
1

Abstract
Development and evaluation of spoken language dialogue interfaces
(SDIs) still suffers from lack of accepted standards or widely
understood benchmarks for assuring potential customers and users of
the quality of systems and components. The DISC project has been
addressing this problem by drafting a best-practice dialogue
engineering methodology and then testing that methodology. This
chapter presents ongoing work in DISC on evaluation of SDIs and their
components. A proposal is presented for (i) how to systematically
generate a comprehensive set of evaluation criteria for SDIs and their
components, and (ii) how to thoroughly characterize each evaluation
criterion through the use of a common template describing the what,
the when, the how, the importance, the difficulty, the cost, etc. of
evaluation. The approach is illustrated by the case of dialogue manager
evaluation.

 Introduction
Spoken dialogue interfaces (SDIs) have within the last few years begun
to attract broad industrial interest. This is primarily due to the advent
of sufficiently robust, speaker independent, continuous speech
recognizers rather than to particular developments with respect to the
integrated SDIs themselves, which are in a gradual process towards
maturity (Bernsen et al. 1998a). However, SDIs development and
evaluation still suffer from the lack of accepted standards or widely
understood benchmarks for assuring potential customers or users of
the quality of particular applications. Similarly, there are no reliable
methods for comparing the quality of two SDIs before selecting one for
deployment in the field. Needless to say, this situation continues to
generate uncertainty about the potential of SDI technologies, their
proper domains of application, their usability, the cost of producing
them, their development time and the quality of products in both
absolute and comparative terms. In an increasingly competitive
marketplace, the ability to state that some system has been developed
following a carefully designed and validated dialogue engineering

methodology, along with the ability to report evaluation results in a
standardised framework, will give products developed in this way a
competitive advantage. And that, in turn, is likely further to stimulate
adoption of the methodology as well as of the technology itself.

The European Esprit Long-Term Research Concerted Actions DISC
(Spoken Language Dialogue Systems and Components. Best practice in
development and evaluation) and its successor, DISC-2 are developing

2

a detailed and integrated set of development and evaluation methods,
procedures and tools which are intended as a first dialogue
engineering best practice methodology. DISC focuses on six key
aspects of SDIs: speech recognition, speech synthesis, language
understanding and generation, dialogue management, human factors
and systems integration.

The DISC approach has been to advance towards a first definition
of best practice through a thorough investigation of current dialogue
engineering practice for the development and evaluation of SDIs and
their components. The current pilot investigation has been executed
through analyzing a broad range of SDIs and components with respect
to the key aspects mentioned above, and mapping out their respective

development and evaluation processes. In order to adequately capture
current practice and overcome various problems primarily relating to
the insufficient and incomparable information provided for individual
systems and components, a common scheme has been developed
through several iterations. The scheme consists of a „grid‟ and a life
cycle model both of which are slot-filler structures based on current
knowledge of SDIs and of software engineering life cycles,
respectively. At the time of writing, DISC-2 is about to start and the
DISC dialogue engineering scheme has reached a draft best-practice
stage.

This chapter briefly presents the DISC dialogue engineering scheme
as a basis for addressing some key issues of SDI evaluation. Section 2
presents the DISC grid and life cycle. Section 3 presents the DISC
terminology for various types of evaluation and test. Section 4 presents
a general approach to the evaluation of SDIs and components
including a template for characterizing evaluation criteria. Section 5
discusses application of the approach to the evaluation of dialogue
managers. Section 6 concludes the chapter.

 The DISC Dialogue Engineering Scheme
Development and evaluation are tightly interwoven and should
interact closely throughout the process of creating an SDI or
component. The DISC life cycle model is intended to capture all such

process-oriented issues whereas the grid describes the properties or
characteristics of the SDI or component being developed and evaluated
(Heid et al. 1998).

 The DISC grid

The DISC grid takes the form of a series of “checklist” entries that

should enable a comprehensive and in-depth characterization of the

3

properties of any SDI or SDI component. The first DISC grid was
heavily based on the interactive speech theory illustrated in Figure 1
(Bernsen et al. 1998a) and was somewhat biased towards dialogue
management and human factors, i.e. the performance, control and
context layers in Figure 1. Subsequent versions of the grid have been
substantially expanded, particularly as regards the language and
speech layers, during the current practice investigation described in
Section 1.

