

Project ref. no. IST-2000-26095
Project title NITE: Natural Interactivity Tools Engineering

Deliverable status Public
Contractual date of
delivery

31. March 2002

Actual date of
delivery

9. December 2002

Deliverable number D2.3
Deliverable title Best practice gesture, facial expression, and cross-modality coding

schemes for inclusion in the workbench
Type Report
Status & version Final
Number of pages 43
WP contributing
to the deliverable

WP2

WP / Task
responsible

DFKI

Author(s) Michael Kipp, Norbert Reithinger, Nils Ole Bernsen, Laila
Dybkjær, Malene Wegener Knudsen, Maria Machuca, Montse
Riera

EC Project Officer Philippe Gelin
Keywords best practice, coding scheme, meta-scheme, coding module,

metadata, natural interactivity, multi-level, cross-level, cross-
modality

Abstract (for
dissemination)

This report presents coding scheme recommendations for natural
interactivity research as well as coding module specifications of
the recommended schemes for possible inclusion in the NITE
workbench. The recommendations are based on clear definitions
of the notions of coding scheme, meta-schema, coding module
etc. We devised evaluation criteria for all these concepts in order
to support our recommendations. For facial expression coding,
semi-standards have already developed. Three coding schemes are
presented and recommended here. For gesture coding, we propose
a modular approach for building a gesture coding scheme to cope
with the widely diverging research aims. Two recommendations
are presented for the most basic modules. For cross-modality
coding, we point to cross-modality aspects in the surveyed
schemes and conclude that there are no coding schemes yet that
are generic enough to qualify for recommendation. Finally, we
define coding modules for all three facial expression coding
schemes and one recommended gesture coding scheme.

NITE Deliverable D2.3

Best practice gesture, facial expression,
and cross-modality coding schemes for

inclusion in the workbench

December 2002

Authors
Michael Kipp1, Norbert Reithinger1, Nils Ole Bernsen2, Laila Dybkjær2,

Malene Wegener Knudsen2, Maria Machuca3, Montse Riera3

1: DFKI, Saarbrücken, Germany. 2: NISLab, University of Southern Denmark, Denmark.

3: Universitat Autonoma de Barcelona, Spain.

Contents
1 Introduction..6
2 Terminology...6

2.1 Meta-Schemes..6
2.2 Coding Module ..7

2.2.1 Coding Scheme ..7
2.2.2 Coding Practice..8

2.3 Coding File and File Format ..9
2.4 Metadata...10
2.5 Cross-Modality Coding..11

3 Evaluation Criteria ...12
3.1 Evaluation Criteria for a Meta-Scheme ...12
3.2 Features of Meta-Schemes...12
3.3 Evaluation Criteria for a Coding Scheme ..13
3.4 Evaluation Criteria for a File Format...13

4 Recommendations..14
4.1 Meta-Schemes..14
4.2 Gesture Coding Schemes ...15
4.3 File Format...16
4.4 Metadata...16

4.4.1 Raw Data Metadata..16
4.4.2 Coding Scheme Metadata ..17
4.4.3 Coding Session Metadata...18

4.5 Facial Expression Coding Schemes ...18
4.6 Cross-Modality Coding Schemes ..19

4.6.1 Cross-Modality Coding in the Surveyed Coding Schemes..................19
4.6.2 Cross-Modality Research for Speech and Gesture20

5 References..21
6 Appendix: Facial and gesture coding modules for possible inclusion in the NITE
software..23

6.1 MPEG-4 ...23
6.2 FACS..32
6.3 Toonface ..37
6.4 McNeill’s Gesture Coding Scheme ...39

NITE D2.3 Draft version

6

1 Introduction
Standards for the annotation of corpora develop empirically over time. When annotators and
consumers of corpora start adding new types of information to collected data files, and when
these corpora are shared, usually a consensus emerges which type of information and which
annotation style is the most useful. The area of gesture, facial expression, and cross-modality
annotation does not have a very long tradition in mass data annotation, compared to, e.g.
syntactic or dialogue act annotation, where large corpora are available. Therefore,
recommendations for best practice or standards may continue to change for some time to
come. In NITE, our goal is to provide the most comprehensive overview of earlier work and
to base our decisions on the current state of the art.

This deliverable finalises a series of three NITE reports. In D2.1 (“Survey of existing gesture,
facial expression, and cross-modality coding schemes”), we surveyed previous work, and in
D2.2 (“The NITE markup framework”) we laid the foundation of the markup framework to be
used in the NITE natural interactivity coding tool prototypes. Finally, in this report we
describe best practice in natural interactivity coding as we currently are able to define it using
all available sources of information, especially the surveys and experiences of the ISLE
project.

To define best practice, we first clarify some terminological issues in Section 2. We say, for
example, what a coding scheme is as opposed to a meta-scheme. In Section 3 we define a
number of general and specific criteria for coding schemes and meta-schemes that should be
respected when selecting a certain scheme or defining a new one. Even though this is
adventurous to do in the current state of the art, we finally present recommendations for meta-
schemes as well as for gesture and facial expression coding schemes in Section 4. In the
appendix, we provide coding modules for gesture and facial expression coding that can be
used as a blueprint for users of the NITE systems.

2 Terminology
In this section, we introduce a number of relevant notions: meta-scheme, coding scheme,
coding module, etc. We refer to the notions of coding module and metadata as defined in
NITE Deliverable D2.2.

2.1 Meta-Schemes
To clarify the question of what a coding scheme is, we may start by saying what it is not. It is
not a meta-scheme. So what is a meta-scheme? A meta-scheme is a framework of concepts
that allows the definition of specific coding schemes. The meta-scheme is like a box of tools
whereas the coding scheme is the product to be manufactured with the help of those tools. The
wider the range of available tools and the more powerful their functionality, the more likely
we will be in succeeding to implement whatever scheme we need. A coding scheme can also
be considered an instance of the meta-scheme. Examples of meta-schemes are:

• Annotation Graphs (Bird, Liberman 2001)
• Anvil (Kipp 2001)
• BAS Partitur (Schiel et al. 1998)
• CHAT (CHILDES project)
• HIAT (Ehlich 1992)
• MATE (McKelvie et al. 2001)

NITE D2.3 Draft version

7

One must distinguish between the syntax and the semantics of a meta-scheme. This is
important because some researchers focus on syntax, some on semantics when defining a
meta-scheme. BAS Partitur, for instance, called a file format by its creators, is a syntactic
construct. Yet the file format always has a semantics that can be expressed formally, e.g. by
using grammars or graphs. Annotation Graphs are formally defined using mathematical
graphs. They express the semantics of the ATLAS annotation framework which can be called
a meta-scheme. The key to the meta-scheme definition is the semantics. More often than not,
the semantics is defined in a non-formal fashion (Partitur, CHAT, Anvil), which is not a
serious flaw if compared to, e.g., programming languages which are usually learned in a non-
formal way as well.

How do we describe what a meta-scheme is? Probably the best approach is by listing some
common properties of existing meta-schemes. Although we will never have a meta-meta-
scheme (hopefully not!), we will probably someday see the most general meta-scheme
whereof all other meta-schemes are just special cases. Meta-schemes distinguish between the
primary data source (video, audio, picture) and annotation (which can be considered
secondary). The annotation consists of units which are added by the coder. Units are either
simple strings (CHAT, Partitur) or structured objects with, e.g., a typed feature structure
(Anvil). These units are often associated with a level, layer, tier, track or type (we will stick to
the term layer in the following). Layers can have two purposes. Firstly, a layer can prescribe
the internal structure of the units within this layer. In a typed feature structure approach
(Anvil), this would mean that the features and their corresponding types are fixed within a
layer. Secondly, a layer can prescribe the organisational structure of the units. For instance,
the units could be arranged in temporal order without overlap (Anvil, CHAT, Partitur) or in a
hierarchical fashion. Annotation Graphs only have one global arrangement along a general
timeline. Hierarchical information is implicitly encoded.

2.2 Coding Module
The discussion in the previous section will help us defining the notions of coding scheme.
Also, we will look into the components of good coding practice. Both concepts are subsumed
by the notion of coding module which in NITE Deliverable D2.2 is described as “everything
that is needed in order to perform a certain kind of markup of a particular natural interactivity
corpus”.

2.2.1 Coding Scheme
What does the meta-scheme discussion in Section 2.1 above tell us about coding schemes? In
a coding scheme, we have to decide on the number of layers, on how information is stored in
a layer’s units (e.g. in feature-structures), and how units are to be arranged within their layer
(temporally, hierarchically, otherwise). By declaring this information within the limits of our
meta-scheme, we have fixed the syntax of our coding scheme. In Anvil, for instance, this is
done in the specification file. In some cases the syntax can be called the tagset. The coding
scheme semantics is defined in the coding manual. For example, we may define a „gesture“
layer where units include a feature called „handshape“ with a number of possible values like
„fist“, „open flat“, „open curved“, etc. The coding manual should then explain

• segmentation: criteria where a single gesture starts/ends
• classification: criteria for identifying the handshape category („fist“, „open flat“ etc.)

NITE D2.3 Draft version

8

If the coding scheme demands annotation of organisational structure (e.g. syntax trees), then
the coding manual should also explain

• organisation: criteria to determinecorrect linkage/attachment (e.g. the PP attachment
problem)

Coding scheme syntax and semantics are the main components of the coding module.

It is in the semantics of a coding scheme that we can distinguish between a descriptive and an
interpretative scheme. A descriptive coding scheme has a semantics that can be formally
defined. Handshapes, for instance, are descriptive as are anything that can be counted or
otherwise measured by objective means: location, speed, shape, distance, angle etc. In
contrast, interpretative schemes make use of human competence and implicit rules and
correlations yet undiscovered and not exhaustively defined. For example, coding a gesture as
a turn-taking signal is an interpretative act based on the coder’s competence as a member of
his/her language community. Of course, there are borderline cases where it is hard to tell
whether a scheme is descriptive or interpretative, e.g. the coding of syntax trees.

There are two important adequacy criteria for coding schemes: feasibility and consistency.
Descriptive schemes can easily be checked for consistency since they have a formal
semantics. It may be, though, that a descriptive scheme is hard to apply for a human coder. If
the task is to encode the elbow angle with one of fifteen possible values, this may be
impossible for a human coder to reliably do. This is what we mean with feasibility. Feasibility
for descriptive schemes can be checked with intra-coder reliability tests. For interpretative
schemes, two error sources exist and are actually hard to tell apart. If a coder cannot
discriminate between two categories it may be because the two are too hard to distinguish
(feasibility) or because their definitions overlap, i.e. there is an inconsistency in the scheme.
Inter-coder checks are needed to find such cases.

