
NITE D2.2 November 2002

Project ref. no. IST-2000-26095

Project title NITE: Natural Interactivity Tools Engineering

Deliverable status Restricted
Contractual date of
delivery

1 February 2002

Actual date of
delivery

November 2002

Deliverable number D2.2

Deliverable title The NITE Markup Framework

Type Report

Status & version Final

Number of pages 41

WP contributing
to the deliverable

WP2

WP / Task
responsible

NISLab

Author(s) Laila Dybkjær, Niels Ole Bernsen, Jean Carletta, Stefan Evert,
Mykola Kolodnytsky, and Tim O'Donnell

EC Project Officer Philippe Gelin

Keywords Markup framework, raw data, coding module, coding file, meta-data,
natural interactivity, multi-level, cross-level, cross-modality

Abstract (for
dissemination)

This deliverable discusses, and proposes solutions to, the general issues
involved in creating a general standard for the markup of natural
interactivity corpora. It presents the NITE markup framework including
raw data, coding modules and coding schemes, coding files, and meta-
data, and it describes important issues to be addressed.
In addition, the deliverable presents the proposed realisation of the
markup framework in two of the three software strands in the NITE
project, i.e. the NITE WorkBench NWB and the NITE XML Toolkit,
NXT, respectively.

NITE D2.2 November 2002

NITE D2.2 November 2002

NITE Deliverable D2.2

The NITE Markup Framework

November 2002
Final

Authors
Laila Dybkjær1, Niels Ole Bernsen1, Jean Carletta2, Stefan Evert3,

Mykola Kolodnytsky1, and Tim O'Donnell2

1: NISLab, University of Southern Denmark, Denmark. 2: HCRC, Edinburgh, UK. 3: IMS, Stuttgart University, Germany.

NITE D2.2 November 2002

Section responsibilities

Sections 1-7: NISLab

Section 8 and Appendices A and B: HCRC and IMS

NITE D2.2 November 2002

Contents
1 Introduction ..1

2 The NITE markup framework ...3

3 Raw data and its meta-data..5

4 Coding module and coding scheme ...7

4.1 Coding module explained ...8
4.2 Example of a coding module...12

5 Coding files and their meta-data ..15

6 Important issues in natural interactivity coding..16

7 The NITE WorkBench approach ...17

7.1 Storing annotated data in a database..17
7.2 Entering and storing coding module information ...17
7.3 Entering and storing meta-data..22
7.4 Solving important issues via the database approach...22

8 The NITE XML Toolkit approach ...23

8.1 NXT storage for metadata and information about codings23
8.2 Codes (tags, annotations) ..24
8.3 The NXT metadata format ..26
8.4 Working with this information ..26

9 References ..27

10 Appendix A: NXT Metadata for a Simple Corpus..28

11 Appendix B: NXT Metadata for a Stand-off Corpus ..31

NITE D2.2 November 2002

NITE D2.2 November 2002

1

1 Introduction
This document presents a first version of the NITE markup framework. The NITE (Natural
Interactivity Tools Engineering, see nite.nis.sdu.dk) markup framework builds on the MATE markup
framework described in [Dybkjær et al. 1998]. However, whereas the MATE (Multi-level Annotation
Tools Engineering) project only addressed spoken language dialogue corpus annotation, NITE
addresses the general case of natural interactivity corpus annotation.
A natural interactivity corpus is a body of natural interactivity data which has been recorded. Natural
interactivity data includes human-human and human-machine communicative behaviour involving
some or all of the following modalities: speech, gesture, facial expression, gaze, head and body
posture, object manipulation as part of the communication, etc. The corpus typically consists of audio
files and/or video files. We shall refer to such data which has not yet been marked up in any way, as
raw data.
A natural interactivity corpus can be an almost inexhaustible source of information which can be used
for many different purposes. To turn a raw data corpus into an immediately useful information source,
the information which is relevant for the purpose in question must be reliably marked up using some
coding scheme or other, for audio data typically starting with some form of transcription. Following
the markup of one or several groups of phenomena in the corpus, the marked-up corpus can be
processed in many different ways in order to extract and exploit the marked-up information for
research, industrial, or other purposes. If the markup follows common standards, its re-use becomes
much easier. Moreover, it then becomes possible to develop general tools which support markup using
coding schemes which follow those common standards.
However, so far there are no firmly established standards for annotation of natural interactivity data.
At best, emerging standards are appearing in a few limited sub-areas of natural interactivity. For
instance, MPEG-4 (http://mpeg.telecomitalialab.com/standards/mpeg-4/mpeg-4.htm) may be viewed
as a de facto standard for basic facial markup. However, most current natural interactivity coding
schemes are home-grown, tailored to the particular needs of their creators, and not widely used by the
community at large.
Several initiatives are currently underway collecting information on best practice and standards in the
field and/or aiming to produce recommendations and propose standards. Among these initiatives are
ISLE (International Standards for Language Engineering) which includes a working group on natural
interactivity and multimodality (ISLE NIMM, isle.nis.sdu.dk), OLAC (Open Language Archives
Community, www.language-archives.org/docs.html), and the ISO TC37/SC4 group
(atoll.inria.fr/RLT/TC37SC4General.ppt). In addition to producing surveys of existing natural
interactivity and multimodality data resources, coding schemes, and coding tools, the ISLE NIMM
working group aims to produce guidelines for the creation of NIMM data resources and annotation
schemes. OLAC aims to create a worldwide virtual library of language resources, rather than natural
interactivity data resources more generally, by developing consensus on best current practice for the
digital archiving of language resources and by developing a network of interoperating repositories and
services for housing and accessing such resources. The scope of ISO TC37/SC4 is to specify a
platform for designing and implementing linguistic resource formats and processes, which means that
this group only addresses a limited aspect of natural interactivity. Further references to related bodies
and activities can be found in the ISLE deliverable D8.2 (isle.nis.sdu.dk). The present report discusses,
and proposes solutions to, the general issues involved in creating a general standard for the markup of
natural interactivity corpora. Section 2 introduces the NITE markup framework and describes the
problems to be addressed. Sections 3 through 5 discuss raw data (Section 3), coding modules and
coding schemes (Section 4), and coding files (Section 5), respectively. In addition, each of these
sections discusses related meta-data requirements. Section 6 discusses some challenging issues for the
markup framework, such as long-range dependencies and cross-level markup. Sections 7 and 8 present
the proposed realisation of the markup framework in two of the software strands in the NITE project,
i.e. the NITE WorkBench NWB (Section 7) and the NITE XML Toolkit, NXT (Section 8),
respectively.

NITE D2.2 November 2002

2

The NITE consortium follows a three-tiered approach in its development of NITE Markup
Framework-conformant coding tools for natural interactivity data annotation. Based on a common
requirements specification, the commercial partner Noldus Information Technology works towards
meeting some of the core NITE requirements in future releases of the company’s widely used The
Observer software package (see www.noldus.com). Based on the same specification, the NITE
academic partners are developing two different open source versions of the NITE toolset, i.e. the NITE
WorkBench for Windows, or NWB, which implements the NITE specifications in a Windows
environment familiar to all or most users, and the NITE XML Toolkit, or NXT, which is platform
independent and requires XML skills of its users. For more details on The Observer, NWB and NXT,
see nite.nis.sdu.dk, as well as, for NWB and NXT, Chapters 7 and 8 below, respectively.
Based on the markup framework solution proposed below, the framework will be implemented, tested,
and further refined in the NITE software, in particular in NWB and NXT. A broad selection of coding
schemes for markup of natural interactive communicative behaviours are presented in NITE
deliverable D2.1 [Serenari et al. 2002]. The issue of state-of-the-art natural interactivity coding
scheme selection will be addressed again in a slightly different context in the forthcoming NITE
deliverable D2.3. In this deliverable, selected best practice coding schemes are discussed for possible
inclusion in the NITE software and example schemes are represented in terms of coding modules in
accordance with the NITE Markup Framework.

