
NICE project (IST-2001-35293)

Natural Interactive Communication for
Edutainment

NICE Deliverable D3.7-2a
Multimodal Output Generation Module for

the Second Prototype for H.C. Andersen

22 December 2004

Editor
LIMSI-CNRS : Jean-Claude Martin

Authors
NISLab : Andrea Corradini, Niels Ole Bernsen

1

Project ref. no. IST-2001-35293

Project acronym NICE

Deliverable status Restricted

Contractual date of
delivery

1 November 2004

Actual date of
delivery

22 December 2004

Deliverable number D3.7-2a

Deliverable title Multimodal Output Generation Module for the Second Prototype
for H.C. Andersen

Nature Report

Status & version Final

Number of pages 13

WP contributing
to the deliverable

WP3

WP / Task
responsible

LIMSI-CNRS

Editor Jean-Claude Martin

Author(s) Andrea Corradini, Niels Ole Bernsen

EC Project Officer Mats Ljungqvist

Keywords Multimodal output, non-verbal behaviour generation

Abstract (for
dissemination)

This report, Deliverable 3.7-2a from the HLT project Natural
Interactive Communication for Edutainment (NICE), describes the
multimodal output generation module for the second prototype for
H.C. Andersen.

2

Table of Contents

1 Introduction .. 4

2 Non-communicative action and communicative function .. 6

3 Communicative action ... 10

4 References ... 13

3

1 Introduction
This report, Deliverable 3.7-2a from the HLT project Natural Interactive Communication for
Edutainment (NICE), describes the multimodal output response generation module (RG) for
the second prototype for H.C. Andersen (HCA). The multimodal output generation module for
the first prototype was described in D3.7-1 (Boye et al. 2003).
Multimodal output for PT2 is already partly described in D5.2a (Bernsen et al. 2004). The
current report describes in more details how PT2’s augmented rendering functionality is
applied to PT2 non-verbal and combined verbal and non-verbal response planning. HCA can
move about and interact with his environment as well as communicate with the user through
spoken conversation and non-verbal gesture, body posture, facial expression and gaze. The
described approach aims to make the virtual agent's appearance, voice, actions, and
communicative behaviour convey the impression of a character with human-like behaviour,
emotions, relevant domain knowledge, and a distinct personality. Multimodal output
generation exploits parameterized semantic instructions from the conversation manager and
splits the instructions into 1) synchronized text instructions to the text-to-speech synthesizer,
and 2) behavioural instructions to the animated character (Corradini et al. 2004; Corradini et
al. 2005).

Our animated character is built upon a hierarchy of bones that we refer to as a frame. The
frame, together with a textured polygon mesh and skin weighting information, is represented
as a skinned mesh (Figure 1). The skin weighting information specifies the influence the
frame has on its mesh. The root frame node contains a transformation matrix relative to the
world space. An animation that affects the root node affects the whole scene while an
animation that affects a leaf node does not affect any other node. We use the frame to give the
system the functionality of overloading animations for different body parts.

The animation system receives network commands and schedules animation events via the
scheduler system. A valid command to concurrently carry out sequences of animations while
synthesizing a sound file is an XML string whose syntax looks like:

<play>

<sound> SOUND </sound>

<animList Track= P1> T11,A11; .. </animList>

<animList Track=P2> T21,A21; .. </animList>

</play>

The tag <sound> is utilized to play back the audio file SOUND either as positioned or global
sound. The items <animListTrack=Pj> contain a list (or track) of animations A11,.. to be
played in sequence in accordance with their start times T11,.. relative to a common time. To
resolve conflicts that may occur while animations are rendered in parallel, each track is
assigned a priority value Pj. If at any given time more animations affect, in different ways, the
same node within the frame, the animation within the track with higher priority will prevail,
i.e., be displayed. In general, an animation can be played only if an existing file that contains
the specification of the actual behaviour has been loaded into memory by the rendering engine
upon start-up. We refer to these animations as elementary animations or primitives.