2.2.2 Coding Practice
Coding practice can be defined by answering the following questions:

• who is coding (human vs. computer, expertise)?
• how is the coder trained (pre-coding period)?
• how is the coder supported (coding period)?
• how is the coder controlled (coding and post-coding period)?

Moreover, we distinguish between two types of coding:
1. Fixed-scheme coding and
2. Evolving-scheme coding

In the first case, a fixed coding scheme, possibly a standard scheme where deviation from the
standard would cause problems in usability of the annotation, is used and kept without
changes. In the second case, coding starts with a coding scheme prototype that will be
continually adapted to better cover the data. The scheme evolves in a cyclic process of coding
and scheme revision.

Who is coding? First of all, it must be decided what kind of coder is desired. Coders with
expert knowledge (high expertise) will keep training time short but may also be biased toward
a certain theory. This is not necessarily a disadvantage but must be kept in mind when
working with the resulting annotations. A bias is also introduced when using so-called
bootstrapping techniques where coders use automatic classifiers to speed up the process. The
computer suggests a number of prioritised categories for coding which is then

NITE D2.3 Draft version

9

checked/confirmed by the human coder. This approach may lead to annotations that support
the theory/statistics underlying the used classification algorithm.

How is the coder trained? Before coding, coders must first read the coding manual and look
at sample annotations. As a second step, they either watch a trained coder doing annotations
or they do annotations themselves and are supervised by a trained coder. Finally, the new
coder does annotations on his/her own which are either corrected by a trained coder or for
which there are already correctly annotated versions available that can be used for
comparison. These steps should be quantified and documented (how many hours, how many
sample files, a definite training suite of sample files).

How is the coder supported? The main support is the coding manual. For the manual one
must ask whether it is available on-line and whether it is conceptualized as a reference book
(quick access to information). On-line help can have many different faces and basically boils
down to making the coding manual entries available at all those steps where categorization
must be done – this is clearly the task of the coding tool designer. As for the design of the
coding manual it depends too much on the actual scheme what design to choose. Some points
to remember are:

• clearly distinguish between segmentation, classification and organization
• lead the coder from more general criteria to more specific criteria
• try to structure your classes in such a way that the user can find a classification by

answering a number of questions or applying ‚objective‘ measures (counting)
• give many examples, use video-stills
• give cross-references if two categories A and B are similar and often confused (so that

the coder automatically checks for B when looking at A)
• give examples for borderline cases where various interpretations (A or B) seem

plausible

How is the coder controlled? A coder must be checked on a regular basis because systematic
misinterpretations might sneak in. Also, the coding scheme might change in the process of
coding and systematic checks are a good means to doublecheck that the coders stick to the
changes. Checks can be informal by letting coders check arbitrarily selected annotations of
another coder. Or checks can be based on agreement metrics like the kappa value. For this, a
single data file must be be coded by two or more coders. One should decide on one of these
control methods before coding starts and agree on standard time intervals between checks.

2.3 Coding File and File Format
A coding scheme defines the structure of actual annotations. Annotations are stored by
writing them to a physical storage device like a harddisk or CD-ROM as a coding file. The
file format is the physical representation of an annotation. It is a syntactically sound
manifestation of the scheme’s concepts. A scheme’s file format can be devised using XML,
ASCII or binary encoding. All types have different advantages/disadvantages. Binary
encoding is cheapest in terms of memory but is more difficult to decode. It is not readable for
humans and must come with a detailed and absolutely accurate specification to be decodable.
Binary encoding is hardly used any more since memory is cheap. ASCII is human-readable
but there are no standards for formal syntax specification, let alone semantic specification. So,
checking syntactic correctness in two different systems is error-prone due to possibly
differing interpretations of semi-formal specifications. The XML standard builds on ASCII

NITE D2.3 Draft version

10

and provides a formalism for syntactic specification (DTD) and type specification (XML
Schema). The formalism guarantees generality of syntax checks. Moreover, XML, being a
standard, has led to the development of tools that allow visualisation, editing, checking, and
transformation of XML files in a comfortable way. Furthermore, programmers can make use
of existing parsers (e.g. Xerces) and internal representation mechanisms (document object
model, DOM). It is quite clear that XML is the most suitable file encoding format to date.

XML (or ASCII or binary) is only the basic encoding. On top of this is the meta-scheme’s file
format. A concrete scheme’s file format is an instance of the meta-scheme’s format. For
example, Anvil has a meta-scheme (Anvil’s track-based annotation framework) and a
corresponding file format. Concrete schemes are encoded in so-called specification files and
define an instance of Anvil’s file format for a particular scheme. Actual data files (Anvil
annotation files) contain a reference to the corresponding specification file which encodes the
concrete scheme, thus allowing syntax checking of particular coding schemes.

2.4 Metadata
Metadata is information about some data: Where does it come from? When and by whom was
it created? For what purpose, using which methods etc.? Metadata is usually very small and
structurally simple data (alphanumerical strings). The main purpose of metadata is to enable
researchers to browse corpora, i.e. to search and find data using several dimensions.
Moreover, metadata can be used to automatically sort, update, and merge databases since it
provides a kind of semantics of the particular encoding.

As pointed out in NITE D2.2, metadata is directly attached to each of the three layers of data
that we encounter in annotation: raw data, coding module and coding. For each of these
layers, metadata should comply with a standardised set of metadata tags. Several
standardization initiatives exist (IMDI1, OLAC2, DCMS3), IMDI being the most relevant for
NITE as an initiative restricted to developing metadata sets for multimedia/multimodal
corpora and lexica (Wittenburg et al. 2000).

IMDI suggests the use of structured metadata elements whereas the DCMS only allows a flat
structure, i.e. a set of strings. For example, two recording participants and their respective age
would be encoded in DCMS like this:

contributor=john
contributor=mary
age=20
age=22

1 ISLE MetaData Initiative, http://www.mpi.nl/ISLE/

2 Open Language Archives Community, http://www.language-archives.org

3 Dublin Core Metadata Set, http://dublincore.org

NITE D2.3 Draft version

11

In IMDI, a structured representation allows to see (and query) what age belongs to which
person:

participant
 participant.name=john
 participant.age=20
participant
 participant.name=mary
 participant.age=22

So in order to be able to query metadata in a flexible and powerful way, we should rely on
structured metadata representations.

2.5 Cross-Modality Coding
Cross-modality coding refers to annotations that serve the exploration of interrelationships
between two or more modalities. In a strict sense, modalities are derived from the human
senses: vision, hearing, touch, smell etc. In multimodal and other research though, in the
modality of vision is often further differentiated by the medium used to communicate, i.e. the
face, the hands, the whole body. For our purposes, we take a rather arbitrary (non-exhaustive)
list of modalities often encountered in the research literature:

• speech
• gesture
• facial expression
• gaze
• body posture

Modalities are natural containers for coding information, i.e. they usually correspond to one
or more layers. For instance, for speech, different types of linguistic information (part-of-
speech, syntax, rhetorical structure etc.) are usually encoded on various layers.
A coding scheme is called cross-modal if any kind of relationship must be coded between
layers of different modalities. Such relationship annotations can take on different forms:

• Shared external reference: Two elements on different levels (e.g., speech and
gesture) co-refer to the same external object which is represented by a simple string
ID. This object can be something concrete (person, location, object) or
abstract/emotional (co-expressive speech/gesture).

• Structural level relationships: Very often, layers are structured in a hierarchical
fashion, such that elements of level B are defined by a start and end element on level
A. Level B is then called secondary to level A (e.g., CHAT, HIAT, Anvil, Partitur).
Using this relationship, a gesture on level B can be related to words on level A.

• Cross-level links: Structural level relationships are very inflexible in the sense that,
inherently, the temporal extension of secondary elements is determined by the
elements they refer to (start time = start time of first element; end time = end time of
last element). Cross-level links allow elements of level B to refer to arbitrary elements
of level A (or any other level). Thus, if a gesture has a lexical affiliate on a speech
layer (e.g., a word element), the gesture can be linked up with it without having to co-
occur temporally with this element.

NITE D2.3 Draft version

12

• Abstract relations: A variation of cross-level links are arbitrary relations that exist
outside the temporally anchored annotation. Such nontemporal elements can be used
as connectors to define relationships between different modalities, i.e. levels. Instead
of linking a gesture to a word as mentioned above, one could create a nontemporal
relation entity called “lexical affiliate” that takes two arguments: one gesture element
and one word element.

Which type of relationship to choose for a specific coding scheme depends on the research
task. A coding tool should support all four techniques.

3 Evaluation Criteria
3.1 Evaluation Criteria for a Meta-Scheme
A meta-scheme usually comes with a tool or, to put it the other way round, a tool implements
a meta-scheme. Very often, tool and meta-scheme are not even explicitly distinguished
(Anvil, HIAT, MATE). When evaluating a meta-scheme’s applicability for a specific task, we
can apply the following criteria:

• Expressiveness: The overall framework of the scheme (AGs, Tracks, DAGs) must be
expressive enough to accommodate all the data properties we wish to encode.

• Searchability/Tractability: Relevant/interesting relationships should be easy to query
for a user and efficiently computable.

• Maintainability: Implemented schemes will have their data written to formats that
can easily be checked, converted, edited (XML, databases).

• Metadata: Meta-Schemes should support the inclusion of metadata according to a
standard like IMDI, DCMS or OLAC. Since metadata is scheme-independent, it must
be part of the meta-scheme.

These criteria/guidelines are very general. We will add more detail in the next section.

3.2 Features of Meta-Schemes
Most meta-schemes were developed to accommodate a specific coding scheme. The most
common feature of these coding schemes was is the fact that the annotation should be
performed on several layers that could be viewed and edited in temporal alignment. Apart
from this, a number of other features have evolved, for example, hierarchical relations
between tracks, structured annotation elements (as opposed to simple alphanumerical strings),
hierarchical tagsets etc.

The following table presents a catalogue of such features. It also shows the specific coding
schemes that require the existence of a particular feature to be implementable:

NITE D2.3 Draft version

13

Feature Schemes that need this feature

Multiple layers SmartKom, Poggi/Magno Caldognetto, McNeill

Layer hierarchy CHAT, Kita

Graphical symbols as values HamNoSys, Birdwhistell

Structured objects Poggi/Magno Caldognetto, SmartKom

Hierarchical values CHAT

Non-temporal objects LIMSI

Cross-level links LIMSI, HIAT

Metadata HIAT, CHAT

Free-form
comments/descriptions

McNeill

3.3 Evaluation Criteria for a Coding Scheme
The following criteria for evaluating coding schemes can be found in the literature:

• Documentation: The scheme must be consistently and completely documented in a
coding manual.