<insert Figure 1 here>
The slots of the final DISC grid cover SDI component architecture

and function, system architecture and issues of system integration,
multimodality and general system performance, as well as properties

of individual components, including speech recognition and speech
synthesis, language processing for user and system utterances, and
dialogue management.

 The DISC life cycle

The DISC life cycle model aims to capture the development and
evaluation process for SDIs and their components. The first model was
based on work presented in (Bernsen et al. 1998a) and has
subsequently been extended as a result of project discussions and the
current practice investigation described in Section 1.

Figure 2 (Bernsen et al. 1998a) shows a general software
engineering life cycle model which has been slightly specialised to the
development and evaluation of SDIs and their components. The figure
presents an overall framework for the development and evaluation
process through to installation at the user‟s site. After this point may
follow software maintenance, the software may be ported to other
platforms or may be adapted to new applications in which case a new
life cycle begins.

<insert Figure 2 here>
Drawing on a general software engineering life cycle model, the

DISC dialogue engineering life cycle model is specialised to capturing
the process of developing and evaluating SDIs and components. The
model includes a series of fairly detailed questions which address
overall design goals as well as constraints on, and resources of, the
development and evaluation process, such as user and/or developer
preferences, time, money, people available for development and
evaluation. Attention is paid to the availability of process
documentation at all stages, as well as to the way in which the major
engineering issues, such as robustness, maintenance, and portability,
are handled.

4

The DISC life cycle model is intended to be used for describing an
entire SDI as well as a single component. This is possible because each
piece of software has a life cycle and most life cycle issues are relevant
independently of the specific nature of the software. The exact nature
of the questions asked on each process issue may, however, depend on
the particular nature of the software. For instance, the issue of
evaluation is highly relevant to, e.g., speech recognizers as well as
dialogue managers. However, the evaluation criteria involved are very
different.

In the following we focus on the central evaluation entries in the
DISC life cycle model, i.e. those concerning types of evaluation and test
(Section 3) and evaluation criteria (Sections 4 and 5). In fact, many

other entries in the DISC life cycle model address evaluation to a
greater or lesser extent as well, because of the close relation between
evaluation and development. However, space limitations allows us to
discuss the core evaluation entries considered in DISC. More
information will be available at http://www.elsnet.org/disc/ in due
course.

 Types of Evaluation and Test
During the dialogue engineering life cycle, evaluation is constantly
needed for measuring progress towards the goals which the SDI or
component must meet. However, evaluation of individual SDI aspects
as well as of entire SDIs is today as much of an art and a craft as it is an
exact science with established standards and procedures for good
engineering practice. There is not even consensus on terminology in
the field.

Distinction may be made among three types of evaluation ((Bernsen
et al. 1998a), see also (Hirschman and Thompson 1996) and (Gibbon et
al. 1997)). Although clearly not orthogonal, these three types seem to
cover the relevant aspects of evaluation and subsume the scopes of
other commonly used terms and distinctions. Each type may be used at
any stage during SDI or component development:

 performance evaluation, i.e. measurements of the
performance of the SDI or component and its modules in
terms of a set of quantitative and/or qualitative parameters;

 diagnostic evaluation, i.e. detection and diagnosis of design
and implementation errors;

 adequacy evaluation, i.e., how well does the system or
component fit its purpose and meet actual user needs and
expectations?

5

Other common terms are „blackbox‟ and „glassbox‟ tests, and
„progress evaluation‟. Blackbox and glassbox tests may be considered
forms of diagnostic evaluation but these tests are carried out on
implemented components or systems only (see elaboration below).
Progress evaluation is used to compare two iterations of the same
system or component during development, such as two Wizard of Oz
iterations of an SDI.

Performance, diagnostic and adequacy evaluation should be
performed as integral parts of the development process to measure
progress towards satisfaction of the requirements specification,
evaluation criteria and design specification.

