
Project ref. no. IST-2000-26095

Project title NITE: Natural Interactivity Tools Engineering

Deliverable status Restricted

Contractual date of

delivery
28 June 2002

Actual date of

delivery
5 September 2002

Deliverable number D1.1 Addendum

Deliverable title Lists of Requirements

Type Report

Status & version Draft version 1

Number of pages 18

WP contributing

to the deliverable
WP1

WP / Task

responsible

Jean Carletta, University of Edinburgh

Author(s) Niels Ole Bernsen, Niels Cadée, Jean Carletta, Laila Dybkjær,

Stefan Evert, Ulrich Heid, Amy Isard, Mykola Kolodnytsky,

Christoph Lauer, Wolfgang Lezius, Lucas Noldus, Norbert

Reithinger, and Andreas Vögele

EC Project Officer Brian Macklin

Keywords Tools specification, functionality, natural interactivity and

multimodality data, annotation support, tools evaluation

Abstract (for

dissemination)

This report is an addendum to NITE deliverable D1.1, Software

Specification and Workplan, from December 2001 [Carletta et al.

2001]. The report presents tool goals, succinct lists of

requirements, and evaluation criteria for the three development

strands in the NITE project, i.e. the NITE WorkBench for

Windows, or NWB, the NITE XML Toolkit, or NXT, and the

Noldus Observer.

Lists of Requirements

Addendum to NITE D1.1

22 August 2002

DRAFT version 1

Authors
Niels Ole Bernsen

2
, Niels Cadée

 3
, Jean Carletta

1
, Laila Dybkjær

2
, Stefan Evert

4
,

Ulrich Heid
4
, Amy Isard

1
, Mykola Kolodnytsky

2
, Christoph Lauer

5
, Wolfgang

Lezius
4
, Lucas Noldus

 3
, Norbert Reithinger

5
, and

Andreas Vögele

4
.

1: HCRC, Edinburgh, UK. 2: NISLab, Odense University, Denmark. 3: Noldus Information Technology bv,

Wageningen, The Netherlands. 4: IMS, Stuttgart University, Germany. 5: DFKI, Saarbrücken, Germany.

This report is an addendum to NITE deliverable D1.1, Software Specification and Workplan,

from December 2001 [Carletta et al. 2001]. The report presents tool goals, succinct lists of

requirements, and evaluation criteria for the three development strands in the NITE project,

i.e. the NITE WorkBench for Windows, or NWB, the NITE XML Toolkit, or NXT, and the

Noldus Observer.

Section responsibilities

Section 1 Introduction Niels Ole Bernsen

Section 2 NITE Workbench for Windows

(NWB)

Niels Ole Bernsen, Laila Dybkjær,

Mykola Kolodnytsky

Section 3 NITE XML Toolkit (NXT) Jean Carletta, Stefan Evert, Ulrich
Heid, Amy Isard, Christoph Lauer,

Wolfgang Lezius, Norbert Reithinger,

Andreas Vögele

Section 4 Development on The Observer

relevant to the NITE project

Niels Cadée and Lucas Noldus

All authors have approved the final deliverable.

Contents

1. Introduction ... 3

2. NITE Workbench for Windows (NWB) ... 4

2.1 Introduction... 4

2.2 A brief use case ... 4

2.3 Requirements specification .. 4

2.3.1 Goal formulation .. 5

2.3.2 Requirements description: functional requirements ... 6

2.3.3 Requirements description: non-functional requirements 10

2.3.4 Constraints clarification.. 11

2.4 Evaluation criteria ... 11

3. NITE XML Toolkit (NXT) .. 12

4. Development on The Observer relevant to the NITE project .. 15

4.1 Goal .. 15

4.2 Requirements .. 15

4.3 Evaluation criteria ... 16

5. Acknowledgements ... 17

6. References... 17

Appendix: URLs for XML standards and software .. 18

 2

 3

1. Introduction

The goal of the NITE (Natural Interactivity Tools Engineering) project is to develop software

in the form of a tool, or a toolset, for the annotation and analysis of natural interactive

communication between humans as well as between humans and machines. Natural

interactive communication makes use of some or all the communication modalities used by

humans when they communicate with one another, including speech, facial expression,

gesture, gaze, bodily posture, and the handling of objects as an integral part of the

communication.