From a technical point of view, it may be useful to distinguish response planning for non-
communicative actions and communicative functions (section 2), on the one hand, and
response planning for communicative actions on the other (section 3).

Figure 1: Skinned mesh of the HCA character.

5

2 Non-communicative action and communicative
function

A non-communicative action output state refers to the situation in which HCA is not engaged
in conversation with a user but goes about his normal work and life within his study. This may
happen either at system start-up if there is no user around, or after the user stops conversation
and walks away. In general, while in this state, the character does not produce spoken
utterances in terms of full-form sentences. Yet, the system is capable of playing back, e.g.,
footsteps when HCA walks, or music sounds when he, say, enacts a dance. Sound files in wav
format and mp3 are stored to allow for that capability.

In our implementation, we employ a hierarchical two-tiered approach that supports the
designer in creating those output states through scripts. Lower-level scripts define sets of
elementary animations along with their temporal specification and sets of custom animations.
Elementary animations are behaviours that can be rendered by the animation engine by just
one command and that belong to the core of the application as default animations. Custom
animations are sequences of such elementary behaviours.

In the following an excerpt from our software that show both elementary animations (their
names are self-explanatory) and how custom behaviours are generated using them as building
blocks:
NOD LASTS 3000 MSECS

HEADUP LASTS 3000 MSECS

HEADDOWN LASTS 3000 MSECS

TILTHEADLEFT LASTS 3000 MSECS

TILTHEADRIGHT LASTS 3000 MSECS

SEQUENCE SEQ_STARTMUSIC

 SEQ_GOTOCENTER THEN WAIT 4000 MSECS

 PLAY SOUND FROM POOL 2

 GO TO Desk

 WAIT 2000 MSECS

 SET CAMERA LookAtActorCamera

 WAIT 2000 MSECS

 TURN TO CAMERA FROM POOL 1

 WAIT 2000 MSECS

PARALLEL PAR_DANCESTEP1

 TRACK WITH PRIORITY 1

 ANIMATION HEADUP AFTER 0 MSECS PLAYS 100 PERCENT AT SPEEDRATE 0.5

 ANIMATION HEADDOWN AFTER 2000 MSECS PLAYS 100 PERCENT AT SPEEDRATE 0.5

 TRACK WITH PRIORITY 2

 ANIMATION ARMSHOLDINGOBJECT AFTER 0 MSECS PLAYS 50 PERCENT AT SPEEDRATE 1.0

 ANIMATION RESTARMS AFTER 3000 MSECS PLAYS 100 PERCENT AT SPEEDRATE 1.0

6

As one can see, we have two kinds of possible custom behaviours: sequences of elementary
ones and overlapped animations. Recursive calls of sequences are allowed as showed in the
sequential SEQ_STARTMUSIC which calls the other sequence SEQ_GOTOCENTER from
within it. Sequences of elementary and/or custom animations can thus be used to define
complex behaviours. To make the character perform a richer variety of behaviours, we make
use of placeholders within the sequences for animations and other elements to be selected at
run-time. In more detail, we define several sub-sets of behaviours, objects, locations, cameras
and sounds, assign them a name, and select them in a non-deterministic way, one each time
the placeholder refers to that particular subset. In the example above, for example, the
sequence animation SEQ_STARTMUSIC is capable to play several different sounds
according to the music file chosen at run time given that the sound is specified to be chosen
from a certain pool of sounds by the command PLAY SOUND FROM POOL 2. The same
applies in the choice of the camera, just few lines later in the behaviour. Each time the
behaviour is rendered a run-time random function selects the camera view from a sub set of
camera definitions.

We also use syntactic rules to define and provide appropriate transitions among animations in
order to produce believable and smooth interactive character behaviour.