Performance evaluation is made throughout the development process

with approximately the same emphasis between iterations.
Diagnostic evaluation is of central importance in the early

development process but should require less effort in the final phase
by which time most errors should have been removed. During
debugging of the implemented SDI or component, two typical types of
test are glassbox tests and blackbox tests. There is no general
agreement on the definitions of glassbox and blackbox tests. Here we
will use glassbox test to indicate a test in which the internal system
representation can be inspected. The evaluator should ensure that
reasonable test suites, i.e. data sets, can be constructed that will activate
all loops and conditions of the program being tested.

In a blackbox test only input to and output from the program are

available to the evaluator. Test suites are constructed in accordance
with the requirements specification and along with a specification of
the expected output. Expected and actual output are compared and
any deviations must be explained. Either there is a bug in the program
or the expected output was incorrect. Bugs must be corrected and the
test run again. The test suites should include fully acceptable input as
well as borderline cases to test whether* the program reacts reasonably
and does not break down in case of errors in the input. Ideally, and in
contrast to the glassbox test suites, the blackbox test suites should not
be constructed by the programmer who implemented the system since
s/he may have difficulties in viewing the program as a black box.

Adequacy evaluation of SDIs and components typically includes
some general performance measurements as well as measurement of
user satisfaction. Adequacy evaluation is used mostly in the later
phases of development. This is because a number of adequacy aspects
cannot be tested in a sensible way until an implemented and debugged
SDI or component is available for the purpose. For instance, it does not

6

make sense to measure real-time performance on a simulated system.
The evaluation of user satisfaction of individual SDI components raises
several important difficulties. Sometimes, it can be difficult or
impossible to do. For instance, it is probably impossible to evaluate
user satisfaction with respect to deeply embedded components, such as
parsers. Furthermore, user satisfaction of individual SDI components is
non-transitive in an important sense: it is possible to build an
unsatisfactory (to its users) SDI from components which are
individually satisfactory to users in so far as this can be evaluated.

Other useful distinctions are those between quantitative and
qualitative evaluation and subjective and objective evaluation.
Quantitative evaluation consists in counting something and producing

an independently meaningful number. It should be noted that, even if
quantitative measures may make little sense in absolute they can be
useful for progress evaluation in which improvements are being
measured. However, we would argue that progress evaluation is not to
be considered quantitative evaluation unless progress is measured
against an independently meaningful quantitative standard or target.
Independently meaningful scores are important for purposes of
comparative evaluation of systems and components, but they are
difficult to achieve. For instance, many published speech recognition
success rates suffer from underspecification in terms of factors such as
recording environment, microphone quality, corpus selection, corpus
size, speaker population details etc.

Qualitative evaluation consists in estimating or judging some
property by reference to expert standards and rules.

Subjective evaluation consists in judging some property by reference

to users‟ opinions.
Objective evaluation addresses objectively measurable performance

parameters. Performance evaluation and diagnostic evaluation are
forms of objective evaluation whereas adequacy evaluation includes
both objective and subjective evaluation. Both quantitative and
qualitative evaluations are objective evaluations.

In addition to distinctions between different types of evaluation
such as the above, it is useful to distinguish between different types of
test. Test types differ with respect to certain aspects of the context of
the evaluation, such as the users involved, whether or not scenarios are
used, and whether the system being tested is an implementation or a
simulation. We distinguish between controlled tests, field tests and
acceptance tests. Roughly speaking, controlled tests are performed
during simulation and after implementation; field tests are performed

7

after implementation and towards the end of systems development;
and the acceptance test is the final test of a system. Each test typically
includes performance, diagnostic, and adequacy evaluation.

In a controlled test, the users need not be those who will actually use

the final system. However, it is recommended that one select the test
subjects from the target user group to ensure that they have relevant
backgrounds, professional and otherwise. In a controlled test, the tasks
to be carried out (the scenarios) should not be selected by the
participants. To ensure scenarios that are reasonably representative
with respect to system functionality and task domain coverage, and to
bring the controlled test as close to benchmarking as possible, scenario
selection should ideally be done by an independent panel according to

guidelines on, for example, who should select the scenarios, their
coverage of system functionality and task domain, the number of
scenarios per user and the number of users. The panel should include
end users as well as system developers. A field distribution problem
attaches to all results of controlled tests. The frequency of different
tasks across the domain of application may be different in real life from
that imposed in the controlled test. This may significantly affect the
frequency of the interaction problems encountered in the test.