This report is an addendum to NITE deliverable D1.1, Software Specification and Workplan,

from December 2001 [Carletta et al. 2001]. NITE D1.1 presents the general requirements

specifications to the NITE software, specifications which are largely shared among all NITE

partners. The present deliverable takes into account the fact that NITE software development

is distributed across three different development strands. One strand is the development of the

NITE WorkBench for Windows, or NWB, aimed at users who are not experts in the XML

world. A second strand is the development of the NITE XML Toolkit, or NXT, aimed at users

who are experts in the XML world. The third strand is the preparation of future releases of the

Noldus Observer tool which increasingly will include functionality for enabling annotation

and analysis of natural interactive communication. For each of these strands, this document

presents the following information:

1. the goal of the tool;

2. a succinct list of requirements on functionality, usability, technical quality, etc.;

3. a specification of architecture and data flow (optional);

4. a set of evaluation criteria.

NWB requirements and evaluation criteria are presented in Section 2, NXT requirements and

evaluation criteria in Section 3, and Noldus Observer requirements and evaluation criteria in

Section 4. The Appendix provides some useful references to the XML world.

 4

2. NITE Workbench for Windows (NWB)

2.1 Introduction

The NITE Workbench for Windows (NWB) will enable the many future coders of natural

interactive behaviour who are not XML experts to work with recorded audio and video data

from human-human and human-system interaction. With the NWB, these users will be able to

(i) transcribe and annotate their multimodal data at multiple levels of abstraction as well as

across abstraction levels, in principle without encountering any obstacles in the form of

limitations to the tool’s annotation capabilities. They will so either by using a pre-defined

coding scheme offered by the tool and entered into the tool by a previous user or by the NWB

team, or one which (ii) they have built themselves using the tool’s facilities for specifying

new coding schemes, and subsequently (iii) analyse the annotated file using advanced

information extraction mechanisms. It is obvious that the targeted user group, and the general-

purpose natural interactivity coding aims to be met by the NWB, makes it mandatory to put

particular emphasis on ease of use of the tool during all phases of its use, from the entry of a

new coding scheme through to coding, information extraction, and analysis. This, again,

enforces strong requirements to the tool’s interface.

2.2 A brief use case

As an example of the complexity involved in natural interactivity coding, consider the

following use case which has been applied as a driver of development in NITE. In this use

case, the aim is to investigate negotiation of initiative during human-human dialogue in all its

aspects, including turn-taking cues provided through speech, facial expression and gaze,

gesture, and bodily posture. As the following perfunctory analysis shows, the complexity

involved is rather high. The coder will, or may, need to do annotation wrt.:

 speech transcription (coding scheme 1)

 speech dialogue acts – these include whatever semantics are involved as well as ―speech-like‖ cues

(coding scheme 2)

 facial dialogue acts (coding scheme 3)

 gesture dialogue acts (coding scheme 4)

 body posture dialogue acts (coding scheme 5)

 emotions and moods revealed (coding scheme 6)

 cross-linking of tagged phenomena at different levels and in different modalities suggesting a particular

global act of seizing, or trying to seize, initiative (coding scheme 7)

 longitudinal linking of tagged phenomena (same level, same modality) which constitute parts of a single

effort to seize initiative at that level (coding scheme 8)

 speech syntax codes might come in handy for analysing linguistic peculiarities of initiative-grabbing

efforts (yet another coding scheme)

 whatever else might be felt needed in the scientific exploration process, such as facial or gaze mini-cues

if these turn out to be worth investigating in the context (another coding scheme), or prosody (yes,

another one)

 depending on the format of representation chosen, one would perhaps have to multiply the above by

two or three because there are several interlocutors

2.3 Requirements specification

The NWB requirements specification below has been developed following the ideas shown in

Figure 1. More details on the NWB requirements specification are presented in [Bernsen et al.

2002].

 5

Figure 1. An approach to requirements specification.

2.3.1 Goal formulation

The main objective of NWB development is to build an integrated best practice workbench

for multi-level, cross-level and cross-modality annotation, retrieval and exploitation of multi-

party natural interactive human-human and human-machine dialogue data.