NITE D2.2 November 2002

3

2 The NITE markup framework
The primary objective of NITE is to build an integrated best practice workbench for multi-level, cross-
level, and cross-modality annotation, retrieval, and exploitation of multi-party natural interactive
human-human and human-machine dialogue data. The NITE software will implement and support use
of the NITE markup framework. The NITE markup framework will build on, and extend, the MATE
standard markup framework to accommodate the needs of current and emerging coding modules for
natural interactivity coding. The notion of a coding module was introduced in the MATE markup
framework as an elaboration of the notion of a coding scheme and will be discussed at length in
Section 4.
The need for annotating and exploiting natural interactivity data is increasing rapidly. This is, first and
foremost, due to the emergence of advanced systems which enable natural interaction with their users
beyond what has been possible for more than a decade in the case of, e.g., spoken language dialogue
systems. The development of such systems requires annotated data and is expected to be strongly
facilitated by coding scheme standardisation and new, more powerful coding tools. However, the
range of purposes for which coded natural interactivity data may be used is in principle unlimited.
Some examples are the use of annotated data for training a particular system component and for
investigating a new class of natural interactive behaviours and their coordination with behaviours
which are well described in the research literature already.
The scope of a natural interactivity markup framework must be broad enough to support the multitude
of annotation purposes which people actually have, whether these purposes are academic or industrial,
purely theoretical or purely developmental, or any combination of those. Furthermore, the markup
framework should include a description of coding modules, a description of raw data and coding files,
a description of how several codings of the same raw data can co-exist and be interrelated (in cross-
level and cross-modality markup), and a description of how to handle other important issues, such as
time alignment, synchronous and asynchronous phenomena, long-range dependencies, relationships,
overlaps, quality of coding, markup semantics, and annotation of multi-party natural interactive
conversation.

Figure 2.1. General NITE markup framework file structure.

The NITE markup framework file structure is shown in Figure 2.1. The basic annotation process
requires a coding module and either raw data (audio and/or video) or an already annotated coding file
referencing raw data. A coding module consists of a coding scheme and meta-data information. When
applied to raw data or to an existing coding file, the coding scheme produces a new coding file.

NITE D2.2 November 2002

4

Coding file meta-data references the meta-data of the coding module. Coding file meta-data may also
directly reference the meta-data of the raw data. Otherwise, raw data reference is made indirectly via
reference to the meta-data of another coding file. Links are also made to the meta-data of other coding
files if these are referenced in the coding file.

NITE D2.2 November 2002

5

3 Raw data and its meta-data
By raw data we understand data files which should not be edited because they constitute the basic
information source. Any added information (value) should be inserted via references to the raw data
and not in the raw data files themselves.
Raw data files will often be dynamic signal files such as audio or video files but raw data files may
also be, e.g., static image files or pure text files as appears from the following list of possible raw data
files considered in NITE:
1. Audio file(s): The sound may be present in two different ways: a) as a single large file, or b) split

into separate files for, e.g., each utterance. Note that in case of overlapping utterances the sound
files may contain overlapping speech as well, so that the same sound may be part of several sound
files. A common representation format for sound files is wav but there are others as well.

2. Video file(s): The video file may present a single window showing the scene from one particular
perspective or it may present several windows showing the same scene from different angles and
from different distances. Common representation formats for video files are, e.g., avi and mpeg.

3. Image: Static picture file(s) showing, e.g., face stills or materials or objects relating to the dynamic
interaction. Images may come in may different formats, e.g. gif, jpeg, and tiff.

5. Log: Log files from software runs. These are text files.
4. Data: Data files containing, e.g., questionnaires or interview questions and their answers. Such data

files are often text files.
6. Notes: Observer notes. These are usually in text format.
7. Transcribed: Pre-existing transcriptions for which the sound files are no longer available. These are

typically text files, e.g. represented in XML format.
Any raw data file should be accompanied by a meta-data file which describes the raw data file and
references it. A meta-data file for raw data may include many types of information, depending on the
type of raw data it describes. The following list provides examples of information entries which have
been found useful in meta-data files.

1. raw data referenced
2. date of creation of raw data
3. date of creation of meta-data
4. name(s) of creator(s) of raw data
5. name(s) of creator(s) of meta-data
6. location for creation of raw data
7. purpose of creation of raw data, modalities involved, etc.
8. interacting participants, numbers and roles (including the role of the computer, if any)
9. speaker characteristics, including how speakers were sampled, age and gender of each

speaker, speakers’ native language, their geographical provenance, accents, social class, their
drinking and smoking habits, whether the speakers are known to each other, whether the
speakers are practiced in the dialogue activity performed

10. size of raw data (measured in duration, number of dialogues or Mb)
11. accessibility (fee or free, web site, contact information)
12. file technicalities, including file format, compression information, etc.
13. recording setup description, including environment, equipment, microphone and camera

placements, etc.
14. application description, including subjects, task, scenario, instructions, nationality, language,

native or non-native speakers, domain knowledge, etc.
15. references to other raw data which are important to the raw data described and to annotations

of the raw data described
16. references to, e.g., literature, reports and publications, etc., providing more details on the raw

data or some aspect thereof

NITE D2.2 November 2002

6

17. notes
There is no such thing as an exhaustive general-purpose list of meta-data information on raw data, so
the above list merely presents potentially useful examples of meta-data information. It should always
be possible to add new information entries to the raw data meta-data file. However, recommendations
on the information which should be included, as a minimum, in raw data meta-data files will shortly
be available in ISLE deliverable D8.2 which provides guidelines for the creation of natural
interactivity and multimodal data resources. This ISLE report focuses on which information to include
in the documentation when creating audio, video or image files. The report also includes
recommendations on how to make good quality audio/video recordings. An example is included of a
raw data video file and its meta-data description according to the recommendations made.
NITE does not recommend any particular raw data file formats but suggests that video/audio files
follow current standards. It is recommended to enable reference to video and audio data in terms of
time in milliseconds.

NITE D2.2 November 2002

7

4 Coding module and coding scheme
A coding module includes or describes everything that is needed in order to perform a certain kind of
markup of a particular natural interactivity corpus. It describes itself and prescribes what constitutes a
coding, including the coding scheme with its tag set, and the relations to other codings. In The
Observer, the configuration file in some sense corresponds to a coding module but it should be noted
that a configuration file is not identical to a coding module as described in the following.
We define a coding scheme as a set of concepts of phenomena to be found in corpora. Typically, a
coding scheme will also include a syntactically defined set of tags for marking up those phenomena. A
coding scheme is part of a coding module.
A valid coding must follow the prescriptions of the selected coding module (or configuration file) and
use some subset of the tags included in the coding scheme.
The core part of a coding module is the set of phenomena we are interested in marking up when using
this particular coding module, and which is also referred to as the coding scheme. However, a coding
scheme-cum-tag set is not very useful without accompanying information about purpose, scope,
semantics, intended use, etc. This additional information may be regarded as meta-data serving to
inform a user on the coding scheme and its use. From a usability point of view, this additional
information is just as important as the coding scheme itself. Without the information, the coding
scheme is unlikely to be useful to anyone except perhaps its creator at creation time.
A coding module includes two types of information. One type is mainly intended for the user and
another type is mainly intended for the system. The information intended for the user may be viewed
as the coding scheme concepts together with their meta-data information. The information intended
meant for the system basically corresponds to a tagset.
The name of the coding module is intended for both the user and the system.
Information mainly intended for the user includes:

1. author(s)
2. version
3. notes (references to literature, validation information, comments, etc.)
4. purpose of the coding module
5. coding level(s) (e.g. dialogue acts, hand gesture, nose wrinkles, …)
6. description of data source type(s) required for use of the coding module
7. explanation of references to other coding modules
8. coding procedure
9. coding example showing the coding scheme markup in use
10. clear description of each phenomenon, example(s) of each phenomenon. Phenomena such as

gestures and facial expressions may be illustrated in static or dynamic images to further help
the user identify their occurrence in the data (cf. Figure 4.2)

Information primarily intended for the system includes:
11. a markup declaration, possibly hierarchically ordered, of the tags for the (individually named)

phenomena which can be marked up using the coding module
12. coding files referenced

In this report, we shall not go into more detail concerning actual recommendations for coding module
and coding scheme creation. The ISLE deliverable D9.2 will shortly provide guidelines for the
creation of natural interactivity and multimodal coding schemes and modules. This ISLE report
surveys existing proposals for a markup framework in the natural interactivity and multimodal area as
well as the information to include in a coding module. An example is included of a coding module and
the application of its coding scheme to a natural interactivity and multimodal raw data file.

