 98) Bernd Ludwig, Giinther Gorz, and Heinrich Nie-
mann. User models, dialog structure, and intentions in spoken
dialog. In Proceedings of KONVENS 98 (Computer, Linguis-
tik und Phonetik zwischen Sprache und Sprechen), Bonn, Ger-
many, 1998.

(McTear 02) Michael F. McTear. Spoken dialogue technology: en-
abling the conversational interface. ACM Computing Surveys,
34:90-169, 2002.

(O’Neill & McTear 00) Ian M. O’Neill and Michael F. McTear.
Object-oriented modelling of spoken language dialogue systems.
Natural Language Engineering, 6:341-362, 2000.

(Pieraccini et al. 01) Roberto Pieraccini, Sasha Caskey, Krishna
Dayanidhi, Bob Carpenter, and Michael Phillips. Etude, a re-
cursive dialogue manager with embedded user interface patterns.
In Proceedings of the International Workshop on Automatic
Speech Recognition and Understanding (ASRU-2001), Trento,
Italy, 2001.

(Rudnicky & Xu 99) A. Rudnicky and W. Xu. An agenda-based di-
alog management architecture for spoken language systems. In
IEEE Automatic Speech Recognition and Understanding Work-
shop, Keystone, Colorado, USA, 1999.

(Xu et al. 02) Weiqun Xu, Bo Xu, Taiyi Huang, and Hairong Xin.
Bridging the gap between dialogue management and dialogue
models. In Proceedings of the Third Sigdial Workshop on Dis-
course and Dialogue, Philadelphia, USA, 2002.