In a field test, the SDI or component is being tested by real end users
in their appropriate environments. This means that the experimental
tasks will correspond to real-life tasks but may, nonetheless, fail to be
representative of the full range of system functionality unless the
duration of the field test is very long. The field test option will not
always be available for research systems due to the absence of a real
customer. It may be preferable to carry out a controlled test before the
field test because the controlled test will allow an evaluation that is
close to benchmarking.

The acceptance test is the final test of the SDI or component before it
is accepted for operational use (Sommerville 1992). The test aims to
demonstrate that the contractual requirements (the requirements
specification) and evaluation criteria have been satisfied. Often the SDI
or component is tested with data supplied by the procurer or in a set-
up specified by the procurer. Detected errors must be corrected
immediately. In case of larger disagreements with, or omissions in, the
requirements specification, developer and procurer must discuss what
to do. In the worst case the procurer may turn down the product if the
component or system does not meet the requirements agreed upon.
However, it is not always solely the system developer‟s fault that the
SDI or component does not exhibit the performance and functionality

8

anticipated by the procurer. In such cases, procurer and developer
must negotiate a resolution.

 Evaluation Criteria
Before applying the types of evaluation and test described in Section 3,
we need to know what could, or should, be evaluated in a particular
SDI or component, i.e. we need a set of evaluation criteria. This is
where research into evaluation of SDIs and components comes into its
own with no further support from general software engineering best
practice. In what follows, we would like to argue in favour of two basic
points. Firstly, an evaluation criterion is a complex entity that should
be characterized as such. Secondly, for any SDI or component there is
an important issue of completeness with respect to which evaluation
criteria could be applied to that SDI or component. To become an
applied science, dialogue engineering needs to have explicitly defined
sets of evaluation criteria from among which to select, that are
reasonably complete from a state-of-the-art point of view. And each
possible evaluation criterion must have a comprehensive description.
For the moment, is seems that the field is lacking in both respects, often
making do with a small set of evaluation criteria selected ad hoc

together with incomplete characterizations of the selected criteria.
DISC is committed to a systematic approach to evaluation of SDIs and
their components, as follows.

Based on a partially ordered list of possible properties of any
particular SDI or component as expressed in the DISC grid, a
systematic and comprehensive overview can be generated of the
evaluation criteria that may be used for the evaluation of that SDI or
component. For each property characterizing a particular SDI or
component, the question for evaluation is, roughly: is the property
adequate or not? In other words, once we know what the core
properties are, we have a basic grasp of what could be evaluated in
SDIs and their components.

However, knowing what could be evaluated in a system is far from
knowing how to assess a particular property, when in the software life
cycle to do it, which type of evaluation one is dealing with, etc. Such

questions can be asked with respect to any property and its
corresponding evaluation criterion. This leads to the idea of creating a
standard evaluation template which explains the things one needs to
know about a particular evaluation criterion (i.e. the when, the how
etc.) in order to correctly apply the criterion. The evaluation template
itself is a generic construct whose appropriateness is presently being

9

tested on the dialogue manager component of SDIs (Section 5). The
working hypothesis is that the template will turn out to be applicable
not only to dialogue manager evaluation but to evaluation of all
aspects of SDIs and their components.

The template includes seven entries and draws upon the
terminology explained in Section 3. The template is a generic tool that
must be filled in for each property to be evaluated. In the operational
version of the template, the terminology needed is explained in the
template itself. The generic entries are:

A. What is being evaluated
Describes the property or properties of an SDI or component being
evaluated, such as speech recognition success rate. In some cases, an

evaluation criterion refers to a generic property that covers several
specific properties. Dialogue segmentation, for instance, can be done in
several different ways depending on the segmentation units involved,
such as user and system turns, or dialogue acts. In these cases, the
evaluators using the template will have to make the appropriate
specifications of the particular properties that they will be evaluating.

B. System part evaluated and type of evaluation
Describes (i) the system part that is being evaluated, i.e. if what is being
evaluated is an SDI as a whole, an SDI module, such as the speech
synthesizer, a sub-module, such as a particuler dialogue history, or
several modules or sub-modules; and (ii) the type of the evaluation, i.e.
whether evaluation is quantitative, qualitative or subjective.