An example is the following excerpt from a file, which specifies a transition such as:

ANIMATION SEQ_WALKTOWINDOW CANNOT BE FOLLOWED BY [SEQ_WALKTOWINDOW,ARMSONDESK]

The use of commands such as GO TO <LocationName> gives HCA own locomotion
capabilities and makes the behaviours more life-like and not restricted to a single location.
Currently, we still have the issue of obstacle avoidance. In fact, if HCA is sent to a location
but he is hindered by an object in his path to get there, he gets stuck in that state and cannot
move further without external help from the user via the use of the keyboard. Scripts are then
defined on top of behaviours and their transactions. Here an excerpt from our code:

SCRIPT 0

SEQ_WALKTODESK THEN WAIT 4000 MSECS

SEQ_STUDYATDESK THEN WAIT 3000 MSECS

SEQ_LOOKAROUND THEN WAIT 4000 MSECS

SEQ_RESET THEN WAIT 4000 MSECS

We use again syntactic rules to define and to provide appropriate transitions among scripts.
So, for example, the rule:

SCRIPT 0 CANNOT BE FOLLOWED BY [0-6,9]

is a possible rule that states that script numbered with 0, if chosen at run time and after being
realized, cannot be followed by scripts 9 and all those from number 0 through 6. In that case,
the Character Module, in which the decision about which script to run resides, is constrained
in its choice of the next script yet it is guaranteed that script transitions occur smoothly
without abrupt movements between the end of a script and the start of the following one.

7

Figure 2 depicts a couple of screen shots of some non-communicative actions showing HCA
looking out of the window and bending over his desk within the study. The same scene of
HCA bending over into his desk is shown with different camera view that is chosen randomly
at run-time.

Figure 2: screenshots for non-communicative actions: (from left to right, top to down) HCA
looking outside the window, HCA leaning over his desk from three different camera views.

8

While in the communicative function output state, we have made our character show his
awareness of being spoken to or otherwise addressed by the user, by employing a rather
‘neutral’ and general set of animations or sequences thereof. The relative ‘neutrality’ of these
behaviours is imposed by the technical limitations which prevent us from processing the
user’s input incrementally in real time. This means that he cannot react, while being
addressed, to parts of the user input which, given his personality, should otherwise make him
react emotionally or cognitively.

Much like Steve (Rickel and Johnson 2000), HCA uses gaze, deictic and body orientation as a
cue to his attentional focus. For example, when an object is gestured by the user and detected
by the Gesture Interpretation module (GI), a message sent by the GI drives HCA to gaze and
orient his body towards the gestured object. This fast feedback using natural modalities aims
at giving the user the understanding that the system detected the gesture. Regardless the
communicative aspects and/or function, the RG listens to messages coming from the GI
generated in the case of any object selection by the user for the Hans Christian Andersen
character to turn to the object signalled. An example of such a behaviour is given in Figure 3.

Figure 3: the character turned to the selected object.

9

3 Communicative action
When conversation is going on between the user and HCA and it is HCA’s turn, the Character
Module looks for HCA’s conversation contribution within a knowledge base that stores many
predefined sentences along with encoded non-verbal behaviours, semantic classes, and the
system’s domain ontology. Numerous, ever-expanding in number, canned templates guarantee
broad domain coverage but also require manual maintenance and have a limited variability by
design. Each template is a compact representation of a predefined spoken output with
embedded start and end tags for non-verbal behaviours and placeholders to text values to be
filled in at run-time. The following is an example of behavioural template:

Now, tell me [g0] your [/g0] {EMOTION ADJ_2} opinion about {FAIRYTALE}
Here, elements within square brackets starting with numbered g letters represent onset and
offset of non-specified non-verbal parts of the template. Elements within curly parentheses,
like FAIRYTALE, are placeholders for text-to-speech values to be filled in using input value
information. The other elements within curly parentheses, starting with the string EMOTION,
are TTS values as well but these are tied to emotional values. In the present example, ADJ_2
indicates a set of emotional value/text pairs from which the verbal realization for the
appropriate text has to be retrieved. Both TTS variable values and non-verbal behavioural
elements are initially un-instantiated. The binding of non-verbal behaviour to gesture and TTS
variables to text occurs at run-time rather than being hard-coded, enabling a sentence to be
synthesized at different times with different accompanying non-verbal elements and/or words.