NITE D2.2 November 2002

8

4.1 Coding module explained
This sub-section briefly explains and illustrates the coding module entries listed in the preceding
section. It should be noted that examples are typically not related across entries. An example is merely
used to illustrate the particular entry under which it is found. A full example of a coding module is
presented in Section 4.2.
Name: The name provides a title of the coding module. The name is used for reference.

Example: MyGestures.
Author(s): The name of the person(s) who created the coding module.

Example: Laila Dybkjær.
Version: The version number of the coding module. A coding module may get updated and it is
important to clearly indicate its current version number.

Example: Version 1.0
Notes: Notes may contain any kind of useful description or reference, such as references to literature
which describes the coding module and/or its use, or a description of, or reference to, a validation of
the coding module.

Example: The coding module has been validated by NN. Results can be found in [ref.].
Purpose of the coding module: Typically, this entry describes the purpose for which the coding
module was first created.

Example: Coding of hand gesture and emotions in Asterix cartoons.
Coding level(s): Description of the coding level(s) covered by the coding module.

Example: Head posture, gaze, dialogue acts.
Description of data source type(s) required for use of the coding module: Description of the data
file type pre-conditions for using the coding module. For example, a pre-condition may be that an
orthographic transcription exists. A corpus (raw data) will always be required although it may often be
only indirectly referenced, e.g. via a transcription.

Example: Human-computer dialogues (raw data) and phonetic transcription (coding file).
Explanation of references to other coding modules: Explanation of which other coding modules
must be referenced. If the coding module assumes that there are references to other levels of markup
then the references should be to the coding module(s) which cover this/these levels.

Example: Phonetic transcription module, facial emotions module.
Coding procedure: Description of how the coding module should be applied to a corpus in order to
produce a new coding. The coding procedure is important to ensuring the reliability of the coding and
thus to its quality. The coding procedure should include, cf. [Dybkjær et al. 1998]:

1. Description of the coders: their number, roles and required training.
2. The steps to be followed in the coding.
3. Intermediate results, such as temporary coding files.
4. Quality measures (the non-satisfaction of which may require re-coding).

The coders are generically referred to as Coder 1, Coder 2, ... Occurrences of the same coder number
indicate that the same coder should be used. Different coder numbers indicate that the coders must be
different individuals. In the interest of promoting increased coding reliability, we propose that coders
should be able to express uncertainty wrt. to how to tag a particular token in the data.

Example: Coder 1 annotates the corpus. Coder 2 checks the resulting annotation file and makes
corrections if necessary. Corrections should be saved in a new copy of the annotation file. If the
amount of corrections exceeds 10% then let Coder 3 check the corrected annotation file and add
any needed corrections.

Note that a list of the actual coders will not exist until the coding module is being applied, at which
point the coders are described in the meta-data (header) of the coding file in terms of their role(s) in
the coding procedure, their background, training, coding experience, and possibly other properties, cf.
Section 5.

NITE D2.2 November 2002

9

Coding example showing the markup in use: This could be a snippet from an actually annotated file
or it could be a constructed example. The purpose is to give users of the coding module an idea of
what the markup looks like when applied.

Example: See Figure 4.1. The figure shows a dialogue transaction coding module applied to a
spoken dialogue.

Figure 4.1. Example of an annotation file showing a user-system dialogue over the telephone (in the Danish).
The coding module applied allows the coder to mark up different transactions defined in the coding scheme, such

as start, success, offer, and accept.

Clear description of each phenomenon, example(s) of each phenomenon: The descriptions
provided under this entry are essential to communicating the semantics of the concepts of the coding
scheme. It should be explained as clearly as possible how each concept-tag pair should be applied
during markup. Any uncertainty left by the descriptions and examples provided will translate into
unreliable coding, inter-coder disagreement, etc.

Example: An AU is a minimal visible action. It corresponds to the action of a muscle or a group
of related muscles. Each AU describes the direct effect of muscle contraction as well as
secondary effects due to movement propagation and the presence of wrinkles and bulges.
AU1 describes an inner brow raise. AU2 describes an outer brow raise. Figure 4.2 illustrates the
use of AU1+AU2.

Figure 4.2. Inner and outer brow raise (AU1+AU2).

NITE D2.2 November 2002

10

We stop the example here. The tags were taken from the FACS coding scheme which includes
far more tags than explained here, see e.g. [Knudsen et al. 2002].

Information primarily intended for the system includes:
A markup declaration of the tags for the phenomena which can be marked up using the coding
module: The tag set declaration can be presented in several different ways. If there is tools support for
annotation, the declaration may, e.g., be represented in terms of a dtd (document type definition). A
dtd is meant to be read by a computer rather than by humans. So, for many users, such a declaration
may cause problems. It may also be that the coding tool supports a more user-friendly way of
specifying the markup declaration, so that the user does not have to think about what is a good format
for the computer. If not meant to be read by a computer, the markup declaration may be written in a
way which makes it easy for humans to read and understand. As the following examples illustrate, the
markup declaration may often appear hard to understand if there is no accompanying information.
This is exactly the main reason why we recommend that all the entries of the coding module be filled.
The additional information is crucial to facilitate reuse by other annotators.

Example1: See entry 12 and Figure 4.2.2 in Section 4.2. This shows the set of markup
phenomena for ToonFace (www.media.mit.edu/) which is a coding scheme intended for rapid
creation and animation of interactive cartoon faces.
Example2: This example is taken from a SmartKom gesture annotation scheme which has been
entered into the Anvil tool (www.dfki.de/~kipp/anvil) using XML. Anvil has no other way of
entering a coding scheme apart from the XML-based one.
<?xml version='1.0'?>
<annotation-spec>
<head>
<valuetype-def>
<valueset name="phaseType">

<value-el color="#eeee00">
prep
<doc>

Preparation phase, bringing arm and hand into stroke
position. Note that changing hand shape before/after moving
the arm belongs to the preparation, too. Also code position
info.

</doc>
</value-el>
<value-el color="#dd0000">

stroke
<doc>

The most energetic part of the gesture movement. Encode all
other attributes for this gesture phrase in the stroke
element!

</doc>
</value-el>
<value-el color="#aa0044">

beats
<doc>

Only for non-beat gestures! A number of successive strokes
(beats); all strokes should be covered by this phase. If there
is a hold in-between then continue with prep.

</doc>

NITE D2.2 November 2002

11

</value-el>
<value-el color="#ee8800">

hold
<doc>

A phase of stillness just before or just after the stroke,
usually used to defer the stroke so that it coincides with a
certain word. When annotating an element as "hold" do not
annotate any other attributes!

</doc>
</value-el>
<value-el color="#ee00ee">

recoil
<doc>

Directly after the stroke the hand may spring back so as to
emphasize the harshness of the stroke.

</doc>
</value-el>
<value-el color="#00bb33">

retract
<doc>

Retraction. Movement back to rest position. In sitting
position this is usually the arm rest, the lap or folded
arms. Encode no other attributes in a "retract" element.

</doc>
</value-el>
<value-el color="#00aa66">

partial-retract
<doc>

Retraction movement that is stopped midway to open another
gesture phrase. Code position info here.

</doc>
</value-el>

</valueset>
<valueset name="gestureType">

<value-el color="#8cda8e">beat</value-el>
<value-el>deictic</value-el>
<value-el>emblem</value-el>
<value-el>iconic</value-el>
<value-el>metaphoric</value-el>
<value-el>adaptor</value-el>

</valueset>
</valuetype-def>
</head>
<body>
<!-- <track-spec name="wave" type="waveform" height="1.5" /> -->
<group name="utterance">

<track-spec name="smartkom" type="primary">

NITE D2.2 November 2002

12

<attribute name="text" valuetype="String" display="true"/>
</track-spec>
<track-spec name="user" type="primary">

<attribute name="text" valuetype="String" display="true"/>
</track-spec>

</group>
<track-spec name="head" type="primary" >

<attribute name="motion" display="true">
<value-el>shake</value-el>
<value-el>nod</value-el>
</attribute>

</track-spec>
<group name="gesture">

<track-spec name="phase" type="primary">
<attribute name="type" valuetype="phaseType" display="true">
<doc>

My phase description is based on the phases postulated by
Kendon and McNeill (1992), later on extended by Kita et
al. (1999).

