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Frequently used acronyms: 

• Gesture Recognition module (GR)  

• Gesture Interpretation module (GI) 

• Input Fusion module (IF)  

• NISLab Character Module (CM)  

• Telia Dialogue Manager module (DM) 

• Hans Christian Andersen (HCA) 

• Fairy Tale World (FTW) 

 



1 Introduction 
This report describes the Gesture Recognition (GR) and Gesture Interpretation (GI) modules 
in PT2. They have been designed by: considering the PT2 requirement specifications (cf. 
appendix 1), designing a gestural task analysis (done in cooperation with NISLab) and 
considering gesture shapes logged during PT1 user tests. 

A 2D gestural input has several dimensions that need to be considered by the GR / GI / IF 
modules: shape (e.g. pointing, circle, line) including orientation (e.g. vertical, horizontal, 
diagonal) ; points of interest: depend on the shape (e.g. two points for a line) ; number of 
strokes ; location relative to objects ; media (mouse or tactile screen) ; size (absolute size of 
bounding box, size of bounding box relative to objects) ; timing: timing between sequential 
gestures. Gesture processing of these dimensions is a multi-level process involving the GR, 
GI and IF modules. The GR computes a “low-level” semantics from geometrical features of 
gesture without considering the objects in the study. The GI computes a higher level 
semantics by considering the list of visible objects as sent by the object tracker from the 
rendering engine (thus, the possibility that several objects are selected simultaneously cannot 
be detected by GR and has to be detected by GI). The IF computes a final interpretation of 
gesture by combining it with the NLU output.  

The PT2 scenarios in either HCA Study or the two scenes of the Fairy Tale World (Cloddy 
Hans in HCA Study and in the Fairy Tale World) involve the gestural selection of object(s) or 
location(s). This was the only semantics that could be associated to user’s gestures as 
observed in video of PT1 user tests. Other semantics such as drawing to add or refer to an 
object, crossing an object to remove it are not compatible with the current NICE scenarios. 
The communicative acts for the FTW prototype are listed in D5.2b (request, ask, tell, confirm, 
disconfirm, askForSuggestion, askForExplanation). The table below lists the communicative 
acts identified for the scenario in HCA Study which is “indicate an object to get information 
about it” and which are expected to lead to gestural or multimodal behaviour. 

 Communicative acts 
 

1.  Ask for task clarification 
2.  Ask for initial information about the study 
3.  Select one referenceable object 
4.  Select one non referenceable object 
5.  Select several referenceable objects 
6.  Select an area 
7.  Explicitly ask information about selected object 
8.  Negatively select an object (e.g. “I do not want to have information on this one”) 
9.  Negatively select several objects  
10.  Confirm the selection  
11.  Reject the selection 
12.  Correct the selection 
13.  Interrupt HCA  
14.  Ask HCA to repeat the information on the currently selected object 
15.  Ask HCA to provide more information on the currently selected object 
16.  Comment on information provided by HCA 
17.  Comment on another object than the one currently selected 
18.  Select another object while referring to the previous one 
19.  Select another object of the same type than the one currently selected 
20.  Move an object (user may try to do that although not possible and not explicitly related to the task) 
21.  Compare objects 
22.  Thank 
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Some difficult cases for gesture interpretation include: 

• Multiple sequential gestures on the same object (eventually several gestures to do a 
single circle): In PT1, some users made several sequential gestures (e.g. parts of a 
circle) on the same object (which might be due to the fact that the selected object was 
not highlighted or to the fact that their finger slipped on the tactile screen). This 
resulted in duplicated messages sent by the GI and thus to some repetitions by the 
system. In order to avoid this, we proposed to: 1) have the GI provide feedback as 
soon as possible by having the character gaze at the selected object, 2) if several 
sequential strokes on the same object do not make a multi-stroke gesture (e.g. cross), 
the GI groups these as a single gesture on this object.    

• Some objects have overlapping bounding boxes (eventually partly hollow such as the 
coat-rack). 

• Some objects are partly hidden by others (e.g. the chair is behind the desk in several 
viewpoints). 

 

This task analysis resulted in informal specifications of GR and GI described in the following 
sections. Both the GR and GI modules have been designed to feature the requirements of both  
the HCA Study and the FTW prototypes. We explain the differences we have included 
regarding input and output in order to cope with the differences between the two prototypes. 

2 Gesture Recognition module (GR) 

2.1 Informal specifications 
The gestural task analysis resulted in the following set of shapes. 

GR output 
class 

Features of input gesture (shape and size) 

Pointer Point. Very small gesture (10x10 pixels) of any shape including garbage 
Very small line, tick, scribble 

Surrounder The following “Surrounding” gesture shape (for single object selection) were logged 
during PT1 user tests and are used for training the GR:  
- Circle, open circle, noisy circle, vertically / horizontally elongated circle. 
- “alpha”, “L”, “C”, “U”-like gestures with symmetrical shapes. 
- Square, diamond, vertical/ horizontal rectangle. 
 