• Simplicity/Orthogonality: The representation should be as orthogonal across layers
as possible, i.e. the same aspect should not appear encoded in two different layers,
because this would not only increase work but also the number of possible errors.

• Data-drivenness: The scheme should enable you to code all the data, i.e. there should
be no gaps, no pieces of data that cannot be coded because the scheme does not offer
suitable constructs.

• Tool supported: The scheme should be an instance of a meta-scheme that is
supported by tools (coding).

• Reliability: Coding should be reliably possible. There are two factors:
o feasibility
o consistency

• Extensibility: The scheme should be open to new entities since much research is
exploratory (evolving-scheme coding) were categories are possibly made up on the
fly.

3.4 Evaluation Criteria for a File Format
• Encoding Format: This should be XML for maximal efficiency in terms of data

exchange, maintenance, query and software development. Examples of meta-schemes
and schemes using XML are:

o AIF (ATLAS Interchange Format)
o Anvil
o EAF (EUDICO/Elan)
o TASX

NITE D2.3 Draft version

14

o The Observer (under development)
• One File vs. Many Files: annotations should be kept in one file if manipulations are

mainly done via tools; annotations should be kept in many files if manipulations are
mainly done manually (direct editing, simple scripts)

• Stand-Off Representation: see MATE (McKelvie et al. 2001)

4 Recommendations
Having discussed the differences of schemes and meta-schemes and outlined criteria for the
evaluation of each, we will now proceed by applying the criteria to our meta-schemes and
coding schemes and present recommendations.

4.1 Meta-Schemes
The following table shows available meta-schemes and their features. “Y” means that the
feature is fully supported, whereas “~” means that only part of the feature is integrated or that
it is left open in the specification whether a tool would support it. The meta-schemes marked
with an asterisk (*) come with a fixed coding scheme but are generic enough to make the
transition to a pure meta-scheme obvious.

M
ul

tip
le

 la
ye

rs

L
ay

er
 h

ie
ra

rc
hy

St
ru

ct
ur

ed
 o

bj
.

H
ie

r.
 v

al
ue

s

N
on

te
m

p.
 o

bj
.

C
ro

ss
-le

ve
l

M
et

ad
at

a

C
om

m
en

ts

AGs Y ~ ~ ~ ~
Anvil Y Y Y Y Y ~ Y
BAS Partitur Y Y Y
CHAT (*) Y Y Y Y Y
HIAT (*) Y ~ Y
MATE Y Y Y Y Y

As far as the features in the table are concerned, there are three meta-schemes that appear
recommendable:

• Anvil: It is the only meta-scheme offering non-temporal objects (Martin, Kipp 2002)
and there is a working tool (freeware).

• Annotation Graphs: This seems to be the future American standard. It very open and
flexible, which can also be considered a drawback since many features are not
explicitly specified yet. The tools are open source.

• MATE.

All meta-schemes correspond to a tool: Anvil and MATE are names of tools themselves,
Annotation Graph tools are currently under development within the ATLAS project.

NITE D2.3 Draft version

15

4.2 Gesture Coding Schemes
Considering the many different research aims around we do not think that one single gesture
coding scheme could be declared best practice for coding gestures in natural interactivity
research. Rather, we see gesture coding as being decomposable into several modules dealing
with different aspects which bear a slight resemblance to linguistic dimensions.

Figure 4.2.1 illustrates the modules which build upon each other in three layers. Both two
bottom layers have a basic module (left) and a more advanced module (right) each. In the very
bottom layer you find purely descriptive, non-semantic schemes. The basic module (left)
deals with segmentation of the different gesture phases. The advanced module (right) covers
the more detailed encoding of gesture form, i.e. hand/arm location, trajectory, hand shape etc.
On the middle layer, using syntactic rules (see Kita et al. 1998), the basic gestural movements
are assembled into gestures and categorised using either very basic categorisations (left
module), i.e. emblems, deictics, adaptors etc. (cf. McNeill 1992) or an elaborated gesture
lexicon (right module). On the top layer, the function of the gesture is being analysed and
coded. This layer can consist of many dimensions like in Poggi/Magno Caldognetto’s scheme,
so that function is again coded on many levels/layers. Or it could be simply a link indicating
co-reference with a speech object (LIMSI coding scheme) which is also an interpretative
decision.

Having introduced these three layers of gesture coding makes it easier to assemble a “best
practice” gesture coding scheme because we can propose recommendations for each module.
Researchers can then “plug” their own scheme together using existing schemes. Note that the
bottom-up direction of the illustration corresponds with the coding process itself. One usually
approaches a gesture by first describing it objectively and then progressively doing more and
more interpretative work. This order of going from objective measures to more subjective
ones is known to increase reliability in coding.

Figure 4.2.1. Layers of gesture annotation.

The following table shows which gesture coding scheme is suitable for which part of the
coding in the three-layered view suggested in Figure 4.2.1. Kita et al.’s (1998) coding of
phases (based on work by Adam Kendon and David McNeill) can be considered a standard.
Also, for hand shape, HamNoSys seems to become a standard in Europe. American

Basic Descriptive Coding
(phase layer)

Advanced Descriptive Coding
(e.g. Berne or FORM)

Categorization
(phrase layer)

Lexical Categorization
(gesture inventories)

Interpreted Function Coding
(e.g. McNeill, Poggi/Magno Caldognetto or co-ref in LIMSI)

morphological

lexico-
syntactic

semantic

NITE D2.3 Draft version

16

researchers tend to use ASL codes for hand shapes. For Advanced Descriptive Coding there
are several alternatives, ranging from very rough descriptions (McNeill), to “kinematically-
based” ones (FORM or, for maximum detail, the Berne system).

Basic Descriptive Coding MPI Movement Phase (Kita et al. 1998)

HamNoSys Handshape
ASL

Berne (Frey et al. 1983)
McNeill (1992)

Advanced Descriptive Coding

FORM (Martell 2002)
Categorisation McNeill (1992)
Lexical Categorisation n/a

Poggi, Magno Caldognetto (1996)
LIMSI (Martin et al. 2001)
McNeill (1992)

Interpreted Function Coding

SmartKom

To conclude, we recommend the MPI Movement Phase scheme for basic descriptive coding.
For more advanced descriptive coding as well as for categorisation we recommend McNeill’s
coding scheme since it is widely used by gesture researchers, offers a moderate detail in terms
of formal description, and is well-documented in (McNeill 1992). Depending on the research
aim, one will have to decide on a more sophisticated kinematically-based encoding (e.g.,
when dealing with gesture recognition or computer animation). As for interpretative schemes,
it does not make sense to recommend a scheme without knowledge of the pursued research.

4.3 File Format
As file encoding format we recommend XML. For the file format for storing annotations we
recommend a standard like AIF or MATE.

4.4 Metadata
We recommend to use structured metadata as opposed to the flat structures used in the
DCMS. The coding tool should allow the inclusion of generic, structured metadata. Metadata
should comply with, or at least be compatible to, the existing and coming IMDI standards.

4.4.1 Raw Data Metadata
The following metadata is suggested in D2.2 for raw data, emphasising that the list is not
intended to be exhaustive. The corresponding IMDI elements are juxtaposed (the star “*” is a
placeholder for further IMDI subcategories).

D2.2 Label suggestion IMDI Session Element
raw data referenced Resources.Source.*
date of creation of raw data Date
date of creation of metadata

NITE D2.3 Draft version

17

name(s) of creator(s) of raw data Collector.{Name, Contact, Description}
name(s) of creator(s) of metadata
location for creation of raw data {Continent, Country, Region, Address}
purpose of creation of raw data, modalities
involved, etc.

Description
Content.{Modalities, Languages, Description}

interacting participants and roles Participants.*
speaker characteristics (age, gender, native
language, geographical provenance etc.)

Participants.Participant.*

size of raw data (duration, number of
dialogues, file size)

Resources.MediaFile.Size

accessibility (commercial/free, contact
information)

Resources.MediaFile.Access

file technicalities (file format, compression,
etc.)

Resources.MediaFile.{Type, Format, Quality}

recording setup description (environment,
equipment, setup etc.)

Resources.MediaFile.RecordingConditions

application description (subjects, task,
scenario, instructions, domain knowledge
etc.)

Content.*

references to other relevant raw data References.*
references to literature References.*
notes Description

4.4.2 Coding Scheme Metadata
There seem to be no standards yet for coding scheme metadata. Coding scheme metadata may
be seen as part of the coding module because the coding module can be viewed as common
sense reasoning about what is useful information for other coders using the scheme.
Therefore, we refer to NITE D2.2 where the following metadata for attachment to the coding
module is recommended:

• author(s)
• version
• purpose of the coding module
• coding level(s)
• description of required data source types
• references to other coding modules
• coding procedure
• coding example
• coding semantics
• markup declaration
• coding files referenced

NITE D2.3 Draft version

18

4.4.3 Coding Session Metadata
Since, again, there seem to be no standards for coding-session metadata, we refer to NITE
D2.2 where a minimal list of metadata is recommended for attachment to coding files:

• reference to the coding file body
• first creation date and coder
• for all revisions: date and coder
• name(s) of coder(s) and their characteristics
• version number
• reference to the applied coding module
• references to associated coding files and raw data
• purpose of creation
• level(s) annotated
• history of coding procedure
• note
• references to literature

For more information, consult ISLE deliverable D10.2.

4.5 Facial Expression Coding Schemes
As found in ISLE Deliverable D9.1 (Knudsen et al. 2002a), the situation for facial expression
coding schemes is quite clear. MPEG-4 is widely used and considered a standard. Ekman and
Friesen’s (1978) FACS is also in use but, having been developed for investigation of
emotions without computer applications in mind, it has some drawbacks, e.g. that it is not
suited for lip movement markup.

All other facial schemes reviewed in ISLE D9.1 are being considered rather isolated efforts
without having a chance of competing with MPEG-4 or FACS as standards for the moment.
There probably exist many more facial coding schemes belonging to the category of isolated
efforts. However, if they are not well-described and often only used by a single person or two,
they are difficult to find. The picture, provided by the ISLE survey, of a proliferation of
home-grown coding schemes is supported by the 28 questionnaires in (Knudsen et al. 2002b),
asking people at a multimodal interaction workshop, e.g., which coding scheme(s) they had
used or planned to use for data markup. Some people did not answer the question or had not
made a decision yet as to which coding scheme to use. However, in no less than 15 cases the
answer indicated that a custom-made scheme would be, or was being, used.

MPEG-4 and FACS are clearly the two facial coding schemes we recommend for inclusion in
the NITE workbench as constituting best practice or even standard in their field. The appendix
describes each of the two coding schemes in terms of a coding module, cf. NITE D2.2. This
means that not only the phenomena which can be marked up are described but also important
meta-data information about the coding scheme is provided which serves to enable other users
to use the scheme correctly and reliably.