</doc>
</attribute>

</track-spec>
<track-spec name="phrase" type="span" ref="gesture.phase">

<attribute name="category" valuetype="gestureType" display="true" />
</track-spec>
</group>

</body>
</annotation-spec>

Coding files referenced: If there is tools support for the coding module, the tool must be informed
about which kinds of coding files should be referenced, i.e. if, e.g., an orthographic transcription or a
hand gesture coding file should be referenced, cf. above. When applying the coding module, the user
must inform the tool about which actual coding files will be referenced. This/these coding file(s) must
match the description of references to other coding modules belonging to the chosen coding module.

Example: If the coding module has a reference to an orthographic transcription module, then the
file ort_trans.xml could be a coding file which has been produced by using an orthographic
transcription module and which fulfils the reference requirements of the coding module.

4.2 Example of a coding module
1. Name:
Toonface.
2. Author(s):
Kristinn R. Thórisson at the M.I.T.Media Laboratory: http://www.media.mit.edu/
An extension of ToonFace, CharToon, has been developed at CWI under the supervision of P.J.W ten
Hagen as part of the European project Facial Analysis and Synthesis of Expressions (FASE), 1997-
2000. See H. Noot and M. Ruttkay: CharToon 2.0 manual. INS-R0004, ISSN 1386-3681. 2000. Can
be downloaded from: http://www.cwi.nl/ftp/CWIreports/INS/INS-R0004.ps.Z
3. Version:
N/A.
4. Notes:

NITE D2.2 November 2002

13

A description of the ToonFace animation framework:
http://xenia.media.mit.edu/~kris/gandalf.html
References to additional information on the coding scheme:
Thórisson, K. R.: ToonFace: A System for Creating and Animating Cartoon Faces. Learning and
Common Sense Section. Technical Report 1-96, 1996. Can be downloaded from:
http://xenia.media.mit.edu/~kris/ftp/toonface.pdf
For more details on FASE, see:
The Facial Analysis and Synthesis of Expression homepage: http://www.cwi.nl/projects/FASE/
The Facial Analysis and Synthesis of Expression Chartoon homepage:
http://www.cwi.nl/projects/FASE/CharToon/
5. Purpose of the coding module:
ToonFace is a coding scheme for coding 2D facial expression with limited detail.
6. Coding level(s):
Facial expression.
7. Description of data source type(s) required for use of the coding module:
The application of the coding scheme produces a text file. The application of this file produces an
animated face which requires video rendering.
8. Explanation of references to other coding modules:
None. Note the following pre-condition, however. The coding scheme is meant to define a set of
parameters for controlling a 2D facial model. A representation of a face with a neutral expression is
therefore required as point of departure.
9. Coding procedure:
It is probably sufficient to let one expert coder make the encoding and then let another coder check the
result by watching the animated face.
10. Coding example showing the markup in use:
ToonFace consist of two parts, an editor and an animation engine or animator. The editor supports
markup via a graphical interface. Faces are constructed in the editor by drawing a number of polygons.
Figure 4.2.1 shows examples of faces created using Toonface

Figure 4.2.1. Examples of faces created with Toonface.

11. Clear description of each phenomenon, example(s) of each phenomenon:
A face is divided into seven main features: Two eyebrows, two eyes, two pupils and a mouth. The
eyebrows have three control points each, the eyes and mouth four, and the pupils one each, see also
Figure 4.2.2. The ToonFace editor allows manipulation of a face by adjusting control points, cf. entry
12.
12. Markup declaration of the tags for the phenomena which can be marked up using the coding
module:
Control points that can be animated are given the codes shown in Figure 4.2.2. These points were
selected to maximize the expressiveness/complexity tradeoff. In the case of points that can move in
two dimensions, each dimension is denoted as either "h" for horizontal or "v" for vertical.

NITE D2.2 November 2002

14

Figure 4.2.2. Codes used for the animated control points.

The following is a complete list of all one-dimensional motors that can be manipulated in a face
(control point number in brackets):
Brl = brow/right/lateral [3]; Brc = brow/right/central [2]; Brm = brow/right/medial [1]
Bll = brow/left/lateral [6]; Blc = brow/left/central [5]; Blm = brow/left/medial [4]
Eru = eye/right/upper [7]; Erl = eye/right/lower [9]
Elu = eye/left/upper [8]; Ell = eye/left/lower [10]
Plh = pupil/right/horizontal [15]; Plv = pupil/left/vertical [15]
Prh = pupil/right/horiz [16-h]; Prv = pupil/right/vertical [16-v]
Mlh = mouth/left/horizontal [14-h]; Mlv = mouth/left/vertical [14-v]
Mrh = mouth/right/horizontal [13-h]; Mrv = mouth/right/vertical [13-v]
Mb = mouth/bottom [12]
Hh = head/horizontal [17-h]; Hv = head/vertical [17-v]
Horisontal motion is coded as 0, vertical as 1. Each of the motors can move a control point between a
minimum and a maximum position (for a given dimension). Thus, max and min values mark the limits
of movement for each motor. For the eyes and head, these are given in degrees, (0,0) being straight out
of the screen; upper left quadrant being (pos, pos), lower left quadrant being (pos, neg)
13. Coding files referenced:
N/A.

NITE D2.2 November 2002

15

5 Coding files and their meta-data
The application of a coding module should follow a coding procedure and produce a coding file. A
coding file is also sometimes referred to as an annotation, annotation file, or annotated data. A coding
file consists of two parts, i.e. meta-data information of relevance to the actual coding and the actual
coding itself. The meta-data part is often referred to as the header while the actual coding is called the
body.
The meta-data file for a coding file (the header file) should include at least the following information:

1. reference to the coding file body
2. dates of creation, coding, revisions
3. name(s) of coder(s) and their characteristics
4. version number
5. reference to the applied coding module
6. references to the actual coding files or raw data referred to in the applied coding module
7. names of the (numbered) coders in the coding procedure
8. purpose of creation
9. level(s) and modality(-ies) annotated
10. history of coding procedure
11. notes
12. references to literature, reports, publications, etc.

There have been many discussions on meta-data in general and not least on which information to
include when. The above list is based on common sense and experience among the NITE participants.
The list is in no way meant to be exhaustive but merely presents prompts for information which we
consider crucial for the documentation of coding files in general. More specialised information should
of course be added as needed in the particular case. If a tool is available, then it should support the
addition of information entries. More information on meta-data can be found in the ISLE report D10.2
[Broeder et al. 2002].

NITE D2.2 November 2002

16

6 Important issues in natural interactivity coding
In the following, we briefly explain a range of important issues, structural and otherwise, in natural
interactivity coding, which were identified in our requirements specification of the NITE software, cf.
[Carletta et al. 2001].
Cross-level coding. Annotation of a particular modality, such as speech, may be done at different
levels, such as orthographic transcription, prosody markup, or morpho-syntactic markup. A level is
some level of abstraction at which selected information in the raw data can be identified, described,
annotated, and analysed. Cross-level coding consists in representing various types of links (of co-
existence, cueing relationships, etc.) between phenomena at different levels of annotation. An example
is the markup of prosodic cues to speech acts.
Cross-modality coding. Annotation is often concerned with the coding of a single modality only,
such as gesture, speech, or facial expression. However, annotators may also want to link across
modalities. This is called cross-modality coding. For example, a user may want to cross-reference
emotional cues in prosody and facial expression.
Individual interactions and group interactions. Individual interactions may overlap while group
interactions involve at least two parties performing a shared action, e.g. handshaking. Annotation
software must support the representation of both kinds of interaction.
Intersecting hierarchies. These are also called overlapping hierarchies and refer to the fact that the
phenomena one wants to mark up do not always nest in a nice and regular way but may overlap in
different ways. For example, the sentence “John likes Mary” may be tagged: <s/<a/ John <b/ likes /a>
Mary /b>/s>, where the entire sentence is tagged as an s. The words John likes are tagged as an a, and
the words likes Mary as a b. Because the a and the b overlap, the document has no convenient
representation in SGML or XML, cf. (http://www.hit.uib.no/claus/goddag.html). Since overlapping
hierarchies occur quite frequently we need to find solutions for handling them in the NITE software.
Long-range dependencies. A phenomenon may involve long-range dependency across utterances,
turns and speakers, for instance in co-reference or causal relationships. Long-range dependencies
impose demands on visualisation which must be taken into account. For example, we might want to
display long-range dependencies through horizontal, within-level link lines.
Synchronous and asynchronous phenomena. Phenomena which the user wants to tag may happen at
the same time, i.e. synchronously, or at different times, i.e. asynchronously. Annotation software must
support the representation and visualisation of both synchronous and asynchronous phenomena and
their interrelations.
Time alignment. An annotation tool must enable alignment of raw data and different annotations of
the raw data to the same timeline. The purpose of a timeline is to provide a common anchor point in
time for transcriptions and other codings, and to sort out the sequentialisation of the markup.