 6

2.3.2 Requirements description: functional requirements

The core functional requirements to the tool can be combined into six following groups:

1. to create annotated corpus files;

2. to control raw data (i.e. audio-video files);

3. to enable users to specify coding schemes;

4. to support annotation using coding schemes;

5. to visualise information in a customized way;

6. to enable information extraction and analysis of annotated data.

Each group of requirements has been specified in detail below.

2.3.2.1 Creating annotated corpus files

To create an annotated corpus file means to create a project which includes:

 metadata information (to be specified);

 names of (or links to) raw data files, i.e. audio and video data files, log-files;

 information about the coding schemes used for annotation (transcription);

 file(s) containing actual coding information;

 possibly, files with the results of analysis applied to the coding files.

It should be possible to:

 create a new project from scratch;

 open / save a project;

 print components of a project;

 import/export components of a project into/from XML files.

2.3.2.2 Controlling raw data (i.e. audio-video files)

To control audio-video files means to:

 visualise and play video files created in current standard formats, such as *.mpg, *.avi,

etc. A list of supported formats should be specified;

 listen to the audio track created in current standard formats, such as *.mp3, *.wav, etc.

A list of supported formats should be specified;

 display a log-file in plain text with information about, for instance, machine events

that occurred during human-machine communication;

 graphically represent the acoustic information:

o wave-form (i.e. in the time-domain);

o spectrum (i.e. in the frequency-domain);

 switch on/off the raw data windows;

 have a visible timeline;

 navigate back and forth in the raw data based on the timeline, i.e. scroll, go step-by-

step along the timeline, jump into the beginning or the end of the timeline);

 zoom in/out on the time-line;

 display the value of timeline units, such as seconds, frame numbers for video data, or

milliseconds for both video and audio data;

 open several video raw data windows at the same time;

 control the audio track and the video track independently of one another;

 7

 synchronise the playing or displaying of data in different windows on the basis of the

common timeline.

2.3.2.3 Enabling users to specify coding schemes

A coding scheme is a set of elements for marking up some class of phenomena in linguistics,

communication or behaviour studies. A particular class of phenomena which may be

conceptualised in different ways in different coding schemes is sometimes called a level of

annotation.

To specify coding schemes means to:

 create new annotation schemes for any class of phenomena in spoken dialogue, facial

expression, emotion, gaze, gestures of all kinds, lip movements, bodily posture,

actions, etc.;

 use or modify existing annotation schemes;

 perform an orthographic transcription and possibly a phonetic transcription of the

acoustics;

 be able to add free-form comments.

A comprehensive list of existing coding schemes for different classes of phenomena which

could be supported by the NITE WorkBench has been investigated during requirements

specification. The list includes coding schemes for the following annotation levels:

orthographic transcription, phonetic transcription, (morpho-) syntactic annotation, prosody

annotation, semantic annotation, co-references annotation, discourse annotation, dialogue acts

annotation, communication problems annotation, gesture annotation, body annotation,

emotion and mood annotation, behaviour annotation. The list also includes a few multi-level

or cross-level coding schemes.

In order to specify a coding scheme for use in the NITE WorkBench, the coding scheme

should be represented hierarchically as a set of tables of phenomena. An example of such a

representation for prosody annotation – the ToBi coding scheme – is:

I. The 1
st
 level of categories (phenomena) hierarchy

No Name (Tag) Visualisation Notes

1 Prosodic boundaries See table 2.1

2 Prosodic phenomena See table 2.2

3 Downstep

Table 1. the 1
st
 level (table of categories and value)

II. The 2
nd

 level of categories (phenomena) hierarchy

No Name (Tag) Visualisation Notes

1 clitic group boundary 0

2 word boundary 1

3 boundary with no tonal mark 2

4 intermediate Phrase boundary 3

5 intonative Phrase boundary 4

Table 2.1. Prosodic boundaries (table of values)

 8

No Name (Tag) Visualisation Notes

1 pitch accents See table 3.1

2 boundary tones See table 3.2

3 phrase accents See table 3.3

Table 2.2. Prosodic phenomena (table of categories)

III. The 3
rd

 level of categories (phenomena) hierarchy

No Name (Tag) Visualisation Notes

1 peak accent (high pitch

accent)

H*

2 low accent (low pitch accent) L*

3 scooped accent L*+H

4 rising peak accent L+H*.