A third scheme, ToonFace, is added in the appendix and also described as a coding module.
ToonFace was also reviewed in ISLE D9.1 and, although it is far from being as widely used
as MPEG-4 and FACS, we have two reasons for including it here. ToonFace is different from
the two other schemes by only being suited for 2D models and it is the only other reviewed
facial coding scheme in ISLE D9.1 which is being used across a number of sites and not only
by one or two persons. ToonFace may also be considered for inclusion in the NITE software.
However, one should be aware that ToonFace already comes with an editor tailored to its use.

NITE D2.3 Draft version

19

It is interesting that the most frequently used facial coding schemes are all at what one might
call the syntactical level, drawing a parallel to, e.g., part-of-speech tagging in the linguistic
area. When it comes to semantics there is no standardisation.

4.6 Cross-Modality Coding Schemes
This section deals with aspects of cross-modality coding in the surveyed coding schemes,
focusing on speech-gesture research. We conclude that no recommendations for a generic
cross-modality coding scheme can be made yet.

4.6.1 Cross-Modality Coding in the Surveyed Coding Schemes
Taking a second look at the coding schemes surveyed in NITE D2.1, we identify the schemes
that allow cross-modality coding. As outlined in Section 2.5, we consider the following
modalities: speech, gesture, face (includes gaze) and posture. If a scheme allows coding of
one such modality, this does not mean that it supports cross-modality coding. To implement
cross-modality, a scheme must enable the encoding of relationships between annotated
elements of different modalities by means of one of the techniques described in Section 2.5.
The following table shows in which modalities coding takes place for the respective scheme,
and whether relationships across modalities are encoded.

modality cross-modality

sp
ee

ch

ge
st

ur
e

fa
ce

po
st

ur
e

sp
ee

ch
-

ge
st

ur
e

sp
ee

ch
-

fa
ce

sp
ee

ch
-

po
st

ur
e

Berne (Frey et al. 1983) X X X
FORM (Martell 2002) X
HamNoSys X
MPI Movement Phase (Kita et al. 1998) X
Bull (1987) X X
Schegloff (1984) X X X
CHAT X X X
DIME X X X
HIAT (Ehlich 1992) X X X
LIMSI Tycoon (Martin et al. 2001) X X X
McNeill (1992) X X X
Poggi, Magno Caldognetto (1996) X X X X X X X
SmartKom (Steininger 2001) X X X

The relationship that is almost always examined is that between speech and some other
modality. Apart from that, we are still a long way from cross-modality research (e.g. face and
gesture, posture and gesture, face and gaze) that produces a general treatment of cross-
modality coding. The next section will give some pointers in the literature concerning the
well-covered area of speech-gesture cross-modality research.

NITE D2.3 Draft version

20

4.6.2 Cross-Modality Research for Speech and Gesture
The issue of how gestures and speech relate in time is critical for understanding gestures and
speech as part of the multimodal expression (McNeill, 1992). According to McNeill et al.
(2001), the organisation of discourse is inseparable from gesture and prosody.

Three parts in the realisation of gesture should be taken into account to relate speech to
gesture: the preparation of the gesture, the most energetic part of it and the relaxation of the
gesture.

Prosodic parameters related with types of gesture are shown in the following summarising
findings from Cruttenden (1986), Guaïtella (1991), Cavé et al. (1993), Bertrand et al. (1995),
Cassell et al. (1994 a, b), Bruce (1999), Kettebekov et al. (2002), McNeill (1992), McNeill et
al. (2001).

Prosodic elements related to gesture as
mentioned in the reviewed literature

Non verbal cues

Intonational phrases Gesture preparation
Gesture relaxation

Pauses Raising of the eyebrows
Blinking
Nodding of the head

Sentence stress Stroke phase of the gesture
Syllable stress
F0 prominences

Raising of the eyebrows
Blinking
Nodding of the head

Boundary tones Gesture preparation
Gesture relaxation

(Nuclear) sentence stress Stroke phase of the gesture
Emphasis Hand movements
F0 prominences Head movements

Eyebrow movements
Hand movements

F0 range Eyebrow movements
F0 movements and shape of the F0 contour Head movements

Eye movements
Eyebrow movements
Acceleration contours of the moving hand

Intensity changes Eye movements
Hand movements

NITE D2.3 Draft version

21

5 References
Bertrand, R., Boyer, J., Cavé, C., Guaitella, I. and Santi, S. (1995) Voice and gesture relations

in interaction situations: some prosodic and kinesic aspects of back-channel, in: Elenius,
K.- Branderud, P. (Eds.) Proceedings of the XIIIth International Congress of Phonetic
Sciences. Stockholm, Sweden, Vol.2., pp. 746-749.

Bird, S. & Liberman, M. (2001) A Formal Framework for Linguistic Annotation, in: Speech
Communication 1-2, pp. 23-60.

Bruce, G. (1999) Temporal control of fundamental frequency gestures, in: Speech
Communication and Language Development Symposium, Stockholm University, June
1999.

Bull, Peter E. (1987) Posture and Gesture, Oxford: Pergamon Press.
Cassell, J., Pelachaud, C., Badler, N., Steedman, M., Achorn, B., Becket, T., Douville, B.,

Prevost, S. and Stone, M. (1994b) Animated Conversation: Rule-Based Generation of
Facial Expression, Gesture and Spoken Intonation for Multiple Conversational Agents,
in: Proceedings of SIGGRAPH '94.

Cassell, J., Stone, M., Douville, B., Prevost, S., Achorn, B., Steedman, M., Badler, N.,
Pelachaud, C. (1994a) Modeling the Interaction between Speech and Gesture, in: Ram,
A., Eiselt, K. (Eds.) Proceedings of the Sixteenth Anuual Conference of the Cognitive
Science Society. Lawrence Erlbaum Associates, pp. 153-158.

Cavé, C., Guaitella, I. and Santi, S. (1993) Fréquence fondamentale et mouvements rapides
des sourcils: une étude pilote, in: Travaux de l'Institut de Phonétique d'Aix 15: 25-42.

Cheyer, A., Julia, L. & Martin, J.C. (2001) A Unified Framework for Constructing
Multimodal Experiments and Applications, in: Cooperative Multimodal
Communication. Bunt, H., Beun, R.J. & Borghuis, T. (Eds.). Second International
Conference, CMC'98, Tilburg, The Netherlands, January 1998. Springer. LNAI2155.

Cruttenden, A. (1986) Intonation. Cambridge: Cambridge University Press.
Ehlich, K. (1992) HIAT – a Transcription System for Discourse Data, in: Talking Data:

Transcription and Coding in Discourse Research, J.A. Edwards & M.D. Lampert (eds.),
Hillsdale: Erlbaum, pp. 123-148.

Ekman, P. and Friesen, W.V. (1978) Facial Action Coding System, Palo Alto, CA: Consulting
Pychologists Press.

Frey, S., Hirsbrunner, H.P., Florin, A., Daw, W. and Crawford, R (1983) A Unified Approach
to the Investigation of Nonverbal and Verbal Behavior in Communication Research, in:
W. Doise and S. Moscovici Current Issues in European Social Psychology, Cambridge:
Cambridge University Press, pp. 143-199.

Guaitella, I. (1991) Étude des relations entre geste et prosodie à travers leurs fonctions
rythmique et symbolique, in: Actes du XIIème Congrès International des Sciences
Phonétiques. 19-24 août 1991, Aix-en-Provence, France. Aix-en-Provence: Université
de Provence, Service des Publications. Vol. 3. pp. 266-269.

Kettebekov, S., Yeasin, M. and Sharma, R. (2002) "Prosody Based Audio-Visual Czo-
analysis for Coverbal Gesture Recognition," Submitted to IEEE Transactions
Multimedia: Multimodal Interfaces and Applications. Also, Technical Report CSE-02-
015.

Kipp, M. (2001) Anvil - A Generic Annotation Tool for Multimodal Dialogue, in :
Proceedings of Eurospeech 2001, Aalborg, pp. 1367-1370.

Kita, S., van Gijn, I., & van der Hulst, H. (1998) Movement phases in signs and co-speech
gestures, and their transcription by human coders, in: Wachsmuth, I. & Fröhlich, M.

NITE D2.3 Draft version

22

(eds.) Gesture and Sign Language in Human Computer Interaction. Berlin: Springer,
23-35.

Knudsen, M. W., Martin, J.-C., Dybkjær, L., Ayuso, M. J. M, N., Bernsen, N. O., Carletta, J.,
Kita, S., Heid, U., Llisterri, J., Pelachaud, C., Poggi, I., Reithinger, N., van ElsWijk, G.
and Wittenburg, P. (2002a) Survey of Multimodal Annotation Schemes and Best
Practice. ISLE Deliverable D9.1.

Knudsen, M. W., Martin, J.-C., Dybkjær, L., Berman, S., Bernsen, N. O., Choukri, K., Heid,
U., Mapelli, V., Pelachaud, C., Poggi, I., van ElsWijk, G. and Wittenburg, P. (2002b)
Survey of NIMM Data Resources, Current and Future User Profiles, Markets and User
Needs for NIMM Resources. ISLE Deliverable D8.1.

Martell, C. (2002) FORM: An Extensible, Kinematically-Based Gesture Annotation Scheme,
in: Proceedings of the Third International Conference on Language Resources and
Evaluation, Denver, pp. 353-356.

Martin, J.C., Grimard, S., Alexandri, K. (2001) On the annotation of the multimodal behavior
and computation of cooperation between modalities, in: Proceedings of the Workshop
on " Representing, Annotating, and Evaluating Non-Verbal and Verbal Communicative
Acts to Achieve Contextual Embodied Agents ", May 29, Montreal, Fifth International
Conference on Autonomous Agents. pp 1-7.

Martin, J.C., Kipp, M. (2002) Annotating and Measuring Multimodal Behaviour – Tycoon
Metrics in the Anvil Tool, in: Proceedings of the Third International Conference on
Linguistic Resources and Evaluation, to appear.

McKelvie, D., Isard, A., Mengel, A., Møller, M.B., Grosse, M. and Klein, M. (2001) The
MATE Workbench: An annotation tool for XML coded speech corpora, in: Speech
Communication 1-2, pp. 97-112.

McNeill, D. (1992) Hand and Mind. What Gestures Reveal About Thought. Chicago:
University of Chicago Press.

McNeill, D., Quek, F., McCullough, K., Duncan, S., Furuyama, N., Bryll, R., Feng Ma, X.
and Ansari, R. (2001) Catchments, prosody and discourse, in: Oralité et Gestualité,
ORAGE 2001 (Speech and Gesture 2001), Aix-en-Provence.