Connect Vertical, Horizontal, Diagonal lines. Multiple back and forth lines. 
 

Unknown Garbage gesture. The bounding box is not very small (otherwise recognised as a point). 
 

GR provides the 1st best gesture shape as output; scores of other shapes are available 
internally.   

The 2 stroke “Cross” shape is recognised when 2 crossing lines are drawn. It is recognised by 
the GI (instead of GR) in order to avoid cumulating the delay between the two strokes of the 
cross with the delay between sequential gestures. 

When a gesture is detected by GR, a <startOfGesture/> message is sent by the GR to the IF 
before launching shape recognition in order to enable appropriate timing behaviour in the IF.   

Shapes “unknown” can be sent or not to the GI: when the GR is not able to recognise the 
shape or when the user makes noisy gestures, the GI can try to recover (considering them as 
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surrounder gestures) and hopefully detect any associated gestured object. The goal here is to 
reduce the non detection of gestured objects. Indeed, surrounder gestures logged during PT1 
were quite noisy and included contour of objects. The other possibility is to force the user to 
gesture properly and not forward unknown shapes to the GI (yet the message 
<startOfGesture> sent before shape recognition has to be cancelled). 

2.2 Algorithm  
The GR uses a Neural Network trained with gestural data logged from PT1. This includes 
several steps: manual labelling of logged shapes, training, testing and tuning (details are 
provided in appendix 2). The GR is compared with some other techniques for gesture 
recognition in appendix 3. The general algorithm of the GR is as follows: 

 
Algorithm GR 

  When a gesture is detected :  

  Send a startOfGesture message to IF 

 

If the bounding box of the gesture is very small (10x10)  

Then set shape = pointer 

Else 

Convert points to a slope features array. 

Test the array with the neural network. 

set shape = result from Neural Network  

(either surrounder | connect | unknown) 

   If shape = connect  

Then compute start and end points of the line 

 

Build and send a grFrame for this newly detected gesture 

 

End of Algorithm GR 

2.3 Format of messages produced by GR 
The focus point from PT1 GR messages has been removed because useless (the bounding box 
is used instead by GI). In case the shape is a connect, the two points of the line shape are 
provided in the message. We provide below examples of message for each output class (the 
object tracker section includes the list of visible objects. 
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Shapes tested during beta tests include shapes most observed in PT1 user tests (point, circle, 
vertical, horizontal and diagonal lines) which total 478 observed gestures (88%). Other less 
frequent shapes were also used for beta test (garbage, noisy circle, vertical rectangle, vertical 
circle). 

When considering only frequent gesture shapes (point, circle, vertical, horizontal and diagonal 
lines), the success rate is 100%. The overall success rate in shape recognition is 96% when 
including all shapes including less frequent ones (eventually observed once or twice during 
PT1 user tests). Most recognition errors are related to “unknown” shapes which can be 
recognised as a surrounder. 
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3 Gesture Interpretation module (GI) 

3.1 Referable objects 
The GI has been designed by considering the properties of the graphical objects that can be 
displayed and that the user is able to refer to. This includes:  

• spatial ambiguities due to objects that have overlapping bounding boxes, or objects 
that are in front or bigger objects (such as the objects on HCA desk), 

• perceptual groups which might elicit a multiple selection with a single gesture, or for 
which a gesture on a single object might have to be interpreted as a selection of the 
whole group (such as the group of pictures on the wall in HCA Study, or the diamonds 
in Fairy Tale World). 

The exact list of graphical objects displayed for each scenario is under discussion between the 
partners. 

3.2 Informal specification  
The requirements detailed in D1.1-2a have been considered during the design of PT2 GI (cf. 
details in appendix 1). It led us to specify the features that the GI should include in order to 
handle the requirements of different Characters in the two different prototypes. These features 
are listed in the table below and explained in the following sections. 

 GI Feature Required in HCA 
Study 

Required in FTW 

Have a time out behaviour for collecting and grouping 
sequential gestures 

X X 

Have an inhibited phase during which incoming gestures 
are not interpreted while the character is responding 

X  

Requires objects sorted by score in case of several objects  X 

(for early fusion, cf. 
D3.6) 

The GI can also provide:  

• time-stamps for each object in the case of 
sequential selection,  

• score of each object,  
• objects’ name sorted by timestamp.  

  

In order to group sequentially gestured objects, the GI has a relatively fast timeout. It collects 
what it gets before the timeout and then passes it on to the IF (and the NLU for the FTW). 
The message sent by the GI to the IF contains one or several objects. If several objects, this 
may mean either that a single gesture was done on several objects or that sequential gestures 
were done on different objects. An object does not appear twice in the giFrame even in the 
case of multiple gesture on the same object. The GI collects references to one or several 
objects in a given time window and passes them to the IF as a single gesture turn.  