5 downstepped accent H+!H*

Table 3.1. Pitch accents (table of values)

No Name (Tag) Visualisation Notes

1 final low boundary tone L%

2 final high boundary tone H%

3 initial high boundary tone %H

Table 3.2. Boundary tones (table of values)

No Name (Tag) Visualisation Notes

1 low phase accent L-

2 high phase accent H-

Table 3.3. Phrase accents (table of values)

IV. The relationships between the tables are:

Table 2.1. – Table 1., entry 1;

Table 2.2. – Table 1., entry 2;

Table 3.1. – Table 2.2., entry 1;

Table 3.2. – Table 2.2., entry 2;

Table 3.3. – Table 2.2., entry 3;

V. Graph (tree) of coding scheme structure

 9

Table 2.1

Table 3.1 Table 3.2 Table 3.3

Table 2.2

Table 1

As a matter of fact, coding schemes may contain two different type of information:

 permanent, raw data-independent information, and

 variable, raw data dependent information.

For instance, in the case of the ToBi coding scheme, every category and all values are

permanent, raw data-independent. In the case of, for instance, the Transcriber coding scheme,

some values, such as "speakers", are raw data-dependent, while some others, such as "type of

speaker" (male, female, unknown) or "type of dialect" (native, non-native), etc., are raw data-

independent.

2.3.2.4 Supporting annotation using coding schemes

To support annotation using coding schemes means to:

 to use a special-purpose (i.e. special format) file created as part of a project and

containing the coding information. We call this file a coding file (or mark up file). The

coding file has to reflect the timeline of events presented in the raw data. We call it

"the common timeline" or merely "the timeline";

 edit the coding file:

o insert a tag from the coding scheme:

 select (indicate) the time point or time interval onto the timeline;

 choose an appropriate coding scheme;

 choose a tag from list of tags for the coding scheme presented on a

palette;

 insert the tag onto the selected time point or time interval;

o delete a tag from the timeline.

 visualise the result of the coding (see next section).

2.3.2.5 Customised information visualisation

Customisation of information visualisation means to:

 provide a window or windows (or its part like a split pane) for displaying the contents

of a coding file. Let us call such a window an "annotation panel";

 display several annotation panels at the same time;

 control the appearance of a panel on the screen, i.e. to show, hide, move, resize it, and

probably change some attributes of it like the title, background colour, etc.;

 each annotation panel should correspond to a certain class of phenomena to be coded;

 probably, one annotation panel may contain several classes of phenomena at the same

time;

 since a class of phenomena could be a hierarchy of categories and values, it should be

possible to reflect this structure using a set of "tiers" (or "bands", or " layers"), each of

which aims to display a particular subset;

 10

 show the cursor at the current position on the timeline;

 synchronise the cursors in different windows: as soon as the cursor moves in one

window, it moves in the second one and appears within the same timeline segment;

 view annotations and transcriptions at different levels of resolution in each annotation

panel;

o zoom in/out along timeline;

o scroll along timeline;

Visualisation and customisation of the tags means:

 to visualise the result of the coding, i.e. to provide various way of displaying the tags

inserted onto the timeline within the annotation panel.

o the visualisation could be done using:

 a special-purpose window (in this context called an annotation panel),

and/or;

 directly on the window displaying the raw data (e.g. graphical video

mark up, GVM or on the wave-form of audio data (or elsewhere));

o the visualised and customised tags should be inserted onto the timeline using

the annotation panel.

In addition:

 available tag palettes must always correspond to the items in the selected annotation

panel;

 it should be possible to link several annotation levels during annotation;

 it should be possible to insert (add) free-form comments as a tag;

 it should be possible to customise the visualisation of tags;

 annotation levels (including orthographic transcription) should visibly share a

common timeline;

 while playing a video or audio file, the common timeline must visibly ―run through‖

all annotations;

 it should be possible to handle, in some way, the situation when the links between two

different levels of annotation may cause a certain clutter on the screen.

2.3.2.6 Enabling information extraction and analysis of annotated data

To enable information extraction and analysis of annotated data means to:

 extract arbitrary parts of the data;

 build statistical descriptions of the data;

 analyse data using inferential statistics.