To have what we call verbal differentiation due to emotional state, we use a template for each
different emotional state, so e.g. the template above is associated with a set of emotions but
for instance not with an angry emotion. In that case we have the template specified for an
angry emotion and with different distribution of graphical behaviours attached. The emotion
calculator passes the emotional state to the RG during execution and this latter chooses the
template according to the current state.

The pair of tags that marks start and end of any non-verbal behavioural element supplies
implicit timing information for speech and gesture during rendering. In the behavioural
template above, tags [g0] and [/g0] indicate that an animation may co-occur with uttering the
spoken text ‘your’ around which they are wrapped. A certain gesture is selected for insertion
in place of g0 depending on the semantic class(es) of the text surrounded by the placeholders.
Tables that map semantic categories onto non-verbal behaviours are maintained. Let us
assume that a POINT animation is selected to expand the non-verbal behaviour g0, while the
textural placeholders EMOTION ADJ_2 and FAIRYTALE are expanded to valuable and the
Princess and the Pea, respectively. The behavioural template is then converted into the
surface language string:

Now, tell me [POINT] your [/POINT] valuable opinion about the Princess and the Pea
We have been implementing a strategy different from the one in PT1 to deal with such surface
representation. The RG still replaces non-verbal behaviour references with bookmarks that
can be dealt with by a text-to-speech component. Then, the entire string containing the TTS
bookmarks is sent to the TTS, which synthesizes the verbal output. Any time a bookmark is
encountered, the TTS fires an event and calls on the Response generator to create the XML
string representation of the corresponding animation. In PT2 however, we first parse the
surface string for the TTS module to create wav files of text enclosed within animation
bookmarks and determine its temporal duration. During parsing, the surface string is broken

10

down into sequential segments of either audio-only segments, animation-only segments, or
parallel audio and video segments.

Three XML strings would be generated when parsing the surface string of our previous
example:

1) <play> <sound> SOUND_1 </sound> </play>

2) <play>

 <sound> SOUND_2 </sound>

 <animList Track=0> 0, POINT; </animList>

 </play>

3) <play> <sound> SOUND_3 </sound> </play>

Here, SOUND_1 contains the synthesized text now tell me, SOUND_2 the text your, and
eventually the verbal synthesis for valuable opinion about the Princess and the Pea is stored
into SOUND_3. The animation POINT is stretched over a time period equivalent to the
duration of the sound file SOUND_2. To have HCA point to an object or location we first
have to make him turn to that location/object and then perform a pointing gesture.

Once all XML segments are created, they are sequentially sent to the graphical animation
engine that automatically coordinates playback of sound and non-verbal behaviour rendering
for each of them. This approach is suitable for short behavioural templates because it requires
the data to be analyzed twice: first parsing the template to create single wav files, then go
through it again to break it down into single segments to send to the animation engine. Long
templates are a technical issue wrt. this approach. Thus, we prefer to break down as many of
them as possible as sequences of shorter ones.

The approach is, nevertheless, technically more challenging than the one followed in PT1, but
we wish to mention the problems that occur in fine-tuning the duration of single animations
for each of them to last exactly as long as the sound files they play along with, independently
of the machine that runs the application. These technical problems are particular visible in the
rendering of synchronized visemes and speech to be played back.

In addition to elementary animations, more complex non-verbal behaviours can be created,
combined, sequenced, assigned a name, and stored by the RG. To that end, we have employed
a generative approach based on a layered composition of primitives similar to that described
in the previous sub-section.

Since the rendering engine can play only elementary animations, the Response Generator has
to break any user-defined animation, let’s call it parent animation for the sake of clarification,
down into its primitive components and create XML representation strings for each of them. If
any of these components is by itself a compound animation, it has to be recursively
decomposed as well, until only primitives are used to express the parent animation.
Sequentiality, parallelism, and partial overlapping of existing animations to create new
behaviours can be tuned by setting appropriate values for the temporal items in the XML
representation.