C. Method(s) of evaluation
Describes which methods of evaluation may be used at various stages
in the life cycle. In early design and specification, evaluation tends to
be conceptual rather than based on real data. Later in the life cycle,
data capture and analysis dominate the evaluator‟s activities (see
generic template entry E below).

Design analysis consists in using experience and common sense, and
thinking hard when exploring the design space during the specification
and design phases, doing walkthroughs of models, comparing with
similar systems, browsing the literature, applying existing theory and
guidelines, if any, involving experts and future users, the procurer etc.
The completeness of the requirements specification may be judged by
checking whether all relevant entries in the DISC grid have been
covered. Evaluation at this stage also consists in checking whether
goals and constraints are sound, non-contradictory and feasible given
the resources available.

10

Wizard of Oz data analysis consists in analyzing problems posed by

phenomena observed in data from simulated user-system interactions.
The simulations are performed by one or several humans and address
the unimplemented parts of the system. These may range from the
entire system to a single sub-module, such as a fully implemented
system in which only the recognizer is switched off and replaced by
simulation. The advantage of simulations is that, if done extensively
and analysed carefully, a large number of problems with design
concepts and the phenomena that will be present in the deployed
application can be spotted before implementation begins. Their
disadvantage is the cost of setting up and running several simulations,
and the subsequent cost of analyzing the generated data.

Running I/O test suites in ‟blackbox‟ and „glassbox‟ evaluation
during the implementation phase (see Section 3).

User-system interaction data analysis consists in analysis of data from
the interaction between the fully implemented system and real users,
either in controlled experiments with selected users and scenarios that
they must perform, or in field studies where nothing is under the
control of the developers. User-system interaction data is useful or
even essential when too little is known in advance about the how users
react to characteristics of the deployed application. This tends to be
reliable if from a test corpus of sufficient size and realism with respect
to task and user behavior. Unfortunately, the data cannot be obtained
until late in the development of the system and collection is costly. In
addition, this data is often hard to analyze because it can be multiply
ambiguous with respect to the cause of some observed problem.

D. Needs and dependencies
Comments on the need for the property being evaluated, which may be
relative to other factors that are specified, such as the task or the

distribution of dialogue initiative among user and system.
E. Life cycle phase(s)

Describes the life cycle phases in which evaluation of the property in
question should be performed (Figure 2). In general, the earlier
evaluation can start, the better. Distinction is made between early
design, simulation, implementation, field evaluation and final
evaluation.

Early design including requirements and design specification. This is
the most important life cycle phase for system and component
evaluation. However difficult this may be to do in any formal way, it is
essential to carry out a systematic, explicit evaluation of whether the
design goals and constraints are reasonable, feasible and non-

11

contradictory. Caught at this stage, errors due to rash design decisions
will not be causing trouble later on. There is no better substitute for
qualitative evaluation and sound judgement during early design. This
also explains the importance of developing applied theory, guidelines
and tools in support of early design. These support mechanisms should
help developers know what to look for in the evolving design
specification.

Simulation and implementation. This is the life cycle phase in which
modules, such as the dialogue manager and its sub-modules, should be
strictly tested. To begin with (part of) the SDI or component may be
simulated while the end result of this phase should be an implemented
and debugged system or component ready for external trials.

Simulation-before implementation may be advisable in many cases, not
least with respect to dialogue manager development. Applied theory
and guidelines are at this stage mainly used in support of scenario and

test suite development.
Field evaluation is performed by exposing the SDI or component to

uncontrolled interaction with users. Most properties of system
components, such as dialogue managers, are difficult to evaluate at this
stage. Field evaluation may precede the final acceptance test (Figure 2).

Final evaluation may consist in an acceptance test, i.e., a formal and
controlled evaluation which should decide if the system, such as an
SDI, meets the evaluation criteria specified as part of the requirements
specification. What is primarily being evaluated is the behavior of the
system as a whole.

F. Importance of evaluation
Assesses the importance of evaluating individual properties. Note that
importance is a multi-faceted concept and may depend on, among
other things:

 is evaluation of this property relevant to all or only some
current systems or components?

 does the system or component have the property under
consideration, how crucial is it to get the property right? What
are the penalties?