The HCA Study prototype requires that once the timeout is over, incoming gestures are 
ignored by the GI. The CM is expected to notify the GI with a <EndOfBehavior\>  message 
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the end of verbal and nonverbal behaviours so that the GI can start again interpreting gestures. 
This is not  required for the FTW prototype.  

Gesture confidence scores are ignored in HCA Study since a fast answer from the character is 
preferred over an in-depth resolution of ambiguity. 

The types of results provided by the GI are defined in the table below.  
GI output semantic class GR output 

class 
Graphical context 

Pointer 
Cross 
Surrounder 
Connect 
 

Gesture bounding box overlaps with bounding box of 
only one object. 

select 

Sequential : 
  Pointer 
  Cross 
  Surrounder 
  Connect 
 

On the same object (close in time) 

referenceAmbiguity Surrounder 
Cross 
Connect  
 
Sequence of 
pointers or 
other shapes 
than 
unknown 
 

Bounding box of gesture overlaps with the bounding 
boxes of several objects.  

noObject Any except 
unknown 

GI failed to detect any object although a gesture was 
made by the user (gesture on empty space; selection of 
non referenceable objects). 
 

3.3 Algorithm  
3.3.1 Temporal behaviour with inhibition phase 
Since the case with inhibition phase in GI is more complex, we present only this case. The 
algorithm without inhibition phase is simpler. The timeout period is reset each time a new 
gesture is recognised. 

The temporal behaviour of the GI is illustrated in the following schema :  

 9



Time out period

A 1st gesture
is sent by GR to GI

Several objects gestured
during the same timeout period
will be grouped by GI

Start of timeout due to
the detection of a gesture

End of timeout : 
a giFrame is sent by GI to IF 
grouping objects gestured during timeout

GI stops interpreting incoming gestures

Character is responding

End of character’s response
The GI starts again interpreting 
incoming gestures

time

Time out period

A 1st gesture
is sent by GR to GI

Several objects gestured
during the same timeout period
will be grouped by GI

Start of timeout due to
the detection of a gesture

End of timeout : 
a giFrame is sent by GI to IF 
grouping objects gestured during timeout

GI stops interpreting incoming gestures

Character is responding

End of character’s response
The GI starts again interpreting 
incoming gestures

Time out period

A 1st gesture
is sent by GR to GI

Several objects gestured
during the same timeout period
will be grouped by GI

Start of timeout due to
the detection of a gesture

End of timeout : 
a giFrame is sent by GI to IF 
grouping objects gestured during timeout

GI stops interpreting incoming gestures

Character is responding

End of character’s response
The GI starts again interpreting 
incoming gestures

time  
The following durations are proposed as default value for the module:  

• Timeout period duration: 1.5 seconds (compatible with the literature and observations 
during PT1 user tests) 

• Maximum duration of waiting for the character’s response = 6 seconds (after this the 
GI starts again interpreting gestures) 

 

3.3.2 General algorithm 
Algorithm GI 

Input: incoming messages from GR and CM 

Output: messages sent by GI to IF 

Variable: list of object(s) name gestured during timeout 

 
// Processing of an incoming grFrame from GR 

If a grFrame is received from GR  

Then  

If the character’s response is currently pending 

 Then  

  Ignore grFrame 

 Else  

  If gesture time out period is not started   

  Then start gesture time out period 

   

  Call bounding box algo. to detect objects(cf. Appendix 4)  
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  Store name of detected object(s)  

in the list of gestured objects (avoid duplicates) 

 

 

// Gesture time out period has finished 

If end of timeout period 

Then  

 If no object was detected during timeout 

 Then  

  Build a “noObject” giFrame 

 

 If a single object has been detected during timeout 

 Then  

  Build a “select” GIFrame with name of this object 

   

 If several objects have been detected during timeout 

 Then  

  Group objects names in a “referenceAmbiguity” GIFrame  

 

 Send the GIFrame to IF 

 Set characterResponsePending to true 

 

 

// Character’s response is finished 

If  message is <EndOfBehavior\> is received from the 
Character/Dialog Module OR 

 message <EndOfBehavior\> has been waited for too long 

Then  

 Set characterResponsePending to false 

 Set gesture detection period not started 

 Enable GI to start new timeout if a gesture is detected  

 

End of Algorithm GI 
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3.3.3 Using Z dimension 
In the 3D graphics, some objects hide others (for example in HCA Study a vase is hiding a 
table). Yet, the graphical application only delivers the coordinates of all the objects which are 
partly in the camera viewpoint without informing the GI if these objects are hidden or not by 
some other visible objects.  

The objects which are hidden should not be selected by a gesture, even if this gesture is 
spatially relevant. In the bounding box algorithm (provided in appendix 4), we used the depth 
(Z dimension) of the closest side of the bounding box of objects. The salience value computed 
for each object is weighted by a factor of the distance, which is maximal when the front of the 
object is near the camera, and decreases quickly for objects which are far from the camera. 