In the following two sections, we briefly describe the realisation of the proposed markup framework
by the NWB and the NXT approach, respectively.

NITE D2.2 November 2002

17

7 The NITE WorkBench approach
The NITE WorkBench approach builds on the idea illustrated in Figure 2.1, i.e. that individual coding
files and meta-data files are kept separate. Files are structured and interrelated via references. In this
way, files may form hierarchies or layers of relationships. This provides a high degree of modularity.
Files belonging together are organised in a project file. A project file contains references to files which
are interrelated, such as raw data files which belong together, and to their annotations. The project file
must be updated whenever a new file belonging to it has been created and should be referenced.
A project file has a name and consists of:

1. references to one or more raw data files which belong together,
2. references to a meta-data file for each raw data file,
3. references to coding files containing annotations (including transcriptions) of the raw data, if

any,
4. references to a meta-data file for each coding file,
5. references to other files belonging to the project, such as query files.

This structure of references can be easily handled by using a relational database.

7.1 Storing annotated data in a database
To satisfy the list of requirements stated in [Bernsen et al. 2002] as well as to be able to solve the
important issues in natural interactivity coding mentioned in Section 6, a relational database also
appears to be a good choice as the underlying mechanism for data storage in the NITE WorkBench.
When data is stored in a relational database one may basically view the data as stored in a number of
interrelated tables. One table will contain a timeline, another table may contain an orthographic
transcription in which each word is linked to the timeline, a third table may contain dialogue act tags
linking to the words in the orthographic transcription and thus indirectly to the timeline. In case of a
video with no transcription, there will still be a timeline and, e.g., gesture tags will then link directly to
the timeline.

7.2 Entering and storing coding module information
The data structure for entering coding modules is the most complicated one in the NWB. The hard
problem is how to provide a nice and easy-to-use interface for entering a tag set. Via the graphical user
interface (GUI), the user must be able to describe:

1. the meta-data issues of the coding module;
2. the markup declaration, i.e. the tag set of the coding module.

Figure 7.1 shows how coding modules may be kept in folders, thus grouping together coding modules
in the same area, such as gesture annotation. Of course, users may also choose not to keep coding
modules together in folders like this. Users may create an empty coding module file anywhere or put
an already defined one anywhere they like. However, when a coding module (whether empty or not) is
selected for configuration, the interface will still be the same as the one shown in Figure 7.1.
Clicking on the Meta-data button enables the user to enter the coding module meta-data into the set of
entries listed in Section 4. All entries are text entries and data is stored in tables in the same way as
described for coded data above, i.e. with the possibility of linking. Figure 7.2 shows the meta-data
interface for coding modules. Only the first five meta-data entries are shown. By default, the first
eleven entries exemplified in Section 4.2 are listed under “type of information”. However, since there
is no limitation on the number of rows which can be entered as meta-data in the NITE WorkBench
database, users are free to include additional entries after the eleven recommended ones.
Clicking on the Modify button in Figure 7.1 will lead the user to the window shown in Figure 7.3. This
is where the user enters a tag set.

NITE D2.2 November 2002

18

Figure 7.1. Coding modules are kept in folders, grouping together coding modules in the same area, e.g. gesture
annotation. The buttons on the right allow the user to organise the files and folders shown in the window. The

Meta-data button enables the user to add meta-data for a particular coding module. The Modify button allows the
user to enter a tag set.

Figure 7.2. The meta-data dialogue box in the NITE WorkBench.

NITE D2.2 November 2002

19

In order to specify a tag set for use in the NITE WorkBench, it is useful to first represent the coding
scheme concepts hierarchically, e.g. as a set of tables or in a tree structure. An example of such a
representation for prosody annotation – the ToBi coding scheme, [Klein et al. 1998] – is described in
the following.
We distinguish between elements and attributes. Elements and attributes are also well-known concepts
from TEI, SGML and XML. An element represents a certain type of phenomenon such as a particular
phoneme, word, utterance, dialogue act, or communication problem we are interested in. Elements
may have sub-elements, attributes, and relations to each other both within the current coding module
and across coding modules. Attributes are assigned values during the coding, but for each attribute the
type of its values must be defined in advance.
The phenomena of the ToBi coding scheme are organised in two levels in the representation below. At
the first level we have three elements: prosodic boundaries, prosodic phenomena, and downstep. The
element prosodic boundaries has five sub-elements each of which has an attribute used for
visualisation and which has the value type shown in the table. The element prosodic phenomena has
three sub-elements each of which again has sub-elements each with an attribute for visualisation and
its value type. The element downstep simply has an attribute for visualisation. Users don’t need to
indicate an ID attribute since that is taken care of automatically by the system. Also, it is not necessary
to indicate attributes for references to words or time points or similar. Referencing is handled via the
user interface where the user, e.g., points out the word s/he wants to tag.

Element Sub-element Attribute: value

clitic group boundary tag: 0

word boundary tag: 1

boundary with no tonal
mark

tag: 2

intermediate Phrase
boundary

tag: 3

prosodic boundaries

intonative Phrase boundary tag: 4

Table 1.1. Prosodic boundaries in ToBi.

Element Sub-elements

pitch accents

boundary tones

prosodic phenomena

phrase accents

Table 1.2. Prosodic phenomena in ToBi.

Element Sub-elements Attribute: value

peak accent (high pitch
accent)

tag: H*

low accent (low pitch
accent)

tag: L*

scooped accent tag: L*+H

rising peak accent tag: L+H*.

pitch accents

downstepped accent tag: H+!H*

Table 2.1. Pitch accents in ToBi.

NITE D2.2 November 2002

20

Element Sub-elements Attribute: value

boundary tones final low boundary tone tag: L%

final high boundary tone tag: H%

initial high boundary
tone

tag: %H

Table 2.2. Boundary tones in ToBi.

Element Sub-elements Attribute: value

low phase accent tag: L-phrase accents

high phase accent tag: H-

Table 2.3. Phrase accents in ToBi.

Attribute: valueElement: downstep

tag: !

Table 1.3. Downstep in ToBi.

In summary, the above tables correspond to the tree representation below.

When the user has prepared a hierarchical description of the tag set, be it as a written document or
otherwise, it becomes quite easy to enter the description into in the NITE WorkBench, cf. Figure 7.3.
Attribute values are entered as shown in Figure 7.4.

NITE D2.2 November 2002

21

Figure 7.3. A tag set must be expressed in terms of elements and attributes.

Figure 7.4. Entering attribute values into NWB.

NITE D2.2 November 2002

22

7.3 Entering and storing meta-data
Meta-data for raw data and for coding files are entered in a window similar to the one shown for
coding module meta-data in Figure 7.2. The difference is that the type of information column will
show the NWB-recommended entries for raw data meta-data and coding file meta-data, respectively.
As for coding module meta-data, the user will be able to add new meta-data entries.

7.4 Solving important issues via the database approach
As explained above, annotated data is stored in interrelated tables in the database. The structure of the
database makes it straightforward to handle the issues mentioned in Section 6. It is not a problem to
handle, e.g., overlaps and intersecting hierarchies, since there is nothing in the database structure
which prohibits such representation. The example of intersecting hierarchies in Section 6 may be
represented as illustrated in Figure 7.5. A tag always (indirectly) points to the start of a time point Ti.
The tags need not physically be listed in any particular order relative to one another. They just have to
point to the right words. By doing this they are of course indirectly ordered since the words are
ordered in time.