Currently, we store some 300 output templates (some 1200 if the emotion is taken into
account), many of which are no-variable stories to be told by HCA, and 150 different non-
verbal primitives. Templates have been designed by hand and, similarly to non-verbal
behaviours, were partly inspired by analysis of data from recordings of an actor impersonating
HCA and interacting with kids in a children’s theatre class in the fairy-tale writer’s hometown
Odense, Denmark.

11

Table 1 shows an excerpt from a conversation between a child user and HCA. At turn #9,
HCA starts meta-communication due to the absence of (gestural and spoken) user input over a
certain period of time. The gestures occurring in that dialogue can vary, depending on the
mapping from the semantic categories onto non-verbal behaviours. The CM may also decide
to leave some of them un-instantiated. Thus, e.g., at turn #8 less than three gestures are
attached to the output.

Table 1. Excerpt from conversation between HCA and a child

turn #7
Child’s spoken input: ehm how old are you now?

HCA output: I am 55 years old. [g0] And I am in a good shape [/g0] occasionally I ride on
horses and go for long walks and [g1] when I travel [/g1] I even sometimes hike

Animations selected:

 g0 = ARMS_CROOKED

 g1 = JUMP

turn #8
Child’s spoken input: okay

HCA output: [g0][/g0][g1][/g1][g2][/g2] my shoe size is 48 [g3][/g3]

Animations selected:

 g0 = RAISE_EYEBROWS

 g1 = LAUGHING

 g2 = LOOK_AT_DOWN

 g3 = SMILE

turn #9
Child’s spoken input: NONE

HCA output: silence is gold but silver is very beautiful

Animations selected: NONE

turn #10
Child’s spoken input: what are you doing now?

HCA output: I am doing many different things in my study. I am [g0] writing, [/g0] [g1]
thinking, [/g1] [g2] reading, [/g2] singing, dancing, and so on.

Animations selected:

 g0 = LEFTARM_CIRCULAR_MOVE

 g1 = RAISE_EYEBROWS

 g2 = FURROWED_EYES

12

13

4 References
Bernsen, N. O., Charfuelàn, M., Corradini, A. and Mehta, M. (2004). NICE Deliverable

D5.2a. Second Prototype Version of Conversation Management and Response
Planning for H.C. Andersen., 29 October.

Boye, J., Gustafson, J., Wirén, M., Mehta, M., Corradini, A., Bernsen, N. O., Fredriksson, M.
and Martin, J.-C. (2003). NICE Deliverable D3.7-1. Multimodal output generation
module for the first prototype., 17 October.

Corradini, A., Fredriksson, M., Mehta, M., Königsmann, J., Bernsen, N. O. and Johanneson,
L. (2004). Towards believable behavior generation for embodied conversational
agents. Workshop on Interactive Visualisation and Interaction Technologies (IV&IT
2004) in conjunction with the International Conference on Computational Science
2004 (ICCS 2004) Krakow, Poland, June 7-9.
http://www.nis.sdu.dk/publications/2004/RG_NICE_IV&IT04_26.4.04-F.pdf

Corradini, A., Mehta, M., Bernsen, N. O. and Charfuelan, M. (2005). Animating an
Interactive Conversational Character for an Educational Game System. Intelligent
User Interfaces (IUI'2005) San Diego, California, January 9 - 12.

Rickel, J. and Johnson, W. L. (2000). Task-oriented collaboration with embodied agents in
virtual worlds. Embodied Conversational Agents. J. S. Cassell, J.; Prevost, S.;
Churchill, E., Cambridge, MA: MIT Press: 95 -
122.http://citeseer.nj.nec.com/article/rickel00taskoriented.html

http://www.nis.sdu.dk/publications/2004/RG_NICE_IV&IT04_26.4.04-F.pdf
http://citeseer.nj.nec.com/article/rickel00taskoriented.html