 
This is not a perfect solution, since an object closer on its Z dimension can actually be 
partially hidden by a farther one (for instance a vase on a table which hides the part of the 
table which is behind the vase). Thus the size of the object is also used in the algorithm. An 
object which fits better the size of the gesture will have more chance to be selected.   

A better solution could be to allow a procedure call to a Zbuffer algorithm in the 3D engine, 
returning the object which is first visible at a given point of the view port.  

3.3.4 Bounding boxes of objects 
In some situations, the graphical application sends to the GR the bounding boxes of some 
objects that are indeed not visible in the current viewpoint. These bounding boxes are very 
large (x or y coordinates over 1000 or under -1000), and are thus always selected by the GI in 
case of connect gesture or pointing.  

Discussions with LiquidMedia have led to the conclusion that this problem has two 
explanations: 1) the bounding boxes of the objects are in the frustum (cone of view) of the 
camera (so the objects are absolutely not visible for the user, but are considered as visible 
from the GI’s point of view), 2) the bounding box of the objects are wrong (or too rough 
approximations since rectangular). 

We have selected the following solution: the GI removes from the list of objects any object 
with x or y coordinates over 1000 or under -1000 since problematic objects are almost always 
with large bounding boxes while normal objects were within these bounds. Objects such as 
the window which are leading to such problems due to their approximate bounding box are 
ignored by the GI. 
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3.4 Format of messages produced by GI  
3.4.1 noObject 

 

3.4.2 select 

   

 

3.4.3 referenceAmbiguity 
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4 Screen dump example 
A gesture is done encircling several pictures on the wall in HCA Study: 

 
 

Once the shape is completed by the user, the GR sends to the GI a frame containing the 
recognized shape (“surrounder” in this example) and the data about objects on the screen: 

 
The GI sends a message containing the name of objects that have been detected in a 
<referenceAmbiguity> message: 
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6 Appendix 

6.1 Appendix 1: Re-visiting PT2 requirements  
(D1.1-2a Part2 section 4) 

We study for each identified requirement how it is handled in PT2 (in italics). 

4.2 Requirements on GR 
These requirements concern only the shape of the gesture. The requirements involving the 
detection of selected object(s) are describe in the GI section. 
 
4.2.1 Expects as input 
The GR needs to receive the sequence of 2D coordinates sent by LM rendering module 
(works fine in PT1).  
=> Ok. 

 
4.2.2 Provides as output 
A n-best list of gesture shape, confidence score, timestamps of start and end of gesture, 
gesture bounding box and possible points of interest for each shape (e.g. starting and ending 
point of lines).  
=> These information are available internally and provided differently to HCA Study and 
FTW. Only the 1st best is considered for output in NISLab HCA Study. 

 
4.2.3 Recognises the following mono-stroke gesture shapes: generalised spot touching 
(pointing, small line, small noisy gesture), circle, long line, small garbage gesture, long fiddle 
gesture 
=> This list of recognised classes of shapes has been updated under agreement with NISLab 
after gestural task analysis. It now includes pointer, connect, surrounder, unknown. 

 
4.2.4 Recognises the cross multi-stroke gesture 
Otherwise provides output for each touch event. 
=> Ok (recognised by GI instead of GR for avoiding delaying the processing : waiting for the 
second stroke of the cross is combined with waiting for sequentially gestured objects). 

 
4.2.5 Works with mouse and tactile screen 
=> Ok. Three gestural models were built from PT1 logged files : mouse, tactile screen, union 
of both. The model built from union of both the mouse and the tactile screen gave better 
results (since containing more data for training). 

 
4.2.6 Set-up should minimise gesture noise 
The set-up should minimise gesture noise, for example by emulating the efforts of 3D 
gestures as closely as possible (e.g. vertical tactile screen). 
=> Depends on user tests set up. Under discussion with both partners for user tests. HCA 
Study will probably use tactile screen. FTW will probably use gyro mouse or ordinary mouse. 
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4.3 Requirements on GI 
 
4.3.1 Expects as input 
The GI needs to receive:  
- From GR: n-best list of recognised shape 
- From rendering module: objects (and their 3D bounding box) which are (even only partly) 
visible in the current viewpoint 
=> Receives only 1st best recognised shape in order to decrease combinatorial complexity 
(the score of n-best are available internally).  

=> Problems related to the list of visible objects sent by the rendering modules are described 
in this report.  

 
4.3.2 Provides as output 
The GI has to produce:  
- A n-best list of object(s) selection(s) hypotheses (single object, two objects connected, 
several objects simultaneously selected) with timestamps and confidence score for each object 
selection hypothesis.  
=> Ok. As agreed with NISLab during gestural task analysis for HCA Study, the GI does not 
provide the CM with scores for each object. 