Poggi, I. and Magno Caldognetto, E. (1996) A Score for the Analysis of Gesture in
Multimodal Communication, in: L. Messing (ed.) Proceedings of the Workshop on the
Integration of Gesture in Language and Speech (WIGLS), Delaware.

Schegloff, Emanuel A. (1984) On some gestures‘ relation to talk, in: J. Maxwell Atkinson and
John Heritage (eds.) Structures of Social Action, Cambridge: Cambridge University
Press, pp. 266-296.

Schiel, F., Burger, S., Geumann, A. and Weilhammer, K. (1998) The Partitur Format at BAS,
in: Proceedings of the First International Conference on Language Resources and
Evaluation.

Steininger, Silke (2001) Labeling Gestures in SmartKom – Concept of the Coding System,
LMU, SmartKom Report 2.

Wittenburg, P., Broeder, D. and Sloman, B. (2000) EAGLES/ISLE: A Proposal for a Meta
Description Standard for Language Resources, in: Proceedings of the Second
International Conference on Language Resources and Evaluation.

NITE D2.3 Draft version

23

6 Appendix: Facial and gesture coding modules for
possible inclusion in the NITE software.

In the following four sub-sections we describe the three coding schemes mentioned in Section
4.5, i.e. MPEG-4, FACS and ToonFace, and one gesture coding scheme (McNeill 1992)
recommended in Section 4.2. The descriptions are in terms of the coding module entries
mentioned in Section 4.4.2 and described in detail in NITE D2.2. We strongly recommend
using the coding module entries for a thorough description of a coding scheme to make it
usable to others than its creator(s). The coding module description will be supported by the
NITE software. The descriptions below serve to exemplify the use of the NITE coding
module and, at the same time, present in detail four coding schemes which may be
incorporated in the NITE software to the extent time allows. Note that ToonFace already
comes with an editor which is tailored to support markup using the ToonFace coding scheme.

6.1 MPEG-4
1. Name:
MPEG-4 SNHC (Moving Pictures Expert Group, Synthetic/Natural Hybrid Coding)
2. Author(s):
The Moving Picture Experts Group (MPEG) is a working group of ISO/IEC in charge of the
development of international standards for compression, decompression, processing, and
coded representation of moving pictures, audio and their combination.
Contact person:
Leonardo Chiariglione
Telecom Italia Lab
Via G. Reiss Romoli, 274
I-10148 Torino (Italy)
tel: +39 011 228 6120 / 6116 / 5111
fax: +39 011 228 6299 / 6190 /5520
Email: leonardo.chiariglione@tilab.com
Homepage: http://leonardo.tilab.com
The Moving Pictures Expert Group’s Homepage: http://mpeg.telecomitalialab.com/
3. Version:
Not applicable.
4. Notes:
More information can be found here:
A description of MPEG-4: http://ligwww.epfl.ch/mpeg4
A description of parameter-based facial animation:
http://www.research.att.com/~osterman/AnimatedHead/index.html
A description of MPEG-4 compliant facial animation and Hybrid Video Coding: http://www-
dsp.com.dist.unige.it/~pok/RESEARCH/index.htm
Tutorial issue on the MPEG-4 standard: Elsevier:
http://leonardo.telecomitalialab.com/icjfiles/mpeg-4_si/
Papers:
P. Doenges, F. Lavagetto, J. Ostermann, I.S. Pandzic and E. Petajan: MPEG-4: Audio/Video
and Synthetic Graphics/Audio for Mixed Media. Image Communications Journal, vol. 5(4),
May 1997.

NITE D2.3 Draft version

24

J. Ostermann: Animation of synthetic faces in MPEG-4. Computer Animation'98,
Philadelphia, USA, pp. 49-51, June 1998.
E. Petajan: Facial Animation Coding, Unofficial Derivative of MPEG-4. Work-in-Progress,
Human Animation Working Group, VRML Consortium, 1997.
5. Purpose of the coding module:
MPEG-4 is an object-based multimedia compression standard, which allows for encoding of
different audio-visual objects (AVO). The MPEG-4 SNHC group proposes an architecture for
the efficient representation and coding of synthetically and naturally generated audio-visual
information. MPEG-4 foresees that talking heads will serve an important role in future
customer service applications. For example, a customised agent model can be defined for
games or web-based customer service applications. To this effect, MPEG-4 enables
integration of face animation with multimedia communications and presentations and allows
face animation over low bit rate communication channels, for point-to-point as well as multi-
point connections with low-delay. MPEG-4 also has derived a standard for facial animation
coding.
6. Coding level(s):
MPEG-4 can be used for coding of facial expressions.
7. Description of data source type(s) required for use of the coding module:
The application of the coding scheme produces a text file while the application of this file
produces an animated face which requires video rendering.
8. Explanation of references to other coding modules:
None, really. But note the following pre-condition. The coding scheme is meant to define a
set of parameters to define and control facial models. A representation of a generic face with a
neutral expression is required as point of departure. The shape, texture and expressions of the
face are controlled by Facial Definition Parameters (FDPs) and/or Facial Animation
Parameters (FAPs). Application of animation parameters will produce animation of the face.
Definition parameters serve to change the appearance of the face from something generic to a
particular face with its own shape and (optionally) texture.
9. Coding procedure:
It is probably sufficient to let one expert coder make the encoding and then let another coder
check the result by watching the animated face.
10. Coding example showing the markup in use:
The picture of the 3D face in Figure 6.1.1 has been generated from a set of FAP values. FAP
values are explained under entry 11. Figure 6.1.7 shows an example of FAP values. Note that
Figures 6.1.1 and 6.1.7 are not related.

NITE D2.3 Draft version

25

Figure 6.1.1. Facial expression generated from a set of FAP values.

11. Clear description of each phenomenon, example(s) of each phenomenon:
MPEG-4 defines a generic face model in its neutral state matching properties of a human face
in its relaxed state. The head in its neutral state is defined as follows:

• gaze is in direction of Z axis
• all face muscles are relaxed
• eyelids are tangent to the iris
• the pupil is one third of the diameter of the iris
• lips are in contact
• the line of the lips is horizontal and at the same height as the lip corners
• the mouth is closed and the upper teeth touch the lower ones
• the tongue is flat, horizontal with the tip of tongue touching the boundary

between upper and lower teeth

Feature Points:

For the animator to interpret the FAP values using its face model, the animator has to have
predefined model specific animation rules to produce the facial action corresponding to each
FAP. MPEG-4 specifies 84 feature points on the neutral face (see Figure 6.1.2). The main
purpose of these feature points is to provide spatial references for defining FAPs. Some
feature points such as the ones along the hairline are not affected by FAPs. However, they are
required for defining the shape of a proprietary face model using feature points. Feature points
are arranged in groups like cheeks, eyes, and mouth. The location of these feature points has
to be known for any MPEG-4 compliant face model. The feature points on the model should
be located according to Figure 6.1.2.

NITE D2.3 Draft version

26

Figure 6.1.2. Feature points may be used to define the shape of a proprietary face model. The facial animation
parameters are defined by motion of some of these feature points.

Deforming a neutral face model according to some specified FAP values at each time instant
generates a facial animation sequence. The FAP value for a particular FAP indicates the
magnitude of the corresponding action, e.g., a big versus a small smile or deformation of a
mouth corner. For an MPEG-4 terminal to interpret the FAP values using its face model, it
has to have predefined model-specific animation rules to produce the facial action
corresponding to each FAP. The terminal can either use its own animation rules or download
a face model and the associated face animation tables (FAT) to generate customised animated

NITE D2.3 Draft version

27

behaviour. Since the FAPs are required to animate faces of different sizes and proportions, the
FAP values are defined in face animation parameter units (FAPUs). The FAPUs are computed
from spatial distances between major facial features on the model in its neutral state.

Face Animation Parameter Units:

A FAPU and the feature points used to derive the FAPU are defined with respect to the face
in its neutral state, cf. Figure 6.1.3.

Figure 6.1.3. A face model in its neutral state and the feature points used to define FAP units (FAPU). Fractions
of distances between the marked key features are used to define FAPUs (Face Animation Parameter Units).

In order to define face animation parameters for arbitrary face models, MPEG-4 defines
FAPUs that serve to scale facial animation parameters for any face model. FAPUs are defined
as fractions of distances between key facial features (see Figure 6.1.3.). These features, such
as eye separation, are defined on a face model that is in the neutral state. The FAPU allows
interpretation of the FAPs on any facial model in a consistent way, producing reasonable
results in terms of expression and speech pronunciation. The measurement units are shown in
Figure 6.1.4.

IRISD0 Iris diameter (by definition it is equal to the distance between upper and lower

eyelid) in neutral face
IRISD = IRISD0 /
1024

ES0 Eye separation ES = ES0 / 1024
ENS0 Eye - nose separation ENS = ENS0 / 1024
MNS0 Mouth - nose separation MNS = MNS0 / 1024
MW0 Mouth width MW=MW0 / 1024
AU Angle unit 10E-5 rad

Figure 6.1.4. Facial animation parameter units and their definitions.

Face Animation Parameters:

The FAPs are based on the study of minimal perceptible actions and are closely related to
muscle actions. FAPs represent a complete set of basic facial actions including head motion,
tongue, eye, and mouth control. They allow representation of natural facial expressions. There
are 68 parameters that are categorised into 10 groups related to parts of the face, cf. Figures
6.1.5 and 6.1.6. For each FAP, the standard defines the appropriate FAPU, FAP group,
direction of positive motion and whether the motion of the feature point is unidirectional (see,

NITE D2.3 Draft version

28

e.g., FAP 3, open jaw) or bi-directional (see, e.g., FAP 48, head pitch). FAPs can also be used
to define facial action units. Exaggerated amplitudes permit the definition of actions that are
normally not possible for humans, but are desirable for cartoon-like characters.

Group Number of FAPs
1. Visemes and expressions 2
2. Jaw, chin, inner lowerlips, cornerlips,
midlips

16

3. Eyeballs, pupils, eyelids 12
4. Eyebrow 8
5. Cheeks 4
6. Tongue 5
7. Head rotation 3
8. Outer lip positions 10
9. Nose 4
10. Ears 4

Figure 6.1.5. FAP groups and number of FAPs per group.