Time point Orthographic
transcription

Annotation level
X

1 John tag A starts

2 likes tag B starts

3 Mary tag A ends

4 tag B ends

Figure 7.5. Intersecting hierarchies represented in a database.

This flexible database link structure also facilitates the representation of synchronous and
asynchronous phenomena. It is not a problem that things are happening at the same time since there
may be many links to the same cell.
Not only the codings but also the raw data will be linked to a time line. This enables time alignment of
raw data and its different codings.
Cross-level and cross-modality coding involve references across levels of annotation (e.g. dialogue
acts and miscommunication) or across modalities (e.g. speech and gesture). Again, the flexible
database structure facilitates the linking. Any cell may in principle link to any other cell.
Long-range dependencies are represented via tags which belong together. Thus, e.g., if a long range-
dependency involves two parts, these my be marked up with the tag A part 1 starts and ends and tag A
part 2 starts and ends. Note that, in general, if the annotated sequence is a point rather than an interval,
the starts and ends are not needed. In the case of the long-range dependencies we may then have tag A
part 1 and tag A part 2.

NITE D2.2 November 2002

23

8 The NITE XML Toolkit approach
We describe what metadata and coding information NXT stores, how it is stored, and how to work
with it.

8.1 NXT storage for metadata and information about codings
In the NITE XML Toolkit, information for a corpus about its signals, codings, defined display and
editing tools, and data views combining synchronized tools are stored in the corpus metadata file,
along with a list of the observations in the corpus that details which codings have been deployed on
each observation.

8.1.1 Raw data (unannotated signal)

A corpus is a set of observations all of which conform to the same basic format and have the same
number of agents being observed, with the same basic roles. The following table shows how to fit
some well-known corpus types into this categorization:

�

AGENTS�

Map task corpus:� giver,follower �

Smartkom:� system,user�

Wall Street Journal articles:� writer�

Five person discussion:� 1,2,3,4,5�

Figure 8.1. Agent roles in different corpora.

For group discussion corpora of mixed size, the user must define agents for the maximum size and fail
to use some of them for the observations with fewer people.
Each observation will have been recorded separately using some signal or set of signals. Signals can
either be for a single agent (like a video trained exclusively on the route giver), or of the interaction as
a whole (like an overhead video that captures the whole group, or at least part of it). All signals for the
same observation are assumed to start at the same time. This can be achieved through pre-editing.
Note that because there could be several video signals associated with the same corpus, any GVM
(video overlay markup) needs to know which signal it applies to.
For all corpora, the metadata lists a set of observations, a set of agent roles, and a set of types of
signals associated with each observation, identifying the types as being of an agent (in which case,
there is one for each agent role per observation) or as being of an interaction (in which case, there is
one for per observation).
For all corpora, we must specify what reserved attributes are used for ids, start and end times aligning
tags to signal, and which agent a tag is associated with (if any). Ids must be unique in the XML file in
which they appear, and to promote the possibility of different serializations, we strongly recommend
that ids are unique in the entire corpus. Note that the types and legal appearance / non-appearance of
all of these attributes is set. IDs are free strings that are unique in the corpus, not just the XML file,
start and end times are numbers, and agent designators must be the name (role) of an agent. Time-
aligned elements must have all three attributes; structural-layer elements must have ID and may have
start and end times; featural-layer elements must have id but must not have start and end times. Layers
are defined below.
In addition to this information, there is room for generic information about the corpus, like where to
find documentation, and about individual observations - date of recording, condition the observation

NITE D2.2 November 2002

24

fits into within a planned design and so on. We show how this information can be included but don't
make a serious attempt to catalog it since we don't expect to produce an interface that makes use of it.

8.2 Codes (tags, annotations)
Each observation may also have been coded, or annotated, with information that interprets the raw
data.
Codes come in layers where all the codes share something about their meaning (for instance, a layer of
things that make orthographic transcription, a layer of gestures). There are three types of layers:

1. Time-aligned layers are layers of codes that are directly aligned to signal by giving them start
and end times (example: a layer of words, breaths, and silences that span an audio signal and
make an orthographic transcription). Codes in a time-aligned layer can have attributes
(example: part-of-speech for words, length for silence) and can contain text but not have
children. One would ordinarily follow the TEI convention that any textual content represents
speech content (words have text content, silences are empty) but this is up to the corpus
designer.

2. Structural layers are layers of codes that have start and end times, but inherit them from codes
on a time-aligned layer which are considered to be part of the structural code. (example: a
layer of syntax where the codes are np, vp, and so on, and each code has as children words
from a lower time-aligned layer).

3. Featural layers are layers of codes that are universal (that is, not timed) where the codes have
named roles that point to other codes. Even if the code pointed to has timing information, it
doesn't apply to the featural code.

Where the set of codes associated with a corpus fits into a set of structural layers which each point
down from one to the next, possibly with one time-aligned layer at the bottom, then the data will fit
into one XML file. This arrangement is called a simple corpus.
Otherwise we need a standoff corpus that splits the layers into codings, identifying them as codings for
one agent (like gesture coding for a particular agent, in which case, there is one for each agent role per
observation) or for the interaction (like codes for handshakes or for dialogue structure that gives the
logical order of turns in the dialogue, in which case, there is one per observation). Each coding is a set
of layers where any featural layer is on the top, any time-aligned layer is on the bottom, and there are
structural layers in between where every structural code points only to codes in lower layers or in the
top layer of another coding. For instance, in a standoff corpus there may be several structural layers
that point to the same time-aligned layer. This is espcially true where corpora are coded for several
different phenomema at once (e.g., gesture, dialogue structure, disfluency). Each coding gets serialized
(stored) in one XML file.
Whether a corpus is simple or standoff is given in the type attribute of the corpus element in the
metadata file.
For simple corpora, the grammar defining the set of layers and how they relate to each other is given
as the content of the codings tag.
For standoff corpora, the metadata names the codings and gives a grammar for each one separately.
Relationships among the files are allowed by the fact that a layer in one coding can point to a layer in
a different coding.
For standoff corpora, there may additionally be a list of ontologies which are hierarchies, independent
of an individual coding. These hierarchies may be pointed into by coding files, but the elements in the
ontology files may not themselves point to anything outside the file. An example of an ontology would
be a gesture type hierarchy which could be pointed into by a gesture coding file.
For standoff corpora, there may additionally be a list of object sets which are flat lists of elements
independent of any individual coding. These may be pointed into by coding files, but the elements in
the object set files may not themselves point to anything outside the file. Examples are lexicons that
the words point to and lists of entities in the world, pointed to by referring expressions.

NITE D2.2 November 2002

25

For standoff corpora, adhering to this structure is necessary because it is what the NOM uses. For
more information about the structure, see the NOM API.
For simple corpora, violating this structure only means that data can't be validated against the layer
model (but it could be validated against a DTD or schema) and one can't use OTABs to display it.
Because the stylesheets for simple corpora use JDOM, a standard XML data model, they will still
work for other single XML file structures.