Evaluation importance can be described as low, medium or high

together with a statement of the reasons for the grading.
G. Difficulty and cost of evaluation

Assesses the difficulties and costs involved in performing the
evaluation:

12

 the difficulty of evaluation may depend on various forms of
complexity, such as task complexity, user input complexity,

dialogue manager complexity, or overall system complexity;

 the difficulty of evaluation may depend on the existence of
unsolved research problems. These may be more or less severe;

 evaluation is more or less costly to perform in terms of time,

manpower, or skilled labour.

 Evaluation Criteria for Dialogue Managers
To each SDI aspect, corresponds a set of evaluation criteria. In this
section we illustrate the DISC approach to evaluation through the
aspect of dialogue management. The current state of practice for
dialogue manager evaluation is less mature than other SDI component
evaluation, but this makes dialogue manager evaluation an interesting
testing ground for the DISC approach to evaluation.

In addressing the issue of dialogue manager evaluation, it is
important to keep two different situations in mind, i.e. (1) evaluation of
the SDI of which the dialogue manager forms a part, and (2) evaluation
of the dialogue manager per se. Dialogue manager evaluation is
required in both situations. However, (1) obviously makes it harder to
distinguish between those parts of the SDI‟s performance which are
due to the dialogue manager alone, those which are due to the
performance of other system components, and those which are due to
interaction between the dialogue manager and other system
components. Poor speech recognition, for instance, can only to a certain
extent be counter-balanced by good dialogue manager design. If the
speech recognition is too poor, the users will walk away even if they
are faced with a brilliant dialogue manager. (2) may be one in which
the dialogue manager is being selectively evaluated as part of SDI
development or it may be one in which the dialogue manager is itself
the sole target of development. In both of the latter cases, the
evaluation criteria involved are likely to be more particular to a given
dialogue manager than those involved in evaluating the dialogue
manager as part of an SDI as a whole. As the dialogue manager
influences many different parts of SDI performance and processing, a
full list of dialogue manager evaluation criteria is likely to overlap with
evaluation criteria for system integration as well as evaluation criteria
for the human factors aspect of the system. This is not a problem in
DISC which covers all these aspects of SDIs but it does imply some
vagueness with respect to whether or not a certain evaluation criterion
pertains to dialogue management.

13

Only a few years ago, the field of dialogue management was so new
that evaluation criteria hardly existed at all, i.e. no one had really
thought about what to test, how to test etc., and no experience from
previous development efforts was available. Evaluation criteria were
invented ad hoc when the dialogue manager and the SDI in which it
was embedded came up for evaluation. This way of doing things is still
quite common, in particular in research projects, but cannot be
recommended because it means that developers have little support
during development in terms of criteria that the dialogue manager
should fulfil in order to be considered satisfactory and acceptable. The
definition, from the start of the life cycle, of clear, relevant and
appropriate evaluation criteria, and the continuous and

methodologically sound evaluation of progress with reference to those
criteria, should be main characteristics of dialogue manager
development and evaluation.

There is still no well-defined set of evaluation criteria to draw upon
in the literature. Most criteria in current use are purely quantitative,
such as transaction success (Bernsen et al. 1998a). These can be both
useful and relatively easy to apply but provide insufficient information
on the real quality of a dialogue manager. Subjective measures from
user questionnaires and the like, on the other hand, such as scorings of
perceptions of an SDI on a five-point scale, are often difficult to
interpret as input on the quality of the dialogue manager. Objective
qualitative evaluations from experts are difficult to come by already
because there are so few experts in this field. In this situation, it seems
that one thing that might help advance the state-of-the-art is to
generate all possible evaluation criteria for dialogue managers,
represent each criterion using the template presented in Section 4, and
test how this apparatus works in real development projects in industry
and research.