The FAP set contains two high-level parameters, visemes and expressions (FAP group 1). A
viseme (FAP 1) is a visual correlate to a phoneme. Only 14 static visemes that are clearly
distinguished are included in the standard set. In MPEG-4, transitions from one viseme to the
next are defined by blending only two visemes with a weighting factor.
The expression parameter FAP 2 defines 6 primary facial expressions (anger, joy, fear,
sadness, disgust and surprise). In contrast to visemes, facial expressions are animated by a
value defining the excitation of the expression. Two facial expressions can be animated
simultaneously with amplitude in the range of [0-63] defined for each expression. The facial
expression parameter values are defined by textual descriptions. The expression parameter
allows for an efficient means of animating faces. They are high-level animation parameters. A
face model designer creates them for each face model.
The remaining FAPs (66) are clustered in different groups (such as outer lip, cheeks,
eyebrow). With the exception of some FAPs which control the head rotations, the eyeball
rotations etc, each low-level FAP indicates the translation of the corresponding feature point,
with respect to its position in the neutral face, along one of the coordinate axes.

FAP name FAP description

U
nits

U
ni-

or
bidirectiona

Position
m

otion

G
roup

FD
P

subgrou p
num

ber

1 viseme Set of values determining the mixture of two visemes for
this frame (e.g. pbm, fv, th)

na na na 1 na

2 expression A set of values determining the mixture of two facial
expression na na na 1 na

3 open_jaw Vertical jaw displacement (does not affect mouth opening) MNS U down 2 1

4 lower_t_midlip Vertical top middle inner lip displacement MNS B down 2 2

5 raise_b_midlip Vertical bottom middle inner lip displacement MNS B up 2 3

6 stretch_l_cornerlip Horizontal displacement of left inner lip corner MW B left 2 4

7 stretch_r_cornerlip Horizontal displacement of right inner lip corner MW B right 2 5

NITE D2.3 Draft version

29

FAP name FAP description

U
nits

U
ni-

or
bidirectiona

Position
m

otion

G
roup

FD
P

subgrou p
num

ber

8 lower_t_lip_lm Vertical displacement of midpoint between left corner and
middle of top inner lip MNS B down 2 6

9 lower_t_lip_rm Vertical displacement of midpoint between right corner and
middle of top inner lip MNS B down 2 7

10 raise_b_lip_lm Vertical displacement of midpoint between left corner and
middle of bottom inner lip MNS B up 2 8

11 raise_b_lip_rm Vertical displacement of midpoint between right corner and
middle of bottom inner lip MNS B up 2 9

12 raise_l_cornerlip Vertical displacement of left inner lip corner MNS B up 2 4

13 raise_r_cornerlip Vertical displacement of right inner lip corner MNS B up 2 5

14 thrust_jaw Depth displacement of jaw MNS U forward 2 1

15 shift_jaw Side to side displacement of jaw MW B right 2 1

16 push_b_lip Depth displacement of bottom middle lip MNS B forward 2 3

17 push_t_lip Depth displacement of top middle lip MNS B forward 2 2

18 depress_chin
Upward and compressing movement of the chin
(like in sadness)

MNS B up 2 10

19 close_t_l_eyelid Vertical displacement of top left eyelid IRISD B down 3 1

20 close_t_r_eyelid Vertical displacement of top right eyelid IRISD B down 3 2

21 close_b_l_eyelid Vertical displacement of bottom left eyelid IRISD B up 3 3

22 close_b_r_eyelid Vertical displacement of bottom right eyelid IRISD B up 3 4

23 yaw_l_eyeball Horizontal orientation of left eyeball AU B left 3 5

24 yaw_r_eyeball Horizontal orientation of right eyeball AU B left 3 6

25 pitch_l_eyeball Vertical orientation of left eyeball AU B down 3 5

26 pitch_r_eyeball Vertical orientation of right eyeball AU B down 3 6

27 thrust_l_eyeball Depth displacement of left eyeball ES B forward 3 5

28 thrust_r_eyeball Depth displacement of right eyeball ES B forward 3 6

29 dilate_l_pupil Dilation of left pupil IRISD B growing 3 5

30 dilate_r_pupil Dilation of right pupil IRISD B growing 3 6

31 raise_l_i_eyebrow Vertical displacement of left inner eyebrow ENS B up 4 1

32 raise_r_i_eyebrow Vertical displacement of right inner eyebrow ENS B up 4 2

33 raise_l_m_eyebrow Vertical displacement of left middle eyebrow ENS B up 4 3

34 raise_r_m_eyebrow Vertical displacement of right middle eyebrow ENS B up 4 4

35 raise_l_o_eyebrow Vertical displacement of left outer eyebrow ENS B up 4 5

36 raise_r_o_eyebrow Vertical displacement of right outer eyebrow ENS B up 4 6

37 squeeze_l_eyebrow Horizontal displacement of left eyebrow ES B right 4 1

38 squeeze_r_eyebrow Horizontal displacement of right eyebrow ES B left 4 2

39 puff_l_cheek Horizontal displacement of left cheek ES B left 5 1

40 puff_r_cheek Horizontal displacement of right cheek ES B right 5 2

41 lift_l_cheek Vertical displacement of left cheek ENS U up 5 3

42 lift_r_cheek Vertical displacement of right cheek ENS U up 5 4

43 shift_tongue_tip Horizontal displacement of tongue tip MW B right 6 1

44 raise_tongue_tip Vertical displacement of tongue tip MNS B up 6 1

45 thrust_tongue_tip Depth displacement of tongue tip MW B forward 6 1

46 raise_tongue Vertical displacement of tongue MNS B up 6 2

47 tongue_roll Rolling of the tongue into U shape AU U
concave
upward

6 3, 4

48 head_pitch Head pitch angle from top of spine AU B down 7 1

49 head_yaw Head yaw angle from top of spine AU B left 7 1

50 head_roll Head roll angle from top of spine AU B right 7 1

NITE D2.3 Draft version

30

FAP name FAP description

U
nits

U
ni-

or
bidirectiona

Position
m

otion

G
roup

FD
P

subgrou p
num

ber

51 lower_t_midlip _o Vertical top middle outer lip displacement MNS B down 8 1

52 raise_b_midlip_o Vertical bottom middle outer lip displacement MNS B up 8 2

53 stretch_l_cornerlip_o Horizontal displacement of left outer lip corner MW B left 8 3

54 stretch_r_cornerlip_o Horizontal displacement of right outer lip corner MW B right 8 4

55 lower_t_lip_lm _o Vertical displacement of midpoint between left corner and
middle of top outer lip MNS B down 8 5

56 lower_t_lip_rm _o Vertical displacement of midpoint between right corner and
middle of top outer lip MNS B down 8 6

57 raise_b_lip_lm_o Vertical displacement of midpoint between left corner and
middle of bottom outer lip MNS B up 8 7

58 raise_b_lip_rm_o Vertical displacement of midpoint between right corner and
middle of bottom outer lip MNS B up 8 8

59 raise_l_cornerlip_o Vertical displacement of left outer lip corner MNS B up 8 3

60 raise_r_cornerlip _o Vertical displacement of right outer lip corner MNS B up 8 4

61 stretch_l_nose Horizontal displacement of left side of nose ENS B left 9 1

62 stretch_r_nose Horizontal displacement of right side of nose ENS B right 9 2

63 raise_nose Vertical displacement of nose tip ENS B up 9 3

64 bend_nose Horizontal displacement of nose tip ENS B right 9 3

65 raise_l_ear Vertical displacement of left ear ENS B up 10 1

66 raise_r_ear Vertical displacement of right ear ENS B up 10 2

67 pull_l_ear Horizontal displacement of left ear ENS B left 10 3

68 pull_r_ear Horizontal displacement of right ear ENS B right 10 4

Figure 6.1.6. The list and descriptions of the 68 facial animation parameters (FAPs).

Face Animation Stream:

Coding produces a sequence of frames (FAP Frames) which are meant to be sent as a stream
to an animator. One FAP frame carries information for rendering one image on the client side.
Thus, to achieve smooth face animation, usually 20~30 FAP frames per second are
transmitted. A FAP frame is a sequence of up to 68 integers, each specifying a movement
offset for a corresponding FAP.
To conserve bandwidth it is possible to mask out FAP’s the values of which are not affected
in the transmitted frame. FAP bitmask may be specified either once in the stream header for
the entire stream, or it may be included in each frame one 0 or 1 for each of the 68 FAPs
indicating whether it is used. Figure 6.1.7 shows an example of a frame with a preceding FAP
bitmask. The line of FAP values starts with the frame number followed by the FAP values for
the FAPs in use. A zero value for any FAP indicates a neutral face.

0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0….
12 -361 311 31 150 15 -145 -175 0

Figure 6.1.7. Frame with a FAP bitmask.

Another way to minimise used bandwidth is to omit values for FAPs, that may be calculated
from other FAPs. For example: left ↔ right parts of a face, or inner ↔ outer lip contours.
Generation of FAP files may be achieved manually or automatically by employing image
processing algorithms which are capable of identifying and tracking facial features.

NITE D2.3 Draft version

31

12. Description of markup language/markup declaration:
FAPs represent a complete set of basic facial actions including head motion, tongue, eye, and
mouth control. MPEG-4 includes 68 FAPs which are listed in Figure 6.1.6. These are the
concepts used during annotation.
13. Coding files referenced:
Not applicable.

NITE D2.3 Draft version

32

6.2 FACS
1. Name:
Facial Action Coding System – FACS
2. Author(s):
FACS was developed by Paul Ekman and Wallace Friesen at the Langley Porter
Neuropsychiatric Institute in San Francisco in 1975.
Paul Ekman
Department of Psychiatry
University of California
San Francisco
Email: ekmansf@itsa.ucsf.edu
3. Version:
Not applicable.
4. Notes:
FACS has no website of its own, but more information on the coding scheme can be found
here:
P. Ekman and W. Friesen: Facial Action Coding System. Consulting Psychologists Press, Inc.
1978.
P. Ekman and W. Friesen: Unmasking the Face: A guide to recognize emotions from facial
clues. Prentice-Hall, Inc. 1975.
P. Ekman, and E. Rosenberg (Editors): What the face reveals: Basic and Applied Studies of
Spontaneous Expression using the Facial Action Coding System (FACS). Oxford University
Press, Oxford. 1997.
Ekman, P., Huang, T.S., Sejnowski, T.J. and Hager, J.C.: Report To NSF of the Planning
Workshop on Facial Expression Understanding. 1992. Can be found at:
http://mambo.ucsc.edu/psl/nsf.txt