 
4.3.3 Reliable detection of gestured referenceable objects 
Requirement regarding referenceable objects are described in the section "4.5 Requirements 
from LIMSI to other partners". GI will use the depth Z dimension of objects' bounding box 
for gesture interpretation (e.g. if one object is partly hidden by another object). Objects in the 
front will be given higher score than the one behind (e.g. for avoiding selecting the chair if 
behind the desk when both are candidates for gesture selection). 
=> A few problems remain (e.g. gesture on the vase induces detection of the table behind).    
 
4.3.4 Detects selection of a single object with pointing, circling or small line ("pointer" 
category) 
=> Ok : « select » message. 
 
4.3.5 Interprets several sequential gestures (pointing / circling / combinations of these) on 
the same object (tapping, or parts of a single circle, equivalent of false start) as a single 
selection of an object  
=> Ok : duplicate objects are avoided. 

 
4.3.6 Recognises as the simultaneous selection of different objects a single circle around 
several different objects 
Issues will be considered such as problems raised by overlapping objects (e.g. a big circle on 
the desk could be interpreted either as selecting the whole desk or all the objects that are on 
the desk).  
=> Ok : « referenceAmbiguity » message. 

 
4.3.7 Recognises a line between two different objects 
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=> Ok :  « connect » shape. 

 
4.3.8 Forward several sequential gestures on different objects individually to the IF 
It is expected that user could sequentially gesture on 1 to 3 objects, but this number might 
change depending on the distance between objects (e.g. the user might use a single gesture if 
they are close to one another, otherwise use several gestures). The GI will forward 
individually each individual selection to the IF to avoid having the GI wait for the end of the 
gesture sequence, and enable the IF to start fusion processing. The order needs to be kept for 
input fusion (associate order rank as a semantic attribute to each selected object).  
=> Finally grouped in the GI in a « referenceAmbiguity » tag  (agreed with partners).   

 
4.3.9 Provides possible semantic function for cross (negation), line (relating), garbage 
gesture (noise), out of domain (fiddle gesture, gesture on non response) 
=> cf. table of classes of GI output agreed with partners. The cross is finally interpreted as a 
selection since more probable in the agreed scenarios. 

 
4.3.10 Manages ambiguous gesture between several objects 
The GI will compute one confidence score for each gesture interpretation by combining 1) the 
overlapping of the bounding boxes of each visible object and the gesture with 2) the 
confidence score assigned to each shape hypothesis. This score will be forwarded to the IF. 
=> Does not use score and generate a « referenceAmbiguity » tag. 
 
4.3.11 Recognises selection of location 
The need to detect location selection (e.g. assign a location semantics to the floor, the carpet, 
the desk or to the selection of places where no object stands) in the selected scenarios will be 
discussed.  
=> Not necessary in selected scenario (in Cloddy Hans in HCA Study, the possible locations 
are objects : machine slots).    

 
4.3.12 Manages selection of the remaining non referenceable objects 
Although more referenceable objects will be added in the study, some non referenceable 
objects will remain. The GI should in this case not recognise any referenceable object and 
send to the IF a frame without any object. 
=> Ok : « noObject » message. 

 
4.3.13 Manages different categories of referenceable objects 
3 categories of conversational objects : rich, poor, no response (e.g. carpet, wall). 
=> Not necessary in selected scenario  
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6.2 Appendix 2: Training GR with gestures logged during PT1 user 
tests 

6.2.1 Introduction 
We trained a back-propagation neural network (BNN) used in the Gesture Recognition 
Module (GR) from corpus data, while the BNN was previously trained from artificial forms. 

The two main goals of this approach were:  

• Increase recognition success rate 
• Adapt the GR to the input media (Mouse or Tactile screen) 

 

It included the following tasks: 

• CLASS: Classification of corpus data. A tool has been developed to visualize each 
capture of shapes (visual form + other information) drawn by the subjects of the PT1 
experiment, and to manually assign a class label to the shape. 

• TRAIN: Training the network with a subpart of the corpus data + classification 
information. The network is trained to associate each shape to the class proposed in T-
CLASS. 

• TEST: The trained network is tested with the rest of the corpus data. Success rate is 
computed and used for tuning the network configuration. 

• TUNE: The configuration of the training (BNN configuration, number of training 
cycles, training/testing ratio) is tuned to obtain the best performance. 

6.2.2 Tools 
Three programs written in Java have been designed. The first one (Corpus-Display) is used 
for classification of the corpus. The second one (Discretize) is used to check visually the 
discretization model used both for training and testing. The third one (Train-Test-Tune-
Network) is used for the TRAIN, TEST and TUNE tasks. 

6.2.3 CLASS Task 
The corpus with classification information (classification information is initially empty) is 
stored in a file, loaded at start-up, and displayed by the tool. 