For more detail, see the Observer 4 implementation as an example of a query task.

2.3.3 Requirements description: non-functional requirements

1. A flexible and open architecture which allows for easy addition of new tool components (a

modular workbench).

2. Separation of user interface from application logic and internal data representation.

3. The tool must be robust, stable, and work in real time even with relatively large data

resources and complex coding tasks.

 11

2.3.4 Constraints clarification

It must be possible:

 to show up to ten annotation levels simultaneously on the screen.

 full audio filename with path: 100 chars.

2.4 Evaluation criteria

The following evaluation criteria for the NITE WorkBench are based on internal project

discussion held in preparation of the NITE presentations and demonstrations to be made at

LREC’2002. The discussion was initiated by the NITE evaluation group consisting of Vito

Pirelli, Claudia Soria and Uli Heid.

The main test parameters are:

 usability

 usefulness

 functionality

 technical quality

Test users of the NITE WorkBench will be asked the following evaluation framework

questions, some of which may become further elaborated into sub-questions, depending on

the nature of the test users and the occasion of the test.

 Overall Perception

o Do users like the tool or not. For which reason(s)?

 Usability

o Do users find the tool intuitive and easy to use?

o Are common tasks easily identified?

 Usefulness

o Do users feel their work would benefit from using the tool?Functionality
o Is NWB capable of supporting the full range of natural interactivity coding

tasks it aims to support? Which coding task(s) cannot be done using the NWB

(if any)?

o Are users satisfied with existing features, or would they like to see something

added/eliminated/changed?

o Are basic functionalities shaped according to common standards?

o Do users think that the sort of flexibility that the tool accommodates is a useful

advance on current functionality?

 Technical quality

o Is the NWB robust and stable?

o Does the NWB work in real time even with relatively large data resources and

complex coding tasks?

 Overall design

o According to their experience, do evaluators think that the tool satisfies the

purposes for which it was created?

o Do evaluators agree with the basic concept underlying the tools’ development?

 12

3. NITE XML Toolkit (NXT)

Users of multimedia language data face two problems at the moment: they can't share data

because different tools use different data formats, and they can't mark up data with

annotations that have complex structures, or combine two simple-structured annotations on

the same data, because the data representations employed by the tools at best allow for trees.

Figure 1 gives a quite simple constructed example of the richness of structure needed for

multimedia annotation. The HCRC Map Task Corpus and the Switchboard Corpus, available

from TalkBank, are examples of non-multimedia corpora which have run into the analogous

difficulty about representation of structure, but for speech and language annotation without

video. Such heavily annotated corpora do not exist yet for multimedia data because of the lack

of tools, but are needed for work in, e.g., animation and human-computer interfaces.

End users of a data set want tools that they can just start up and run for displaying, annotating,

and analysing data. This creates a basic tension. Where the annotations are simple in structure,

it's possible to write general-purpose tools that have reasonable data displays and interfaces

(such as Anvil or The Observer). These tools are fine when the structure of the annotation

needed fits the model they have in mind. However, the more exotic the structure needed, or

the more annotations given on the same data, the less likely that a pre-defined general

interface will fit user needs. This is why in speech and language annotation, most corpus

projects ensure that they keep someone around who has technical skills and can dedicate time

to making one-off tools for each task that needs to be done with their specific data set.

 13

Other strands of the NITE project are building general purpose tools to suit the common

denominator users and which require no skilled technician to intervene between data and end

user. The NITE XML Toolkit is instead aimed at the skilled user in the project and will allow

him or her to build the more specialized displays, interfaces, and analyses that are required by

end users when working with highly structured or cross-annotated data. We are not alone in

taking this approach. The American Annotation Graph Toolkit is also aimed at the skilled

user supporting a wider group. However, they currently only intend to provide library routines

for the loading and manipulation of annotations, leaving the skilled user to call these from a

programming language and giving no help in building displays and interfaces. We intend to

provide more library support for the skilled user, as well as a stylesheet engine that allows

him or her to specify many types of tools declaratively, based on ideas developed originally

by the MATE project and discussed in [McKelvie et al. 2000] and [Carletta et al., to appear].