Based on in-depth analysis of a series of dialogue managers, a semi-
structured list of possible dialogue manager properties was
established. The list (see below) follows a model of significant possible
steps in the dialogue manager‟s processing of input (Bernsen et al.
1998b). Each dialogue manager property encountered on the list is a
possible “what” for evaluation (cf. Section 4, template entry A) and
must be described according to the evaluation template presented in
Section 4. Somewhat to our surprise, the list of possible dialogue
manager properties generated no less than 37 possible evaluation
criteria for dialogue managers. The criteria are presented in a
structured list that mostly follows the model of significant possible

14

steps in the dialogue manager‟s processing of input just referred to, as
follows:

1. Use of knowledge of the current dialogue context and local and
global focus of attention. 3 evaluation criteria. Example:
dialogue segmentation adequacy.

2. Map from the semantically significant units in the user‟s most
recent input (if any), as conveyed by the speech and language
layers, onto the sub-task(s) (if any) addressed by the user. 5
evaluation criteria. Example: sub-task or topic identification
success.

3. Analyse the user‟s specific sub-task contribution(s) (if any)
through the execution of a series of preparatory actions

(consistency checking, input verification, input completion,
history checking, database retrieval, etc.). 4 evaluation criteria.
Example: database information sufficiency.

4. The generation of output to the user, either by the dialogue
manager itself or through output language and/or speech layers
and/or other output modalities. 10 evaluation criteria. Example:
adequacy of on-line information to users on how to interact with
the system.

5. Change or update its representation of the current dialogue
context, and generate whatever constraint-based support it may
provide to the speech and language layers. 1 evaluation
criterion. Example: adequacy of dialogue manager support for
the speech and/or language layers.

6. Global issues of dialogue management evaluation. 7 evaluation
criteria. Example: feedback strategy sufficiency: processing
feedback.

7. Global issues of dialogue system evaluation. 7 evaluation
criteria. Example: real-time performance.

It is only the criteria belonging to (6) and (7) above which do not
correspond to the processing model, illustrating the point made earlier
in this section that some dialogue manager evaluation criteria come
close to being evaluation criteria for SDIs as a whole.

It seems obvious that such a long list of evaluation criteria for
dialogue managers is potentially counter-productive. We might be
seen as arguing that, rather than relying on a small and relatively
arbitrary set of dialogue manager evaluation criteria as is currently the
case, developers should start spending very considerable resources in
order to evaluate their dialogue managers from 37 different points of
view whenever appropriate throughout the life cycle. What we are

15

recommending is something else, however. Firstly, no existing
dialogue manager has all the possible properties listed in the DISC
dialogue manager processing model. For instance, no current
commercial system, seems to be using indirect speech act recognition.
So their developers need not worry about getting indirect speech act
recognition right. Secondly, the template presented in Section 4
contains entries that address the importance of evaluation as well as its
difficulty and cost. The purpose of these entries is to assist developers
in focusing their evaluation efforts on the most important properties of
their dialogue manager, including those whose evaluation targets
should be included in the requirements specification. We hope that
these entries, when properly defined for each possible dialogue

manager property, will provide helpful guidelines for the focusing
process. Still, we are dealing with a lot of evaluation criteria for
potential use. The solution to that problem, it appears, is not to ignore
evaluation of important dialogue manager properties but to intensify
the work on early design support tools which can significantly reduce
the amount of errors that would otherwise have to be identified,
diagnosed and remedied as a result of evaluation.

Space does not permit presentation of ongoing work on filling the
templates for the 37 dialogue manager evaluation criteria. Some
observations regarding the list are that (i) the list of evaluation criteria
provides a good illustration of the complexity of dialogue manager
evaluation, reflecting the core “hidden” role of the dialogue manager
in many SDIs. (ii) Few of the evaluation criteria in the list are
straightforwardly quantitative, at least for the time being. (iii) Some of
the criteria which are quantitative, cannot be applied to the SDIs
performance as a whole but must be applied diagnostically, for
instance by inspecting interaction log files to see whether, e.g., the
dialogue manager adequately supports the performance of correct co-
reference resolution or ellipsis processing. (iv) Many of the criteria are
qualitative. (v) Some criteria, and not the least important ones, are
subjective and must be measured through interviews, questionnaires
and other contacts with the users to elicit those along with their
subjective impressions from interacting with the system that may be
attributed to the workings of the dialogue manager.

