
Annotating Communication Problems Using the MATE Workbench

Laila Dybkjær, Morten Baun Møller, Niels Ole Bernsen,

Michael Grosse, Martin Olsen, Amanda Schiffrin

Natural Interactive Systems Laboratory,

Science Park 10, 5230 Odense M, Denmark

laila@nis.sdu.dk, baun@mip.sdu.dk, nob@nis.sdu.dk,

grosse@mip.sdu.dk, coma@mip.sdu.dk, mandy@nis.sdu.dk

Abstract
The increasing commercialisation and sophistication of language engineering products reinforces the need for tools and standards in
support of a more cost-effective development and evaluation process than has been possible so far. This paper presents results of the
MATE project which was launched in response to the need for standards and tools in support of creating, annotating, evaluating and
exploiting spoken language resources. Focusing on the MATE workbench, we illustrate its functionality and usability through its use
for markup of communication problems.

1. Introduction

The growing industrial take-up of language
engineering products, and their constantly increasing
variety and sophistication reinforces the need for tools and
standards which can help making their development and
evaluation more efficient. One aspect of this multi-faceted
problem is the need for standardised annotated corpora
and standard corpus annotation tools. In the case of
spoken language dialogue systems (SLDSs), the need for
tools and standards is evident as regards annotated spoken
dialogue corpora and automatic information extraction.
Information extraction from annotated corpora is used in
SLDSs engineering for many different purposes, such as
training and testing of components, constructing lexicons
and grammars, extracting dialogue control structures,
performing diagnostic evaluation of interfaces, and
comparing and evaluating annotation schemes used by
humans and/or machines.

The production of enriched corpus data is time- and
cost-intensive. The idea of re-using annotated data is thus
a very attractive one. So far, however, re-use of resources
has usually required a painstaking, time-consuming and
often inefficient adaptation process due to the lack of
standards and widely used tools. Various initiatives have
in recent years addressed the problem of markup
standardisation, such as the Text Encoding Initiative
(TEI), the Corpus Encoding Standard (CES), and
(EAGLES). Whilst these initiatives have made progress
on written language and/or current coding practice, none
of them have focused on the creation of standards and
tools for cross-level spoken language corpus annotation.

The European Telematics project Multi-level
Annotation Tools Engineering (MATE) was launched in
March 1998 in response to the need for standards and
tools in support of creating, annotating, evaluating and
exploiting spoken language resources. This paper provides
an overview of the MATE project in Section 2. Section 3
briefly presents the workbench developed in MATE.
Section 4 introduces the coding level for communication
problems. Section 5 provides a thorough walkthrough of
major workbench functionalities as seen from the user’s
point of view and illustrated through use of the workbench
for communication problems markup. Section 6 concludes
the paper by discussing future work and prospects.

2. The MATE Project

The aim of the MATE project has been to facilitate the
re-use of spoken language resources by addressing
theoretical issues as well as the practical implementation
of solutions.

MATE has reviewed more than 60 existing annotation
schemes relating to the coding levels addressed in the
project, i.e. prosody, (morpho-)syntax, co-reference,
dialogue acts, communication problems, and cross-level
issues (Klein et al., 1998).

Based on the collected information and the
consortium’s experience, MATE has developed a standard
framework for annotating spoken dialogue corpora at
multiple levels, including those mentioned above
(Dybkjær et al., 1998). The core concept of the MATE
markup framework is that of a coding module, which
extends and formalises the concept of a coding scheme.
Roughly speaking, a coding module includes or describes
everything that is needed in order to perform a certain
kind of markup of a particular spoken language corpus. A
coding module prescribes what constitutes a coding,
including the representation of markup and relations to
other codings.

The MATE markup framework has been used to
ensure a common approach across the levels addressed.
For each annotation level, one or more existing coding
schemes were selected to form the basis of the best
practice coding schemes to be included in the MATE
workbench (Mengel et al., 2000). Common to the selected
coding schemes is that these are among the most widely
used coding schemes for their particular level, which
means that they have been used by several annotators and
for the annotation of many dialogues. All MATE best
practice coding schemes are expressed in terms of coding
modules.