The NITE XML Toolkit is intended to provide:

 an abstract data model which is rich enough to allow even a structurally complex set of

multi-media annotations to be mapped into it

 a canonical data storage format using stand-off XML, including a schema format which

can be used optionally for data validation

 Java library routines for loading data in the storage format into the model and for

serializing from the model to the storage format

 Java library routines for manipulating data in the model

 an implemented query language for working with the data loaded into the model

 Java library classes that can be used to build data displays and interfaces

 a stylesheet-based annotation engine in Java for combining these elements into working

display and annotation tools, with the architecture shown in figure 2

 a query engine in Java for the simple execution of queries expressed in our language

 a data visualization engine in Java displaying both the timeline of the audio signal and the

video stream, if available.

 Java library routines to annotate the video signal with markers which can be linked to e.g.

the gesture track

 14

There are three ways in which skilled users will be able to build tools using the toolkit. First,

as with the Annotation Graph Toolkit, programmers can call on our library routines from their

own programs. Second, they will be able to call our data model and query language from

within a stylesheet in order to perform data transduction tasks such as export and data

extraction. Third, they will be able to use the stylesheet annotation engine as the program, so

that rather than writing an annotation tool that calls our data model and interface library

classes, they can write a stylesheet that specifies declaratively how to build the tool, with the

engine building it for them. We wish our toolkit to be as flexible as possible. For this reason,

we intend to make it possible, for instance, to employ other data models with other query

languages (such as JDOM with XPATH, or those associated with annotation graphs) from

within our stylesheet annotation engine.

It is in the nature of the work that this skilled user will already be trained in XML and

understand standard ways of manipulating XML such as stylesheets. To use the full power of

the NITE XML Toolkit, they will have to learn in addition:

 Our schemas for describing the structure of a set of annotations, which is a use of the

XML Schema standard (but the standard may not be familiar to those who have used

DTDs instead. However, the use of schemas is optional within the Toolkit).

 Our syntax for the stand-off links that make richly structured data possible in XML, which

is a cut-down version of the standard (but the standard may not be familiar to those who

have only used single documents before).

 Our data model and query language for working with the data model; standards such as

JDOM and XPATH could be used but are not a good match to non-tree-structured data.

 Additionally, to build displays and interfaces using the stylesheet annotation engine, the

set of GUI display objects and interactions that users can have with them and the syntax

for declaratively specifying GUI elements and actions from the stylesheet.

This remit is obviously ambitious, but the rewards are great; without this approach, we risk

users restricting themselves to what the more general purpose tools will do. Scientific

breakthroughs come with a change in instrumentation. Even if we only succeed partially (for

instance, with a stylesheet annotation engine that only works with simpler data models, or a

richer data model that works for data extraction and querying but not fast enough for

annotation), we will still have made an important contribution in terms of functionality that

other tools do not provide. Because our toolkit is based on XML processing and other tools

are taking up XML at least as an import and export format, users will be able to mix use of

other tools and our toolkit as best suits their needs.

Possible evaluation criteria for the success of the different elements in this strand of the NITE

project include determining:

 how well the data model and query language fill the needs of users for multimodal

corpora.

 whether the skilled technician is able to understand the data storage format and to validate

data.

 that the loading and serialization functions work correctly and that the data model API

handles the data properly.

 that the query language implementation correctly evaluates query expressions.

 that the stylesheet engine be able to render data for display purposes (by provision of

examples).

 that the stylesheet engine be able to render tools that can be used for annotation (by

provision of examples).

 whether users can effectively explore a corpus using the query engine.

 15

4. Development on The Observer relevant to the NITE

project

4.1 Goal

Versatile Observation System (VOS) is the working title for a major upgrade of The

Observer. Currently we are defining global requirements for VOS. At the end of the NITE

project, development on VOS will be well under way. VOS will be released later than the end

of the NITE project. The possibility remains open that VOS will eventually be called The

Observer rather than VOS.

VOS may support some high-priority NITE requirements, but it will not be a full-scale NITE

tool. If the NITE functionality catches on and many multimodality researchers buy the

program, we may implement more NITE functionality in later releases of VOS.