The reason for the existence of so many qualitative criteria on the
list is the highly contextual nature of most dialogue managers. A good
meta-communication strategy, or a good feedback strategy, for
instance, may solve problems arising from the insufficiency of other
elements of the dialogue manager or of elements in the speech or

16

language layers as well. If, for instance, the system lacks barge-in, the
dialogue manager may have to be designed differently from its design
for a similar SDI that does have barge-in.

The following example shows the filled template for the evaluation
criterion on sub-task or topic identification success.

 Sub-task or topic identification success

A. What is being evaluated: the extent to which the dialogue
manager succeeds in identifying the sub-task(s) or topic(s) addressed
in the user‟s utterances.

B. System part evaluated and type of evaluation: module
evaluation; qualitative. Quantitative evaluation is possible in SDIs in
which task slots or translation templates are being filled directly from
identified sub-task(s) or topic(s). In other SDIs, the dialogue manager
may get the sub-task(s) or topic(s) right whilst still failing to get the
user‟s contribution to the sub-task(s) or topic(s) right.

C. Method(s) of evaluation: design analysis, I/O tests. For high-
complexity topic identification: Wizard of Oz data analysis, user-
system interaction data analysis.

D. Needs and dependencies: virtually all SDIs need to do sub-task
or topic identification, and this can be done in many different ways;
sometimes linked to prediction success.

E. Life cycle phase(s): early design, implementation.
F. Importance of evaluation: high; a core measure of the successful

working of a dialogue manager.
G. Difficulty and cost of evaluation: grows with the complexity of

the task(s), user input complexity etc.
Given an SDI aspect, a checklist of possible evaluation criteria for

that aspect represented as filled evaluation templates, and a particular
application development project, the developer might proceed through
the following iterations:

 in the first iteration, the developer selects the criteria which are

relevant to the aspect-application pair, taking into account
relevant constraints on the development process, such as cost;

 in the second iteration, the developer makes the selected criteria

specific and applicable by making explicit the implicit
conditions that apply to the development task at hand, such as
which dialogue segmentation strategy the application will be
using;

 in the third iteration, the developer plans when to apply the
specified criteria during the development process, including

17

relevant parts of that information in the requirement
specification;

 finally, in the fourth iteration, the criteria are applied in a

methodologically sound manner as planned.
In the context of DISC, it is interesting to note that the above four-

stage model can be used for „meta-evaluation‟ of the development
process. Central questions to ask during meta-evaluation are:

 did the developers select the right evaluation criteria given the
constraints they had to observe?

 did they make these criteria sufficiently specific to their
development task?

 did they apply the criteria correctly at all the development

stages at which they should have been applied?

 what were the results?

 did the developers take adequate action in view of the results?

 Conclusion
This chapter has provided a brief introduction to the DISC dialogue
engineering best practice methodology under development. The
methodology includes a „grid‟ that captures key properties of an SDI
and its components, and a life cycle model that captures the
development and evaluation process. We then focused on evaluation,
describing the DISC conceptual apparatus. Drawing on the DISC
concepts, an approach was presented for (i) how to systematically
generate a comprehensive set of evaluation criteria for SDIs and their
components, and (ii) how to thoroughly characterize evaluation criteria
through the use of a common template describing the what, the when,
the how, the importance, the difficulty, the cost, etc. of evaluation. The
approach was illustrated by the case of dialogue manager evaluation.
In brief, we have argued that if the SDI developer has access to a
systematic inventory of the potential properties for evaluation together
with best practice characterizations of the criteria for evaluating those
properties, s/he will be positioned to efficiently evaluate any particular
SDI or component, taking into account the actual constraints on the
development process.

What has been presented is ongoing work. So far, only dialogue
management has been addressed using the described approach. With
respect to dialogue manager evaluation, it still remains to be seen
exactly how detailed and informative it will be possible to make the
filled evaluation templates and how much articulation and decision
work is left for the developers, for instance with respect to details such

18

as how many users to involve in a certain test, how to collect and
annotate data, etc. In any case, we believe that the basis for making
those decisions becomes stronger with the DISC approach. Test with
developers will help determine whether or not this is correct.

Our working hypothesis is that the evaluation template will turn
out to be applicable not only to dialogue manager evaluation but to
evaluation of all aspects of SDIs and their components.