8.2.1 Displays and editors

A display can not change the underlying data it represents; an editor can.
There are two applications within the NITE XML Toolkit that can produce displays and editors:

• OTAB - Observable Track Annotation Board
• NIE - NITE Interface Engine

OTAB produces displays based on the annotation board concept. NIE is a stylesheet based engine
which is generally used to produce transcription views of the data. The output from both NIE and
OTAB are referred to as styled displays or editors.
An OTAB is a time-aligned data editor based on the annotation board concept. OTABS can be used to
edit the data by (1) changing the times of time-aligned tags [but not the times of tags that inherit their
timing from other tags] and (2) adding new tags or deleting existing tags. For all corpora, the metadata
lists a set of OTAB configuration files that can be applied to the codings to make an editor. (In the
metadata files, this is called an annotation-spec; this name should probably be changed.) The OTAB
configuration file specifies what the OTAB should look like when it is first displayed: the overall
look-and-feel, which tiers to display and which to hide, and what colour schemes to use for the tiers.
This is equivalent to the formatting part of an Anvil configuration file, but Anvil configuration files
also have information about the codings that for NITE, are in the metadata file instead. No matter what
configuration an OTAB has when it starts up, the user will be able to change it using menus provided
on the OTAB.
An NIE (transcription-based) display or editor shows the structure of a set of layers in relation to the
codes on the time-aligned layer at the base of the set of layers (conventionally some kind of
transcription, but it could be a set of gestures, or so on.) For all corpora, the metadata lists a set of
stylesheets that can be applied to the codings to make a transcription-based display or editor. For
standoff corpora, each also specifies a list of codings it uses, and a list of codings it changes. This
means we don't necessarily have to load and serialize everything, and is just an efficiency. The list is
just a catalog that describes the stylesheet and tells where to find them (path and filename). Stylesheets
for simple corpora use XPATH queries and JDOM manipulations to specify their editing behaviour.
Stylesheets for stand-off corpora use our own query language and NOM manipulations.
In addition to these methods of constructing displays and editors, there are also the following types of
displays and editors:

1. audio displays, which can be muted;
2. video displays, which can be muted;
3. GVM editors, which show a video, can be muted and which can, when used in conjunction

with an OTAB, be used to display and edit graphical visual markup (GVM).

8.2.2 Data views

A data view consists of a set of displays and editors, all of which are registered with the data view's
clock so that they are synchronized to show the same time.
For all corpora, the metadata file lists a set of data views, each of which in turn lists the displays and
editors that they employ.
No matter what set of displays and editors a data view employs, the user can turn them off using the
close button for the windows involved and turn new ones on using the menus.

NITE D2.2 November 2002

26

8.2.3 Observations

Each corpus needs a list of the observations that together, form that corpus. For each observation,
there is a list of the codings that have been deployed for that observation. Information about who
performed a coding, when, and its status can also be stored here.

8.3 The NXT metadata format
This information is stored in the corpus metadata file, which is expressed in an XML format.
Appendices A and B give examples for simple and stand-off corpora, respectively.

8.4 Working with this information
Part of the NITE XML Toolkit is an API through which files in the NXT Metadata Format can be
loaded and the information extracted. This is the normal mechanism for working with the files.
Because the API and our implementation are open source, and because the implementation is based on
XML querying which is robust in the face of additions to the structure present in the file, if the current
provision is insufficient for any particular project, extending it is an easy task. Similarly, the API and
implementation can be extended to manipulate the metadata rather than just reading it. However,
within the scope of this project we expect this metadata to suffice and for it to be written in a normal
XML editor.

NITE D2.2 November 2002

27

9 References
Bernsen, N.O., Cadée, N., Carletta, J., Dybkjær, L., Evert, S., Heid, U., Isard, A., Kolodnytsky, M.,

Lauer, C., Lezius, W., Noldus, L., Reithinger, N. and Vögele, A.: Lists of Requirements.
Addendum to NITE Deliverable D1.1, 2002.

Broeder, D., Offenga, F., Willems, D. and Wittenburg, P.: EAGLES / ISLE Metadata Set for
Multimedia/Multimodal Language Resources. ISLE Deliverable D10.2, 2002.

Carletta, J., Bernsen, N.O., Cadée, N., Dybkjær, L., Evert, S., Heid, U., Isard, A., Kolodnytsky, M.,
Lauer, C., Lezius, W., Noldus, L., Reithinger, N. and Vögele, A.: Software Specification and
Workplan. NITE Deliverable D1.1, 2001.

Dybkjær, L., Bernsen, N.O., Dybkjær, H., McKelvie, D. and Mengel, A.: The MATE Markup
Framework. MATE Deliverable D1.2, November 1998.

Klein, M., Bernsen, N.O., Davies, S., Dybkjær, L., Garrido, J., Kasch, H., Mengel, A., Pirrelli, V.,
Poesio, M., Quazza, S. and Soria, S.: Supported Coding Schemes. MATE Deliverable D1.1, July
1998.

Knudsen, M. W., Martin, J.-C., Dybkjær, L., Ayuso, M. J. M, N., Bernsen, N. O., Carletta, J., Kita, S.,
Heid, U., Llisterri, J., Pelachaud, C., Poggi, I., Reithinger, N., van ElsWijk, G. and Wittenburg,
P.: Survey of Multimodal Annotation Schemes and Best Practice. ISLE Deliverable D9.1, 2002.

Serenari, M., Dybkjær, L., Heid, U., Kipp, M. and Reithinger, N.: Survey of Existing Gesture, Facial
Expression, and Cross-Modality Coding Schemes. NITE Deliverable D2.1, 2002.

NITE D2.2 November 2002

28

10 Appendix A: NXT Metadata for a Simple Corpus
<!-- 07 OCTOBER 2002
NXT METADATA EXAMPLE FOR SIMPLE CORPUS JEAN CARLETTA
Metadata version 1.1; introduces the notion of views that combine
OTABS and stylesheets.

This is based on the Smartkom data circulated with Anvil.
-->

<corpus id="smartkom" description="Smartkom Corpus" type="simple">

<!-- GENERIC CORPUS INFORMATION -->
<!-- the external documents people can refer to -->

<documents>
</documents>

<reserved-attributes>

<identifier name="id"/>
<starttime name="start"/>
<endtime name="end"/>
<agent name="who"/>

</reserved-attributes>

<!-- LIST OF AGENTS -->

<agents>
<agent name="s" description="system"/>
<agent name="u" description="follower"/>

</agents>

<!-- LIST OF SIGNALS -->

<signals path="Data/signals/">

<agent-signals>
<!-- for this corpus, there aren't any -->

</agent-signals>

<interaction-signals>
<signal name="interaction-video" type="video"

format="AVI" extension="avi"/>
</interaction-signals>

</signals>

<!-- CODINGS/{agent|interaction}-coding/coding-file for standoff;
just go straight to the content model for a simple corpus -->

<codings path="Data/xml/">
<time-aligned-layer name="timed-unit">

<code name="utterance"/>
</time-aligned-layer>

</codings>

NITE D2.2 November 2002

29

<!-- Styles define ways of constructing windows that hold
transcription or annotation based displays and coding
interfaces (editors). It's important whether they allow the
data they show to be edited or not, because that affects
whether or not the user can save. -->

<styles path="Data/xsl/">
<style name="smartkom-trans" description="basic transcription

display" type="display" application="nie" extension=".xsl"/>
<style name="smartkom-pos" description="part-of-speech display"

type="display" application="nie" extension=".xsl"/>
<style name="smartkom-game" description="dialogue structure

editor" type="editor" application="nie" extension=".xsl"/>

<style name="gesture-only" description="gesture OTAB"
type="editor" application="otab" extension=".oc"/>

<style name="everything" description="full OTAB" type="editor"
application="otab" extension=".oc"/>

</styles>

<!-- This defines the preconfigured views of the data.
-->

<views>

<!-- This view is a display that only shows a video and a
transcription. -->

<view description="transcription" type="display">
<!-- Give a video window with the interaction-video for the

observation in it.
It shouldn't have the gvm loaded for it because we aren't

going to use it.
-->

<!-- If we had a separate, better audio recording for the same
observation, then

we might want to put up an audio window for that, and
turn the sound in the

video off. This happens in some corpora.
-->

<video-window nameref="interaction-video" sound="yes"/>
<!-- Give a simple transcription display as produced by the

stylesheet smartkom-trans.-->
<styled-window nameref="smartkom-trans"/>

</view>

<!-- This view is a display with a gesture OTAB and a video. -->
<view description="gesture">
<video-window nameref="interaction-video" sound="yes"/>
<styled-window nameref="gesture-only"/>

</view>

<!-- This view is a display that shows a full OTAB and a styled
view of the dialogue structure.