In order to recognise the subtle changes of facial expressions, several researchers propose to
recognise minimal facial signals and combine the signals to recognise the complete facial
expressions. That is, rather than trying to recognise the entire facial expression they are
working on recognising singular facial actions. The facial expression is then deduced by
combining several facial actions. This recognition method is based on The Facial Action
Coding System, FACS. FACS is a system to measure facial signals using minimal action units
(AUs). This recognition method follows the same logic as FACS as it looks at singular facial
actions.
Cohn developed a facial recognition system composed of three modules. These modules are
used to extract information on facial actions. One module extracts information on particular
facial features (e.g., brows, mouth), another gets data from larger facial regions (such as chin
and cheek) and the final module looks at the appearance of the wrinkles and furrows. The
combination of the information provided from the three modules gives good and precise
results. More precisely, the feature-point tracking module tracks feature points within a small
feature window. The authors also employ a neural network to recognise the action units after
the facial features are correctly extracted and suitably represented. Eleven basic lower face
action units and combinations (Neutral, AU9, AU 10, AU 12, AU 15, AU 17, AU 20, AU 25,
AU 26, AU 27, and AU23+24) and seven basic upper face action units (Neutral, AU1, AU2,
AU4, AU5, AU6, AU7) are identified by a single neural network for lower face and upper
face separately. The recognition rate results are comparable to the rate obtained by highly

NITE D2.3 Draft version

33

trained FACS coders. The results of recognising single AUs (except for the combination of
AU23 + AU24) is more than 95% agreement.
Bartlett has examined several techniques to measure facial actions from the upper face: PCA,
optical flow and feature measurement. The authors also combined all three methods (hybrid
system) in a single neural network. The four techniques were compared on the same dataset of
face image sequences. The dataset was built by asking an actor to perform specific facial
actions (corresponding to Action Units as defined in FACS). Each sequence started with the
neutral expression. All the faces in the datasets were transformed (scaled, rotated...) so that
the facial features of all the faces were aligned. Moreover, the images were cropped in order
to contain only the upper part of the face. The best recognition result is obtained for the
hybrid system: 92.2%. The results were compared with recognition rates from both naive and
expert coders. To both types of coders were given a set of pair of images consisting in the
neutral image along with the test image. The neutral image served as a reference basis for the
recognition task. Test images contained different faces performing several AUs at low,
medium, and high intensity. A training session was given to the naive subjects. Naive coders
arrived at 73.7% agreement while expert coders showed 91.8% agreement in their recognition
results. The recognition rate obtained with the hybrid method is similar to the one from the
expert coders. This is an encouraging result. But as the authors pointed out, the system should
be tested on spontaneous expressions. These expressions are often blended expressions,
increasing enormously the complexity of the recognition task.
Bartlett, M.S., Hager, J.C., Ekman, P., and Sejnowski, T.J.: Measuring facial expressions by
computer image analysis. Journal of Psychophysiology, vol. 36, pp. 253-263, 1999.
Bartlett, M.S., Viola, P. A., Sejnowski, T. J., Golomb, B.A., Larsen, J., Hager, J. C., and
Ekman, P.: Classifying facial action. Advances in Neural Information Processing Systems 8,
MIT Press, Cambridge, MA. p. 823-829, 1996.
Donato, G.L., Bartlett, M.S., Hager, J.C., Ekman, P., and Sejnowski, T.J.: Classifying Facial
Actions. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(10) p. 974-989.
1999.
Kanade, T., Cohn, J.F., and Tian, Y.: Comprehensive Database for Facial Expression
Analysis.
5. Purpose of the coding module:
FACS was developed by Paul Ekman and Wallace Friesen in 1975 in order to encode facial
expression. Paul Ekman, Wallace Friesen, and S.S. Tomkins had already developed another
system called the Facial Affect Scoring Technique (FAST) that is not used any more. FACS is
a further development of that technique.
The FACS system is meant to allow expert coders to manually measure facial expressions by
breaking them down into component movements of individual facial muscles (Action Units).
6. Coding level(s):
The coding scheme covers the annotation level of facial expression.
7. Description of data source type(s) required for use of the coding module:
Any visual data, image or video.
8. Explanation of references to other coding modules:
None.
9. Coding procedure:
Coders spend approximately 100 hours learning FACS. To use the coding scheme, the coder
repeatedly views records of behaviour in slowed and stopped motion to determine which AU
or combination of AUs best account for the observed changes.
At least one expert coder should code a corpus. If high reliability of results is important, two
expert coders should be used.

NITE D2.3 Draft version

34

10. Coding example showing the markup in use:
Figures 6.2.1 provides a drawn illustration of examples of AUs.

Figure 6.2.1. AU1 corresponds to the raise of the inner brow while AU2 corresponds to the raise of the outer
brow. AU4 corresponds to a lowering of the brow. Their combination is the action of both AUs simultaneously.

For example, AU1+2 raises the inner and the outer part of the brow.

To perform AU1+2, one should simply raise one’s eyebrows. It is an easy action to perform
which is not the case of every AU. Indeed, some AUs can be difficult to execute separately
and/or consciously; but once they appear in combination or as part of a conversational signal,
emotion or any type of spontaneous facial expression, they are easily produced.
Doing the expression of AU1+2, one can notice the following facial changes:

• apparition of wrinkles on the forehead. For some people no wrinkle appears but the
skin of the forehead bulges nevertheless. The wrinkles are much more apparent than in
neutral position (that is without expression). They are deeper.

• the entire eyebrow is raised.
• the eye cover (it is the part between the eye and the brow) becomes more apparent.
• in case people have heavy eye cover, this action raises it, making apparent their eyelid

that usually disappear under their eye cover.
In the description of each AU, minimum requirements for scoring the AU are defined. For
AU1+2, the minimum requirements are not simply the sum of both minimum requirements
for AU1 and AU2. They correspond to the facial changes explained above but in low
intensity. That is, the entire eyebrow is raised slightly with slight apparition of wrinkles on the
forehead and/or slight apparition of the eye cover.
Figure 6.2.2 shows a combination of AUs on a human face.

NITE D2.3 Draft version

35

Figure 6.2.2. AUs 10+15. AU-10 raises the upper lip and curves the nasolabial fold (action of levator labii
superioris). AU-15 pulls the corners of the lips downwards obliquely (action of triangularis).

For more examples see:
From P. Ekman, W. Friesen: Unmasking the face: A guide to recognizing emotions from
facial clues. Prentice-Hall, INC. Englewood Cliffs, New-Jersey, 1975.
11. Clear description of each phenomenon, example(s) of each phenomenon:
FACS involves four operations:

• determining which AUs are responsible for the observed movements.
• scoring the intensity of the actions on a three-point scale: low (X), medium (Y), and

high (Z).
• deciding whether an action is asymmetrical or unilateral.
• determining the position of the head and the position of the eyes during a facial

movement.
Most of the AUs combine additively. In other cases, rules of dominance, substitution or
alternation take over. The dominance rule dictates when an AU disappears for the benefit of
another AU. The substitution rule allows for the elimination of certain AUs when others
produce the same effects. Finally, the alternation rule takes over when AUs cannot combine.
A facial expression is the result of different AUs. Describing a facial expression consists in
recognising which AU is responsible for which facial action.
Paul Ekman explains: “A FACS coder "dissects" an observed expression, decomposing it into
the specific AUs, which produced the movement. The coder repeatedly views records of
behaviour in slowed and stopped motion to determine which AU or combination of AUs best
account for the observed changes. The scores for a facial expression consist of the list of AUs,
which produced it. The precise duration of each action is also determined, and the intensity of
each muscular action and any bilateral asymmetry is rated. In the most elaborate use of FACS,
the coder determines the onset (first evidence) of each AU, when the action reaches an apex
(asymptote), the end of the apex period when it begins to decline, and when it disappears from
the face completely (offset). These time measurements are usually much more costly to obtain
than the decision about which AU(s) produced the movement, and in most research only onset
and offset have been measured.” The quotation is taken from:
Paul Ekman, Thomas S. Huang, Terrence J. Sejnowski and Joseph C. Hager: Report To NSF
of the Planning Workshop on Facial Expression Understanding. 1992. Can be found at:
http://mambo.ucsc.edu/psl/nsf.txt
Any visible change on the face (muscle deformation, apparition of wrinkles / bulges, folds),
and secondary movements can be annotated by the FACS scheme.

NITE D2.3 Draft version

36

AUs Name AU Name

AU1 Inner Brow Raiser AU31 Jaw Clencher
AU2 Outer Brow Raiser AU32 Lip Bite
AU4 Brow Lowerer AU33 Cheek Blow
AU5 Upper Lid Raiser AU34 Cheek Puff
AU6 Cheek Raiser, Lid

Compressor
AU35 Cheek Suck

AU7 Lid Tightener AU36 Tongue Bulge
AU8 Lips Toward Each Other AU37 Lip Wipe
AU9 Nose Wrinkler AU38 Nostril Dilator
AU10 Upper Lip Raiser AU39 Nostril Compressor
AU11 Nasolabial Furrow Deepener AU41 Lip Droop
AU12 Lip Corner Puller AU42 Slit
AU13 Sharp Lip Puller AU43 Eyes Closed
AU14 Dimpler AU44 Squint
AU15 Lip Corner Depressor AU45 Blink
AU16 Lower Lip Depressor AU46 Wink
AU17 Chin Raiser AU51 Head Turn Left
AU18 Lip Pucker AU52 Head Turn Right
AU19 Tongue Show AU53 Head Up
AU20 Lip Stretcher AU54 Head Down
AU21 Neck Tightener AU55 Head Tilt Left
AU22 Lip Funneler AU56 Head Tilt Right
AU23 Lip Tightener AU57 Head Forward
AU24 Lip Presser AU58 Head Back
AU25 Lips Part AU61 Eyes Turn Left
AU26 Jaw Drop AU62 Eyes Turn Right
AU27 Mouth Stretch AU63 Eyes Up
AU28 Lip Suck AU64 Eyes Down
AU29 Jaw Thrust AU65 Walleye
AU30 Jaw Sideways AU66 Cross-eye

Figure 6.2.3. List of action units (AUs).

12. A markup declaration of the tags for the phenomena which can be marked up using
the coding module:
An AU is a minimal visible action. It corresponds to the action of a muscle or a group of
related muscles. Each AU describes the direct effect of muscle contraction as well as
secondary effects due to movement propagation and the presence of wrinkles and bulges.
Available AUs are listed in Figure 6.2.3.
13. Coding files referenced:
Not applicable.