Although the five coding levels addressed by MATE
are very different, the MATE markup framework appear-
ed to work well for all of them including their cross-level
interactions. Use of the framework ensures a uniform
description across levels of the best practice coding
schemes. This enhances usability by making it easier for
the annotator to move from one level to another and by
facilitating use of the same set of software tools and
ensuring the same interface look-and-feel across levels.

The MATE workbench is a corpus annotation toolbox
which builds on the theoretical part of the MATE project
discussed above. The following section presents the
workbench (see also Section 5).

3. The MATE Workbench

A number of existing tools for annotating spoken
dialogues were reviewed early in the project in order to
provide input to the specification of the MATE
workbench (Isard et al., 1998). Based on the specification,
the MATE markup framework and the MATE best
practice coding schemes, the functionality described
below has been implemented as a java-based workbench,
see (Isard et al., 2000) for implementation details. XML is
used for internal representation of coding files but the user
needs not know about XML to be able to use the
workbench.

The MATE best practice coding schemes are included
in the workbench as useful example coding modules and
are ready for immediate use. In addition, users are offered
the possibility of adding new coding schemes via the easy-
to-use interface of the MATE coding module editor. One
part of a coding module is a markup declaration. On the
basis of the entered markup declaration, a DTD is
automatically generated that defines which tags are
available and how they can be used during markup of a
corpus. The interface of the coding module editor builds
on the MATE markup framework which serves as an
intermediate layer ensuring that the user interface need not
change even if the underlying XML representation of
coding files should be changed and vice versa.

An audio tool offers the user the possibility of
listening to speech files, e.g. while making a transcription,
and to have sound files displayed as a waveform. A
transcribed file may be annotated according to a selected
coding module. The workbench itself only comes with a
very simple transcription module. However, the
workbench includes a bridge to the Transcriber tool
(http://www.etca.fr/CTA/gip/Projets/Transcriber/) which
means that dialogues transcribed with Transcriber can be
used immediately for level markup in the MATE
workbench.

A number of default style sheets define how output to
the user is visually presented. Thus, for instance,
phenomena of interest in the corpus may be given a
certain colour or shown in boldface. The user may modify
a style sheet or define new ones. At the moment, however,
no style sheet editor is available, so a fairly detailed
understanding of XSLT concepts and structure is required
of those who want to write their own style sheets.

The workbench enables information extraction of any
kind from annotated MATE corpora. In particular, any
number of annotations from the level(s) marked up in the
corpus can be combined in the query. Using the MATE
query language editor, users can specify their query
interactively, receiving support for consistency control.
The result is shown as a set of references to the queried
corpus. The query mechanism also supports extraction of
statistical information from corpora (e.g. the number of
marked-up nouns). Moreover, computation of important
reliability measures, such as kappa values, is enabled.

Import of files from XLabels and BAS Partitur to
XML format is supported. Other converters can easily be
added to the workbench. Export to file formats other than

XML may be achieved by using style sheets. For example,
information extracted by the query tool could be exported
to HTML in order to serve as input to a browser.

4. Communication Problems

One of the annotation levels addressed by MATE is
that of communication problems. The increasing number
of advanced SLDSs which support people in carrying out
ordinary tasks, such as flight/train timetable consultation,
ticket booking or directory inquiry, demands rigorous
methods and tools for identifying, analysing, preventing
and repairing problems in spoken human-machine
interaction. Annotation of communication problems in
spoken dialogue corpora can not only help developers and
researchers extract information on the deficiencies of
emerging dialogue interaction models, but can also yield
clues as to how these might be improved.

Communication problems, if detected by users,
typically lead to clarification or repair meta-
communication. This is not really a problem in human-
human dialogue. However, with current SLDS technology
the possibility of real-time handling of clarification and
repair meta-communication is seriously limited. User
needs for clarification meta-communication that arise
from the way the system addresses its domain, can easily
surpass the system’s meta-communication skills.