4.2 Requirements

This section lists required functionality, with regard to the NITE project, for VOS. As VOS is

a generic tool for behavioural observation and analysis, Noldus Information Technology

needs to weigh these requirements against the needs of several other user communities (such

as psychologists, usability testers and movement scientists). The requirements listed below

are based on the priorities (fully listed in Section 4.3 of D1.1) expressed by the NITE partners

present at the project meeting in Odense (July 2001) and the priorities defined by the Noldus

marketing department. Part of the requirements on the list in section 4.3 have already been

met in The Observer 4.1, which was released in June 2002.

Ideally, all items on the requirements list can be developed, but this is eventually dependent

on available R&D capacity at Noldus and a more detailed cost-benefit analysis. As soon as

the list of priorities for VOS has been finalized by the VOS development team at Noldus,

development will start. The priorities have been discussed with the NITE partners in

Saarbrücken (May 2002). Niels Cadée will specify them further and has started discussing

with the VOS development team about which requirement to include in VOS. To further

specify these requirements, Noldus can benefit from the development of the NITE for

Windows development strand, and from requirement specifications written by other NITE

partners as well.

These four requirements have the highest priority

 XML import/export — Exporting coding schemes and data files from The Observer

to XML files, and importing XML data files and maybe also coding schemes into The

Observer. One of our programmers is currently working on a prototype for this,

drawing on the XML knowledge of the NITE partners.

 Hierarchical configuration structure — Allowing for more hierarchical complexity

in coding schemes than is currently possible in The Observer 4.1. We still have to

specify this requirement in more detail. We also have to find out how important links

between coding elements are. This is not supported in our current software. Since

NITE for Windows uses an Access database for specifying coding schemes like The

Observer, we can benefit from their development.

 Timeline display — The Observer currently only has a vertical table to display coded

data during annotation. The vertical table is useful for displaying dialogs with long

texts. However, for gesture coding a horizontal timeline is more appropriate (like in

the ANVIL software). In a horizontal display it is also easy to display the many tracks

of multimodal annotations (speech, gestures, facial expressions, …). The need for a

 16

horizontal timeline display is currently being investigated, also for other user groups

outside the NITE domain.

 Visualizing speech transcription and code names — This requirement is linked to

the previous one. In a horizontal timeline, coding elements can be shown as bars with

a length corresponding to their duration. In these bars, the names of the elements, or

the text the observed person said, can be displayed. Further specification of this

requirement has to wait until we know if we are going to make a horizontal timeline

display.

For the following two requirements, we hope to get more information from specifications for

the software in the other NITE development strands. Depending on the details, and the need

among NITE partners for these functions, we may include them in the VOS requirements

specifications.

 Record metadata — Expand the existing independent variables to record more

extensive metadata on projects and their contents. For example, data on the persons

doing the coding, the age and gender of the subjects, the language, and any

information about specific tasks the subjects were carrying out.

 More advanced queries — Support more advanced queries than currently possible,

especially with hierarchical levels.

These two requirements have low priority:Graphical mark-up of video — This should allow

the user to mark an area in the video image that deserves special attention, like a

gesture or a specific facial expression. The marking should stay visible for the entire

duration of the corresponding coding element. A prototype of graphical markup has

been developed in the NITE XML Toolkit strand. If this JAVA implementation is easy

to translate to C++, it may not take much time to implement this in VOS. We will look

into this.

 Customizable user interface — Allow the user to switch between a "full" UI (for use

by the expert) to a "restricted" UI (for use by a novice), where the ―restricted‖ mode

only shows a subset of the functionality. This will make the program easier to use for

non-experts, e.g. students. At this stage it is not yet clear if different user profiles are

necessary, and if so, how many, and what the feature sets of each profile should be.

4.3 Evaluation criteria

At the end of the NITE project, there will not yet be a release of VOS. But detailed

requirements specifications and user interface designs will be available for review. We

propose the following evaluation criteria for these materials:

 Do the requirements match the needs of the NITE partners and natural interactivity

researchers in general?

 Are the requirements we choose from the list the most useful ones for natural

interactivity research?

 Will annotating a multimodal corpus in VOS save researchers time compared to

scoring with their own home grown application?

 Usability for natural interactivity research (as far as this can be judged from the

designs and requirements).

 17

5. Acknowledgements

We gratefully acknowledge the support of the NITE project by the European Commission’s

Human Language Technologies (HLT) Programme.