NITE D2.3 Draft version

37

6.3 Toonface
1. Name:
Toonface.
2. Author(s):
ToonFace was created by Kristinn R. Thórisson at the M.I.T.Media Laboratory:
http://www.media.mit.edu/
An extension of ToonFace, CharToon, has been developed at CWI under the supervision of
P.J.W ten Hagen as part of the European project Facial Analysis and Synthesis of Expressions
(FASE), 1997- 2000. See H. Noot and M. Ruttkay: CharToon 2.0 manual. INS-R0004, ISSN
1386-3681. 2000. Can be downloaded from: http://www.cwi.nl/ftp/CWIreports/INS/INS-
R0004.ps.Z.
3. Version:
Not applicable.
4. Notes:
A description of the ToonFace animation framework:
http://xenia.media.mit.edu/~kris/gandalf.html
References to additional information on the coding scheme:
Thórisson, K. R.: ToonFace: A System for Creating and Animating Cartoon Faces. Learning
& Common Sense Section Technical Report 1-96. 1996. Can be downloaded from:
http://xenia.media.mit.edu/~kris/ftp/toonface.pdf
For more details on FASE, see:
The Facial Analysis and Synthesis of Expression homepage:
http://www.cwi.nl/projects/FASE/
The Facial Analysis and Synthesis of Expression Chartoon homepage:
http://www.cwi.nl/projects/FASE/CharToon/
5. Purpose of the coding module:
ToonFace is a coding scheme to code 2D facial expression with limited detail.
6. Coding level(s):
ToonFace can be used to code facial expressions.
7. Description of data source type(s) required for use of the coding module:
The application of the coding scheme produces a text file while the application of this file
produces an animated face which requires video rendering.
8. Explanation of references to other coding modules:
None, really. But note the following pre-condition. The coding scheme is meant to define a
set of parameters to define and control a 2D facial model. A representation of a face with a
neutral expression is therefore required as point of departure.
9. Coding procedure:
Probably is it sufficient to let one expert coder make the encoding and then let another coder
check to result by watching the animated face.
10. Coding example showing the markup in use:
ToonFace consist of two parts, an editor and an animation engine or animator. The editor
supports markup via a graphical interface. Faces are constructed in the editor by drawing a
number of polygons. Figure 6.3.1 shows examples of faces created using Toonface

NITE D2.3 Draft version

38

Figure 6.3.1. Examples of faces created with Toonface.

11. Clear description of each phenomenon, example(s) of each phenomenon:
A face is divided into seven main features: Two eye brows, two eyes, two pupils and a mouth.
The eyebrows have three control points each, the eyes and mouth four, and the pupils one
each, see also Figure 6.3.2. The ToonFace editor allows manipulation of a face by adjusting
control points, cf. entry 12.
12. A markup declaration of the tags for the phenomena which can be marked up using
the coding module:
Control points that can be animated are given the codes shown in Figure 6.3.2. These points
were selected to maximise the expressiveness/complexity tradeoff. In the case of points that
can move in two dimensions, each dimension is denoted as either "h" for horizontal or "v" for
vertical.

Figure 6.3.2. Codes used for the animated control points.

The following is a complete list of all one-dimensional motors that can be manipulated in a
face [control point number in brackets]:
Brl = brow/right/lateral [3]; Brc = brow/right/central [2]; Brm = brow/right/medial [1]
Bll = brow/left/lateral [6]; Blc = brow/left/central [5]; Blm = brow/left/medial [4]
Eru = eye/right/upper [7]; Erl = eye/right/lower [9]
Elu = eye/left/upper [8]; Ell = eye/left/lower [10]
Plh = pupil/right/horizontal [15]; Plv = pupil/left/vertical [15]
Prh = pupil/right/horiz [16-h]; Prv = pupil/right/vertical [16-v]
Mlh = mouth/left/horizontal [14-h]; Mlv = mouth/left/vertical [14-v]
Mrh = mouth/right/horizontal [13-h]; Mrv = mouth/right/vertical [13-v]
Mb = mouth/bottom [12]
Hh = head/horizontal [17-h]; Hv = head/vertical [17-v]
Horizontal motion is coded as 0, vertical as 1. Each of the motors can move a control point
between a minimum and a maximum position (for a given dimension). Thus, max and min
values mark the limits of movement for each motor. For the eyes and head, these are given in
degrees, (0,0) being straight out of the screen; upper left quadrant being (pos, pos), lower left
quadrant being (pos, neg)
13. Coding files referenced: Not applicable.

NITE D2.3 Draft version

39

6.4 McNeill’s Gesture Coding Scheme
1. Name:
Since there is no official name, we simply refer to the scheme’s creator David McNeill.
2. Author(s):
The coding scheme was developed by David McNeill and colleagues and described in
McNeill’s book Hand and Mind (1992).
3. Version:
Not applicable.
4. Notes:
Although this scheme has been used by many researchers, the specific instances may diverge
strongly from each other. Some researchers may only use a subset of the scheme, others may
have added new features. Still, the original scheme is a good starting point for finding a
gesture coding scheme that can be later tailored to fit a specific research aim.
5. Purpose of the coding module:
The scheme is used to transcribe hand and arm gestures for psycholinguistic research. Note
that most raw data was of average people trying to retell a cartoon story they had seen before
(Sylvester and Tweety). Therefore, the scheme is tailored to cover the many iconic and deictic
gestures that usually accompany such a narration. More generic/abstract conversational
gestures (e.g. metaphorics) were less in the focus of research.
6. Coding level(s):
The scheme can be used to code manual gestures. The original scheme also suggests as
another level the transcription of speech. For brevity, speech transcription is not elaborated
here.
7. Description of data source type(s) required for use of the coding module:
The application of the coding scheme produces a text file.
8. Explanation of references to other coding modules:
The temporal location of gestures can be either encoded (1) with reference to time or (2) with
reference to speech (words or syllables). In the original form, at a time where coders did not
use computers, coders used references to the typed speech transcription to temporally localise
gestures. Reference to time is more precise and thus preferable.
9. Coding procedure:
Some time needed to synchronise the coders’ interpretations since not all concepts are clearly
defined. McNeill (1992:375) emphasises “the great extent to which our procedure relies on
discussion”. Gesture transcription takes place in the following rough steps:

1. Identify the movements that are gestures.
2. Identify the preparation, stroke and retraction phases of the gestures.
3. Locate the gesture phase boundaries in the relevant part of the speech transcription

(better: mark boundaries on a timeline).
4. Locate gesture movements in space. McNeill (1992:378) gives a definition of regions

based on concentric circles around the speaker’s chest (Figure 6.4.1).

Steps 1 and 2, identification of gestures and their movement phases, can be performed with
the procedure described by Kita et al. (1998) which will not be further elaborated here. Step 3
is not necessary when coding gesture boundaries relative to a timeline (absolute time). For
step 4, look at Figure 6.4.1. Gesture space will be used at various places in the detailed coding
procedure as described under item 12.

NITE D2.3 Draft version

40

Figure 6.4.1. Segmentation of gesture space, taken from (McNeill 1992:378).

10. Coding example showing the markup in use:
Figure 6.4.2 shows an iconic gesture that has been sample coded by McNeill (1992:382). The
gesture was performed while recounting a cartoon with protagonists Sylvester (S) and Tweety
Bird (TB).

Figure 6.4.2. Sample iconic gesture, taken from (McNeill 1992:382).

The gesture is coded as follows:

Speech [so he’s looking at Tweety Bird]
Gesture type iconic
Which hand 2SH
Shape O-hand
Palm/finger orientation PTC, FAB
Hand place at eyes

NITE D2.3 Draft version

41

Motion shape and place no motion
Hand meaning (H) Sylvester’s hands holding binoculars
Motion meaning (M) no motion
Body meaning (B) Sylvester
Space meaning (S) space between Sylvester and Tweety Bird
Gloss S is looking through binoculars at TB
Viewpoint C-VPT (Sylvester)
Beat filter 4 (Q1 = yes, Q2 = 2, Q3 = yes, Q4 = nonapplicable)
Confidence 5

11. Clear description of each phenomenon, example(s) of each phenomenon:
See next section.
12. A markup declaration of the tags for the phenomena which can be marked up using
the coding module:
The following is a restructured account of the procedure described by McNeill (1992:377-
382). It describes how to transcribe a gesture once its temporal boundaries have been
identified. On the top level, a gesture is encoded in terms of (1) type, (2) form and (3)
meaning:

1. GESTURE TYPE
Classify the gesture into one of the following (use the beat filter below):

a. Representational: The gesture represents attributes, actions, relationships of
objects/characters; subclassify into iconic or metaphoric.

b. Deictic: Finger points or other indications of either concrete or imaginary
objects/people.

c. Beats: Formless hands that convey no information but move in rhythmic
relationship to speech.

Also attach a confidence value, i.e. a number reflecting the coder’s confidence that the
typing is correct, ranging from 1 (unsure) to 5 (certain).

2. FORM
In case of beats, only code form if it varies from the usual B-shape + up/down strokes.

a. Hand
i. handedness

1. RH: right hand
2. LH: left hand
3. 2SH: both hands, same shape
4. 2DH: both hands, different shape

ii. hand shape: use ASL4 (American Sign Language) handform descriptors
as depicted in Figure 6.4.3.

iii. palm/finger orientation
1. P/FTU: palm/finger toward up
2. P/FTD: palm/finger toward down

4 A table of used ASL descriptors is depicted in Figure 6.4.3, taken from (McNeill 1992:87/88). It is also

possible to use another decriptive system for hand shapes like HamNoSys.

NITE D2.3 Draft version

42

3. P/FAB: palm/finger away from body
4. P/FTB: palm/finger toward body
5. P/FAC: palm/finger away from center

iv. place in gesture space
b. Motion

i. shape of motion (trajectory)
1. TB: toward body
2. AB: away from body
3. PF: parallel to front of body
4. PS: parallel to side of body

ii. place in gesture space
iii. direction of motion

1. Uni-1: unidirectional, one movement
2. Uni-2: two movements, second one returning hand to starting

place
3. BiDir: bidirectional
4. 2SM: both hands move in same way (mirror)
5. 2DM: each hand moves own way

3. MEANING
(not coded for beats)

a. Hand
i. what does the hand represent (object, character, feature)?

ii. what viewpoint is the hand representing (C-VPT = character
viewpoint, O-VPT = observer viewpoint, D-VPT = dual viewpoint)?

b. Motion
i. what does the motion represent (action, features)?

ii. what viewpoint is the motion representing (character, observer or dual
viewpoint)?

The so-called beat filter allows one to better identify the gesture type where beats are formless
gestures. The following procedure, developed by Bill Eilfort (McNeill 1992:380-82), works
on a purely formal level without reference to meaning or function. It is a scoring system
where you add 1 for each yes answer to the following questions:

1. Does the gesture have more or less than two movement phases?

2. How many times does wrist/finger movement OR tensed stasis appear (ignore
retraction phase, add number to score)?

3. If the first movement is in noncentral space: is any other movement performed in
central space?

4. If there are exactly two movement phases: is the first phase in the same place as the
second phase?

A score of zero means a beat on formal grounds, higher scores reflect increasing iconicity.

NITE D2.3 Draft version

43

Figure 6.4.3. ASL hand shape codes, taken from (McNeill 1992:87/88).

13. Coding files referenced:
Not applicable.