When the person intended to classify the corpus wants to modify classification information, 
she can directly jump to a given shape, using a session number and a gesture number. Then 
she can push the button associated with the class label she wants to assign to the shape, and 
the next shape is displayed. 
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Figure 1 : Tool for CLASS Task. LEFT: visualization of the shape. MIDDLE : shape 
information + controls for corpus navigation. RIGHT : buttons for selecting the class 

label to assign to the shape. 

6.2.4 TRAIN Task 

The TRAIN task was designed using the Discretize and the Train-Test-Tune-Network tools.  

6.2.4.1 Discretization 
One of the constraints of using a neural network is that data must be described within a fixed 
size array of data. A first step consisted in transforming the shapes into a gray levels matrix. 
The smaller the matrix, the faster the training process (training speed is important in order to 
find a good configuration in a reasonable time). While the size of the matrix should have been 
a subject of the tuning, we preferred not to include it in the configuration, and adopted a (12 
points)*(12 points)*(8 bits) matrix.  

The second step was oriented into a vector approach. The idea was to extract statistical 
information about the curve, using first and second derivative. This second approach gives 
much better results, and has thus been finally preferred to the first one. 

First Step 
The discretization process is illustrated by a screenshot of the Discretize tool (Figure 2). The 
process of discretization is as follows: 

• The gesture of the user is displayed in a small image with appropriate translation and 
scaling values, calculated from the original drawing bounding box. 

• The destination drawing is configured to be anti-aliased, in order to decrease the step 
effect. This gives an approximate +5% recognition success.  

• The drawing is made using a thickness which is proportional to the size of the original 
image. This way, the result is the same whatever the original size. Moreover, after we 
stated that some shapes drawn with a little number of points but with long distance 
between points were subject to recognition error, we found that the thickness has to be 
adapted for each line depending on its length, because a discretization of short lines 
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gave a darker result than a discretization of long lines, and thus a different behaviour 
for neural network learning. 

• The final image is then blurred in order to capture (if learned) or be captured (if tested) 
more easily. The gain seems to vary in the interval of +5% and +8%. The parameters 
of the blur have to be selected with respect to the precision of the matrix. A too strong 
blur indeed induces a loss in recognition rate. 

 

 
Figure 2 : Discretize tool. LEFT : drawing area. TOP-RIGHT : a 16*16 version of the 

discretized, scaled version of the drawing. 

Second Step 
In the second step, the following procedure is followed: 

- The curve is refined, inserting points when distance between two points is too long, 
and removing points in the opposite case. 

- The curve is smoothed, using a Bezier extrapolation; 
- The sine and cosine of relative angles between each of two successive segments are 

computed, giving two arrays whose size varies between shapes. 
- Mean and standard deviation of each array is computed, and used to build the 

representative of the curve. 
- The sine and cosine arrays of the first and second derivative of the angles are then 

computed, and their mean and standard deviation are used to build the remaining of 
the representative of the curve. 

6.2.4.2 Train set selection 
In order to test the efficiency of the trained network, the data used for training must not 
intersect with the data used for testing. The user of the Train-Test-Tune-Network (TTTN) tool 
must thus select the ratio of data (control “Test/Learn ratio”) to use for training compared to 
the data used for testing when the training set (selected through combo box “Learning 
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source”) and the testing set (selected through combo box “Testing target”) come from the 
same source (data sources are either Mouse, Tactile Screen or both).   

When the source for training data and the source for testing data are the same, a random set of 
shapes is selected in the training data and discarded for the testing data (testing data contains 
the remaining shapes). 

As the training sets and testing sets are randomly built, it is necessary to run several train/test 
cycles and compute the average and standard deviation on the success rates returned by each 
cycle. 

6.2.4.3 Training configuration 
When run as a single configuration tester, the TTTN tool can be configured regarding the 
number of training iterations to perform before testing (“Learning cycles”), and the number of 
input and hidden neurons in the BNN. 

 

Figure 3 : Train-Test-Tune-Network tool. LEFT: results for the tune process. 
BOTTOM-RIGHT: results from the test process. TOP-RIGHT: configuration controls. 

6.2.5 TEST Task 
The test task is quite simple, since it consists in testing the BNN with the calculated testing set 
(which is calculated simultaneously with the training set). 

Once the training is finish, the TTTN tool automatically launches the test, compares the 
results from the network against the target result (that is, the class label assigned to the shape 
during the CLASS task) and counts 1 point for a successful recognition (when the first 
recognized class is the target class) and 0 otherwise.  

It then returns the percentage of successful recognition. 
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Since the training and testing sets are randomly built, it is necessary to repeat the process 
several times in order to obtain a significant value. This is configured through the “Learning 
cycles” control. 

6.2.6 TUNE Task 
The tune task consists in a random exploration of configuration values, with a simple 
simulated annealing approach. The number of test phases is controlled by the “Find best test 
numbers” control and the cold down speed is defined by the “Freeze speed” control. 