6. References

Bernsen, N. O., Dybkjær, L., and Kolodnytsky, M.: An Interface for Annotating Natural

Interactivity. In J. v. Kuppevelt and R. W. Smith (Eds.): Current and New Directions in

Discourse and Dialogue, Dordrecht: Kluwer 2002 (to appear).

Carletta, J., Bernsen, N. O., Cadée N., Dybkjær, L., Evert S., Heid, U., Isard A., Kolodnytsky

M., Lauer C., Lezius W., Noldus L., Reithinger N, and Vögele A. Software Specification and

Work Plan. NITE Deliverable D1.1, December 2001.

Carletta, J., McKelvie, D., and Isard, A.: A generic approach to software support for linguistic

annotation using XML. In G. Sampson and D. McCarthy (Eds.): Readings in Corpus

Linguistics. London and New York: Continuum International, (to appear).

McKelvie et al.: The Mate Workbench: An Annotation Tool for XML Coded Speech Corpora,

Speech Communication 33(1-2), 97-112, 2000.

 18

Appendix: URLs for XML standards and software

dbXML Core 1.0b1, native XML database, http://www.dbxml.org/

Document Object Model (DOM) Level 2 Core Specification Version 1.0, W3C Recommendation 13
November 2000, http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113. Latest version:

http://www.w3.org/TR/DOM-Level-2-Core.

Java APIs for XML Processing (JAXP) Release 1.1, http://java.sun.com/xml/xml_jaxp.html.

Kweelt XML Query Processor, http://db.cis.upenn.edu/Kweelt/. Currently, Kweelt Deux is under

development.

Quilt: An XML Query Language, http://www.almaden.ibm.com/cs/people/chamberlin/quilt.html.

SAX 2.0: The Simple API for XML, http://www.megginson.com/SAX/index.html.

SAXON, The XSLT Processor (version 6.4.4), http://saxon.sourceforge.net/.

Xalan-Java (version 2.2.D10), http://xml.apache.org/xalan-j/.

Xerces2 Java Parser, http://xml.apache.org/xerces2-j/.

XML Linking Language (XLink) Version 1.0, W3C Recommendation 27 June 2001,

http://www.w3.org/TR/2000/REC-xlink-20010627/. Latest version: http://www.w3.org/TR/xlink/.

Fujitsu XLink Processor (XLip), http://www.labs.fujitsu.com/free/xlip/en/. This is only available as

part of a demo specification. It doesn't implement full XPointer syntax, just barenames (..#anchor)

and ―child sequences‖.

Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000,

http://www.w3.org/TR/2000/REC-xml-20001006. Latest version: http://www.w3.org/TR/REC-

xml.

XML Path Language (XPath) Version 1.0, W3C Recommendation 16 November 1999,

http://www.w3.org/TR/1999/REC-xpath-19991116. Latest version: http://www.w3.org/TR/xpath.

XPath Requirements Version 2.0, W3C Working Draft 14 February 2001,

http://www.w3.org/TR/2001/WD-xpath20req-20010214. Latest version:

http://www.w3.org/TR/xpath20req.

XML Pointer Language (XPointer) Version 1.0, W3C Candidate Recommendation 11 September

2001, http://www.w3.org/TR/2001/CR-xptr-20010911/. Latest version:

http://www.w3.org/TR/xptr.

XML Query Use Cases, W3C Working Draft 08 June 2001, http://www.w3.org/TR/2001/WD-

xmlquery-use-cases-20010608. Latest version: http://www.w3.org/TR/xmlquery-use-cases.

XML Query Requirements, W3C Working Draft 15 February 2001, http://www.w3.org/TR/2001/WD-

xmlquery-req-20010215. Latest version: http://www.w3.org/TR/xmlquery-req.

XSL Transformations (XSLT) Version 1.0, W3C Recommendation 16 November 1999,

http://www.w3.org/TR/1999/REC-xslt-19991116. Latest version: http://www.w3.org/TR/xslt.

XSL Transformations (XSLT) Version 1.1, W3C Working Draft 24 August 2001,
http://www.w3.org/TR/2001/WD-xslt11-20010824/. This document is no longer updated and will

be replaced by the XSLT 2.0 Requirements, which is not yet available