Nevertheless, detection of communication problems in
SLDSs has so far usually been carried out on an ad hoc
basis. It has generally been performed as a time-
consuming task at a fairly late development stage if
performed at all. In order to support a more cost-efficient
development process for interaction models for SLDSs,
we need a solid understanding of communication
problems, both of their nature and why they occur. A
straightforward way of approaching this problem is to
annotate communication problems.

Communication problems annotation is still at an early
stage, however. In the state-of-the-art review done in
MATE, we only found one coding scheme which focused
on communication problems. Many other schemes
included some communication problem types but only
because those problems were relevant to, e.g., dialogue act
annotation which would then be the main focus of the
coding scheme.

Communication problems are different in several
respects from most other phenomena that are usually
annotated and studied in a corpus. Most notably,
communication problems need not necessarily be present
in a corpus at all. In fact, the fewer there are, the better.
This is in direct contrast with, e.g., prosodic and morpho-
syntactic phenomena, or dialogue acts, which are present
in any spoken dialogue corpus. To a large extent, the same
is true for co-reference. All these phenomena are among
the building blocks of spoken dialogue. Communication
problems, on the other hand, are disruptive to a dialogue
and co-operative human interlocutors usually try to avoid
them. In particular for SLDSs, co-operative system
communication is important for avoiding communication
problems which often lead to user dialogue behaviour
with which the system cannot cope.

The best practice communication problems coding
scheme included in the MATE workbench, the Odense
scheme, is based on a set of guidelines for co-operative
spoken human-machine dialogue design (Bernsen,

Dybkjær and Dybkjær, 1998; Dybkjær, 1999). These
guidelines have so far been shown to work for two-party,
shared-goal human-machine dialogue. The primary focus
of the Odense coding scheme is the markup of
communication problems caused by the system because
the emphasis is on investigating how system interaction
can be improved to achieve a smoother dialogue with
users. Of course, users also commit errors from time to
time, which can be direct causes of communication
problems. User errors have only been investigated to a
limited extent in this context (Bernsen, Dybkjær and
Dybkjær, 1998) and we still lack detailed knowledge of
their mechanisms.

The set of tags (elements and attributes) used by the
Odense scheme is small and simple, even if a three-
component structure is involved, cf. the bottom of Figure
1. It is, however, a non-trivial task to identify commun-
ication problems and analyse them correctly to determine
which guidelines they violate and how, i.e., which types of
violation we are dealing with. Communication problems
are tagged as types of violation of the guidelines for co-
operative spoken dialogue. A particular guideline may be
violated in several different ways. For example, GG7
(avoid ambiguity) would be violated by not saying

whether the time "9 o’clock" given to the user by the
system means 9 am or 9 pm. Another type of violation of
the same guideline might occur if it was not made clear
whether a certain flight arrival time refers to that given by
the timetable or to the actual expected arrival time.

Such violation types are necessarily task dependent as
they refer to concrete problems found in dialogues with
particular applications. Thus, a communication problem
refers both to the part of the orthographic transcription in
which the guideline violation was found, and to a set of
violation types which is being created along with the
markup of communication problems. Each type of
violation in its turn refers to the particular guideline that
was violated.

For more information on how to detect and analyse
communication problems using the cooperativity
guidelines as a frame of reference, see (Dybkjær, 1999)
and (Bernsen, Dybkjær and Dybkjær, 1998). These
references include collections of examples of
communication problems, violation types and references
to the guidelines.

In the following we illustrate the main functionalities
of the MATE workbench by describing how it is used for
markup of communication problems.

Figure 1. File organisation for a corpus annotated with respect to communication problems. The dashed arrow A --> B

means that elements in A refer to elements in B by their attribute IDs, while the arrow A —> B means that there is a

reference in A to B by its file name.