6.2.7 Results 
6.2.7.1 PT1 version 
On a total of 542 shapes, 457 were correctly classified by PT1 GR. If the point is taken into 
account, it gives a recognition success rate of 86%. If points are moved out of the picture, the 
recognition success rate falls down to 75%. This value is our comparison point for the new 
model. 

6.2.7.2 PT2 version 
All the line classes are grouped together. We indeed found that a lot of errors where confusion 
between different kind of lines. Moreover, it is easy to find the kind of line using the first and 
last point of the shape. 

As the training data set and the testing data set must not overlap, the success of recognition of 
the previous version and of the new version cannot be directly compared (the success rate of 
the new version are higher if the training set and the data set are identical). As an alternative, 
we have to compare the success rate calculated for the new version on a basis of taking 90% 
of the corpus to train the network, and the remaining 10% for testing. In order to get enough 
precision on the results, the success rate is calculated several times with different 
training/testing sets, always with the same ratio. 

First step 
Results were as follows: 

1/ concerning the data coming from the tactile screen:  
90.5% success on non-point shapes (estimated overall success rate = 95%). 

parameters = (trains=700, inputs=8, hidden=8) : average = 90.5%, standard deviation = 7.5  

{ 83.3%; 92.3%; 91.6%; 90.0%; 94.4%; 83.3%; 100.0%; 100.0%; 94.7%; 75.0%} 
 

2/ concerning the data coming from the mouse :  
83% success on non-point shapes (estimated overall success: 92%). 

22 runs, parameters = (trains=1100, inputs=10, hidden=10) : { 86.9%; 76.4%; 88.8%; 88.8%; 77.2%; 
100.0%; 93.7%; 93.7%; 82.6%; 61.1%; 88.2%; 76.9%; 78.2%; 70.5%; 80.0%; 78.9%; 76.4%; 86.9%; 
72.2%; 100.0% } average = 82.87, standard deviation = 9.72.  
 

3/ concerning the whole data set (with trains=1100, inputs=10, hidden=10): average = 82% 
success rate on non point shapes, standard deviation = 6.5. Estimated overall success: 91%. 

4/ when both trained and tested with all shapes of either mouse, tactile or both modalities, the 
success rate is almost always 100% (it may sporadically vary because of the random 
initialisation of the neural network). 
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Second step 
For the second step, we only tested the training/testing with the whole corpus. The results 
were as follows. 

Estimated overall success : 96% (6% better than first step)  
{90.47%; 98.18%; 97.14%; 92.06%; 91.93%; 96.36%; 95.91%; 89.85%; 94.82%; 92.42%; 91.38%; 
96.0%; 91.07%; 87.93%; 89.28%; 92.54%; 90.74%; 93.06%; 90.48%; 91.67% } 

trains=1510; Inputs=7; hidden=7; avg=92.67 
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6.3 Appendix 3: Gesture Recognition Techniques 
In NICE, gesture recognition is primarily intended to be used in order to distinguish between 
four classes of gestures:  

• Pointers, 
• connectors (lines),  
• surrounders (circles, half-circles, alpha-like shapes, squares, rectangles, triangles, free-

forms),  
• unknown. 

 

 

Connect 

 

Surrounder 

 

Unknown 

Examples of shapes logged during PT1 user tests. Surrounder shapes feature high 
variation. 

 

The important point here is that all forms are likely to be freely rotated or distorted, and more 
generally, that encountered shapes are not normalized forms. 

6.3.1 Rubine approach 
The Rubine algorithm is based on the original vector data of the shape produced by a user. 

The principle of the Rubine approach to gesture recognition is to extract some features on the 
drawn shape, for instance distance and angle between the starting point of the gesture and the 
ending point, distance and angle between opposite corners of the shape's bounding box, and 
so on. This approach gives excellent results (97% for letters up to 100% for simple shapes) on 
standardized shapes, such as digits and letters, because it appears that these characteristics are 
relatively constant in those cases. 

For our purposes, however, the possible forms are very unstable. The start and end points of 
the shape can vary and almost all positions can be found in a corpus of gestures.   

6.3.2 Pixel-Based approach 
In this approach, the shape to be recognized is not kept intact, but transformed into a pixel 
matrix. A classification method is then applied to match an observed shape with a predefined 
set of shapes. 

This method is better than the Rubine approach for our purposes, since it does only depend on 
the final shape of the drawing, not on the way it has been produced. It however performs 
poorly with our particular application, especially because: 1)  in order to take a reasonable 
time for the learning process, the matrix size has to be kept low, leading to recognition error 
when a surrounder is narrow (because two close lines can be confused into a single line), 

 25



2) there is an important variability of the shapes which are recognized as surrounders, and it 
harden the task of the learning process, because it has to automatically generates hidden 
classes which are not strictly distinguishable. 