-->
<view description="gesture">
<video-window nameref="interaction-video" sound="yes"/>
<styled-window nameref="everything"/>
<styled-window nameref="smartkom-games"/>

</view>

NITE D2.2 November 2002

30

</views>

<!-- a list of the observations in a corpus. -->

<observations>

<observation name="smartkom1">
<!-- this contains a list of codings present for standoff

corpora, and nothing
for simple corpora

-->

</observation>
<observation name="smartkom2">

</observation>
<observation name="smartkom3">

</observation>
<observation name="smartkom4">

</observation>
<observation name="smartkom5">

</observation>

</observations>

</corpus>

NITE D2.2 November 2002

31

11 Appendix B: NXT Metadata for a Stand-off Corpus
<!-- NXT METADATA EXAMPLE FOR A STANDOFF CORPUS

JEAN CARLETTA AND JONATHAN KILGOUR
7th October 2002

-->

<corpus id="maptask" description="Map Task Corpus">

<!-- GENERIC CORPUS INFORMATION -->

<reserved-attributes>
<identifier name="nite:id"/>

<starttime name="nite:start"/>
<endtime name="nite:end"/>
<agent name="who"/>

</reserved-attributes>

<reserved-elements>
<pointer name="nite:pointer"/>

<child name="nite:child"/>
<text name="nite:text"/>

</reserved-elements>

<!-- the external documents people can refer to -->
<documents>
<document description="Lang and Speech paper describing corpus"

URL="http://www.cogsci.ed.ac.uk/"/>
</documents>

<observation-variables>
<variable name="eye-contact" type="enumerated">

<value>no eye</value>
<value>eye</value>

</variable>
<variable name="familiarity" type="enumerated">

<value>familiar</value>
<value>non-familiar</value>

</variable>
</observation-variables>

<!-- AGENTS -->
<agents>
<agent name="g" description="giver"/>
<agent name="f" description="follower"/>

</agents>

<!-- SIGNALS -->
<signals path="/home/corpora/MapTask/CDs">
<agent-signals>

<signal name="audio" type="audio" format="mono au"
extension="au"/>

</agent-signals>

<interaction-signals>
<signal name="interaction-audio" type="audio"

format="stereo au" extension="au"/>
<signal name="interaction-video" type="video"

NITE D2.2 November 2002

32

format="avi" extension="avi"/>
</interaction-signals>

</signals>

<!-- ONTOLOGIES -->
<!-- ontologies are static hierarchies e.g. a gesture ontology -->
<ontologies path="Data/xml">

<ontology-file name="gtypes" description="gesture ontology">
<!-- this is recursive, but doesn't ground-out on anything -->
<featural-layer name="gesture-type-layer" recursive="true" >
<code name="gtype">

<attribute name="type" value-type="string"/>
</code>

</featural-layer>
</ontology-file>

</ontologies>

<!-- OBJECT SETS -->
<!-- Corpora may also be associated with object sets like a list of

referents or similar. The syntax will be: -->
<object-sets path="Data/xml">

<object-set-file name="xyz" description="abc">
<featural-layer name="object-layer">
<code name="obj">

<attribute name="type" value-type="string"/>
</code>

</featural-layer>
</object-set-file>

</object-sets>

<!-- CODINGS -->
<codings path="/home/corpora/MapTask/codings">
<agent-codings>

<!-- most basic coding for this corpus per agent is
transcription -->

<coding-file name="transcription">
<time-aligned-layer name="timed-unit">
<code name="tu">

<attribute name="utt" value-type="number"/>
</code>
<code name="noi">

<attribute name="type" value-type="enumerated">
<value>breath</value>
<value>inbreath</value>
<value>outbreath</value>
<value>lowamp</value>
<value>nonvocal</value>
<value>cough</value>
<value>lipsmack</value>

</attribute>
</code>
<code name="sil"/>

</time-aligned-layer>

<structural-layer name="word" points-to="timed-unit">
<code name="word"/>

</structural-layer>
</coding-file>

NITE D2.2 November 2002

33

<coding-file name="syntax">
<structural-layer name="part-of-speech" points-to="word">

<code name="n"/>
<code name="at"/>

</structural-layer>

<structural-layer name="constituents"
recursive-points-to="part-of-speech">

<code name="np"/>
<code name="vp"/>

</structural-layer>
</coding-file>

<coding-file name="move">
<structural-layer name="move" points-to="word">

<code name="instruct"/>
<code name="explain"/>

</structural-layer>
</coding-file>

<coding-file name="reference">
<structural-layer name="reference" points-to="constituents">
<!-- should we be able to specify that references must

point to words that are NPs? -->
<code name="deixis"/>
<code name="pronoun"/>

</structural-layer>
</coding-file>

<coding-file name="gesture">
<time-aligned-layer name="gesture-phase">

<code name="prep"/>
<code name="resolution"/>

</time-aligned-layer>
<structural-layer name="gesture-phrase" points-to="gesture-

phase">
<code name="baton"/>

</structural-layer>
</coding-file>

<coding-file name="deixis">
<featural-layer name="pointings">

<code name="pointing-event">
<pointer role="gesture-trace" target="gesture-phrase"

number="1"/>
<pointer role="speech-trace" target="reference"

number="1"/>
</code>

</featural-layer>
</coding-file>

</agent-codings>

<interaction-codings>
<coding-file name="game">

<featural-layer name="game-layer">
<code name="game">

<role type="move-in-game" points-to="move" number="+"/>
</code>

</featural-layer>
</coding-file>

</interaction-codings>

NITE D2.2 November 2002

34

</codings>

<styles path="/home/corpora/MapTask/styles">
<style name="transcription" extension=".xsl" application="nie"

description="basic syntax display" type="display">
<coding-ref name="transcription"/>
<coding-ref name="syntax"/>
<ontology-ref name="gtypes"/>

</style>

<style name="move-coder" extension=".xsl" application="nie"
description="move coder" type="editor">

<coding-ref name="transcription"/>
<coding-ref name="dialogue-structure"/>

</style>

<!-- an OTAB that shows words and moves -->
<style name="maptask-dialstruct" extension=".oc"

application="otab" description="dialogue structure" type="display">
<coding-ref name="word"/>
<coding-ref name="move"/>

</style>

<!-- an OTAB that shows everything -->
<style name="maptask-all" extension=".oc" application="otab"

description="everything" type="editor" >
<coding-ref name="word"/>
<coding-ref name="move"/>
<coding-ref name="transcription"/>
<coding-ref name="syntax"/>
<coding-ref name="dialogue-structure"/>
<ontology-ref name="gtypes"/>

</style>
</styles>

<views>
<view description="game coder" type="editor">

<!-- Give a video window with the interaction-video for the
observation in it.

Turn off the sound because we have a better audio signal.
-->

<video-window nameref="interaction-video" sound="no"/>
<audio-window nameref="interaction-audio" sound="yes"/>
<styled-window nameref="move-coder"/>

</view>
<view description="basic transcription" type="display">

<audio-window nameref="interaction-audio" sound="yes"/>
<styled-window nameref="transcription"/>

</view>
<view description="time aligned moves" type="display">

<!-- <gvm-window nameref="interaction-video" sound="yes"/> -->
<styled-window nameref="maptask-dialstruct"/>

</view>
</views>

<observations>
<observation name="q1ec1" eye-contact="eye"

familiarity="familiar">
<codings>

<coding name="transcription" status="final"
coder="cathy" date="23sep98"/>

NITE D2.2 November 2002

35

<coding name="move" status="final"
coder="gwyneth" date="12oct01"/>

<coding name="syntax" status="draft"
coder="david" date="15oct01"/>

</codings>
</observation>
<observation name="q1ec2" eye-contact="eye" familiarity="non-

familiar">
<codings>

<coding name="transcription" status="final"
coder="cathy" date="24sep98"/>

<coding name="move" status="final"
coder="gwyneth" date="12oct01"/>

</codings>
</observation>
<observation name="q1ec3" eye-contact="eye" familiarity="non-

familiar">
<codings>

<coding name="transcription" status="final"
coder="cathy" date="25sep98"/>

<coding name="move" status="final"
coder="gwyneth" date="12oct01"/>

</codings>
</observation>
<observation name="q1ec4" eye-contact="eye" familiarity="non-

familiar">
<codings>

<coding name="transcription" status="final"
coder="cathy" date="25sep98"/>

<coding name="move" status="final"
coder="gwyneth" date="13oct01"/>

</codings>
</observation>
<observation name="q1ec5" eye-contact="eye" familiarity="non-

familiar">
<codings>

<coding name="transcription" status="final"
coder="cathy" date="26sep98"/>

<coding name="move" status="final"
coder="gwyneth" date="13oct01"/>

</codings>
</observation>

</observations>
</corpus>