[Westeyn, 2003] reports a recognition success rate of 99.2%, with a set of seven 
distinguishable shapes.   

6.3.3 Slope feature extraction 
While the Rubine method is not adapted to our purposes, because of the fact  that it relies on 
stereotypical shapes, and thus will not handle correctly the important variability of our 
recognition task, the “vector” approach seems more interesting than the “matrix” approach. 
Indeed, the “matrix” approach can only recognize non rotated, learned shapes, while the 
“vector” approach can learn shapes, based on the kind of movement realized by the user, and 
thus is rotation-insensitive, and can accept more variability of the shape. 

The method of Slope feature extraction is based on computing the relative angle between each 
segment of the shape. Then, the resulting data array is used to learn and/or recognize a given 
shape. For instance, if a triangle is drawn, the slope feature array will show up two peaks, if 
it's a square, there will be three peaks. If the shape is a circle, there will be no peak, but a 
constant non-null value, and so on. 

This  method has been successfully used by the DOVE system [Ou et al., 2003] in order to 
recognize shapes from a set of twelve. The success rates go from 75% to 100%, depending on 
the target shape, with a overall average of 91%. 

6.3.4 Gesture recognition in NICE 
In the NICE project, we had to distinguish between points, connectors (lines) and surrounders 
(half-circles, closed shapes, circles, ellipses, alpha-like shapes, squares, rectangles, L-like 
shapes) and unknown shapes.  We have first investigated the use of a Pixel-Based approach, 
which gave results of 82% for the generic case or better scores (83-90%) depending on the 
kind of input modality (tactile screen or mouse gestures). The main problem with this 
approach was that, in order to make the system usable, the pixel matrix into which the gesture 
was transformed was quite small (12x12 pixels) compared to the original shape (from 30 to 
200 pixels). Consequently, a lot of gestures needing a better precision were misinterpreted.  

In a second development step, we choose to keep the vector information, to compute first and 
second derivative on curve’s slope, and to use this information in order to train the 
recognition network. This method gave us a success rate of 92.7% in the generic (modality-
independent) case.  

In the two experiments, we trained the networks on a part of a gestures corpus, and tested the 
network on the remaining, unused shapes. We removed from the corpus all shapes considered 
as pointing, because we have a 100% recognition success rate using a simple heuristic. 
Consequently, if we consider the whole corpus, including pointing gestures, recognition rates 
are respectively 90% and 96%. 
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6.4 Appendix 4: GI Bounding box algorithm  
Algorithm bounding box  

{ Algorithm for computing salience of an object for a gesture depending on 
the recognised shape (the weight used for computation were empirically 
selected ) } 

 

If the gesture shape is “Pointer” 

Check the overlapping of a 8x8 box around the pointing spot and of the 
object bounding box 

 

if there is an intersection,  

then  

  if pointing spot in the object bounding box  

  then inObject = 1  

 

  else  

{ Use a combination of  

1) intersection of gesture and object,  
2) size of object and  
3) distance of gesture to center of object } 
 

1) inObject =  

(intersection (8x8 box around pointing spot , object’s bounding box)) 
/  

(surface of 8x8 box) 

 

 

 2) objectSize =  

1 –  

Min(1, Arctangent(1/Square Root (surface of object) / 70) / (PI/2)) 

 

 3) distanceToCenter =  

(smallest distance of the spot to the center of one of the object’s axis) /  

corresponding width or height 

 

ZDistance = 1-(objectMinZ/1200) 

 

{ Compute salience as the combination of these 3 values } 

Salience = inObject *  

(0.3 * objectSize + 0.1 * distanceToCenter + 0.6 * ZDistance) 

   

Else Salience = 0 
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If the gesture shape is “Connect ” 

gestureRectangle = a rectangle so that the line of the gesture is its 
symmetry axis on the longest length, and the width of the rectangle is 20% 
of the line’s length, and the height of the rectangle is the line’s length. 

 

If (intersection(gestureRectangle, objectBoundingBox) > 
intersection(gestureBoundingBox, objectBoundingBox)  

Then 

gestureSurface = gestureRectangle 

Else 

 gestureSurface = gestureBoundingBox 

 

 

overlappingSurface = intersection (gestureSurface, objectBoundingBox) 

ZDistance = 1-(objectMinZ/1200) 

 

 

Salience =  

0.2 * (overlappingSurface / gestureSurface) +  

0.2 * ZDistance +  

0.6 * overlappingSurface / union of gesture and object surfaces 

 

 

If the gesture shape is “Surrounder ” 

overlappingSurface =  

intersection of gesture bounding box and object bounding box 

 

ZDistance = 1-(objectMinZ/1200) 

 

Salience =  

0.35 * (overlappingSurface / gestureSurface) +  

0.35 * overlappingSurface / union of gesture and object surfaces + 

0.3 * ZDistance) 

 