5. Markup of Communication Problems

When launched, the MATE workbench comes up with
the two windows shown in Figures 2a and 2b. Figure 2a
shows the controller window. Figure 2b shows a corpus
folder window. The workbench tools can be opened from
the controller window. The list of tools is extensible and is
constructed automatically from the available set of tools.
Status messages are written in the blank area under the
menu. The corpus folder window is used for browsing,
adding or editing corpus files. Additional corpus folder

windows can be opened from the File menu of the
controller window.

Figure 2a. The MATE controller window.

Figure 2b. The corpus folder window.

Figure 3. The coding module editor.

The coding module editor (Figure 3) allows the user to
enter new coding modules without knowing about XML
which is used for internal file representation. Based on the
element structure defined by the user, the tool itself
automatically generates the XML document type
definition (DTD) which is used internally in the MATE
workbench.

The Odense coding scheme with its three coding
modules is already included in the workbench as it is one
of the MATE best practice schemes. To illustrate the
concept of a coding module, the coding module for
communication problems is shown in Figure 4. The
coding modules for guidelines and violation types are not
shown but follow the same principles and have the same
list of entries.

Name: Communication_problems.
Coding purpose: Records the different ways in which
generic and specific cooperativity guidelines are violated
in a corpus. The communication problems coding file
refers to a problem type coding file as well as to a
transcription.
Coding level: Communication problems.
Data sources: Dialogue corpora.
Module references: Module Basic_orthographic_
transcription; Module Violation_types.
Markup declaration:
ELEMENT comprob

ATTRIBUTES

vtype: REFERENCE(Violation_types, vtype)

wref: REFERENCE(Basic_orthographic_

transcription, (w,w)+)

uref: REFERENCE(Basic_orthographic_

transcription, u+)

caused_by: REFERENCE(this, comprob)

temp: TEXT

ELEMENT note

ATTRIBUTES

wref: REFERENCE(Basic_orthographic_

 transcription, (w,w)+)

uref: REFERENCE(Basic_orthographic_

transcription, u+)

Description: In order to annotate communication
problems caused by inadequate system dialogue design we
use the element comprob. It refers to some kind of
violation of one of the cooperativity guidelines. The
comprob element may be used to mark up any part of the
dialogue which caused the communication problem. Thus
it may be used to annotate one or more words, an entire
utterance or even several utterances in which a
communication problem was detected. The comprob

element has five attributes.
The attribute vtype is mandatory. vtype is a reference to a
description of a guideline violation type in a file which
incrementally represents the different kinds of violations
discovered of each individual guideline.
Either wref or uref must be indicated. Both these
attributes refer to an orthographic transcription. wref
delimits the word(s) which caused a communication
problem, and uref refers to one or more entire utterances
which caused a problem.
The attribute caused_by is optional. In some cases, a
communication problem is caused by a problem which
occurred earlier in the dialogue. caused_by is used to refer
to a communication problem which was found elsewhere

in the dialogue and which led to the present
communication problem.
The attribute temp is optional. It indicates a temporary
markup. It usually takes a few dialogues before the coder
gets a good grasp of the types of guideline violations
which tend to occur in the corpus and what caused them.
Often logfile inspection will be needed to make an exact
causal diagnosis. Moreover, some problems become easier
to detect when comparing several dialogues. Thus, temp is
mainly for use during initial corpus markup but may also
be used later if it is convenient to make temporary notes
before making the final diagnosis. The vtype attribute
overrides whatever communication problem the attribute
temp indicates.
In the beginning of the analysis, the vtype attribute may
be left open and the temp attribute filled in to describe
the type of guideline violation identified. Very soon,
however, a file containing the violation types should be
established and in most cases the temp comments can
simply be moved to this file and possibly modified to
provide a violation type description. Note that due to this
and to the coding procedure which requires at least two
coders, the violation type references in the vtype attribute
are likely to eventually be re-classified.
The note element can be used anywhere in a corpus to
comment on whatever the user wants. It refers to one or
more words or one or more utterances in the same way as
the comprob element. The body of the note element
contains text.
Example: The following example communication
problems markup assumes a transcription from the
Sundial corpus and refers to an example in the violation
types coding module not shown in this paper:
<u id="S1:7-1-sun" who="S">flight information british
airways good day can I help you</u>
<comprob id="3" vtype="Sundial_problems#SG4-1"

uref="Sundial#S1:7-1-sun"/>
Coding procedure: We recommend to use the same
coding procedure for markup of communication problems
as for violation types since the two actions are tightly
connected. As a minimum, the following procedure should
be followed:

1. Encode by coders 1 and 2.
2. Check and merge codings (performed by coders 1
and 2 until consensus).

Creation notes:
Authors: Hans Dybkjær and Laila Dybkjær.
Version: 1 (25 November 1998), 2 (19 June 1999).
Comments: For guidance on how to identify
communication problems and for a collection of
examples, the reader is referred to (Dybkjær, 1999).
Literature: (Bernsen, Dybkjær and Dybkjær, 1998).

Figure 4. The communication problems coding module.

From the corpus folder window the user can select an

already existing file to work on or create new files. It is
possible to inspect the different types of file in a folder, cf.
Figure 2b. For example, the user may inspect the DTDs
generated by the coding module editor or view the style
sheet used to display the coding file(s). Figure 5 shows a
dialogue annotated using the Odense coding scheme and
the default style sheet provided for communication
problems.

Figure 5. A dialogue annotated with communication problems.

Figure 6. The audio tool.

In Figure 5 the dialogue is shown in the upper left-
hand corner. The cooperativity guidelines are shown in
shorthand version in the upper right-hand corner.
Violation types are shown and can be added in the lower
right-hand corner and notes in the lower left-hand corner.

During the detection and analysis of communication
problems, an orthographic transcription of the dialogue is
used. Often the logfile will have to be inspected as well,
cf. the reference structure in Figure 1. In some cases it
may even be necessary to access the sound files to, e.g.,
use intonation to disambiguate an ambiguous utterance in
the orthographic transcription. For example, some
questions have the same form as statements, and only the
information provided by the intonation will reveal whether
it is one or the other. The MATE workbench includes an
audio tool which allows the user to play soundfiles, cf.
Figure 6.

Having annotated a corpus the user may want to
extract various kinds of information. The MATE

workbench includes a query tool for this purpose, cf.
Figure 7. It is one of the tools accessible from the tools
menu in Figure 5. First of all, the user must select the
document(s) to be queried. In a second step, the user can
choose the element types to be included in the query
expression from those available in the selected documents.
Then the query expression can be built. Buttons in the
interface are active as appropriate, and the attributes
which belong to the selected element types are shown.
Logical combinations and bracketing of simple query
expressions can also be defined.

The result of a query is a document with a list of tuples
of elements that are hrefs to the elements found. Figure 8
shows the result of asking for all types of cooperativity
guideline violation found in a corpus. Since the output of
the query is XML, the results can be displayed to the user
in the same way as the data itself, using a stylesheet.

Figure 7. The query window.

Figure 8. Results of a query.

6. Future Work

A major aim of MATE has been to support the
development of spoken language dialogue systems. The
market for spoken dialogue systems is growing rapidly
and so is the need for re-usable resources and for tools
which facilitate their creation. MATE, it would seem, has
therefore in many respects been timely and appropriate in
responding to actual needs. This has also been apparent
from the considerable interest shown in the MATE project
world-wide.

The functionality of the MATE workbench is still
being improved. The next generation of spoken dialogue
systems are already taking first steps towards more natural
interactivity by combining speech with other modalities,
such as gesture and facial expression. As such multimodal
dialogue systems are gaining ground, the need for re-
usable multimodal resources as well as for tools and
standardisation efforts in support of the development of
multimodal systems, is increasing. A natural continuation
of MATE would therefore be to re-use the successful
MATE approach to the extent possible in order to create a
markup framework and workbench for multimodal
dialogue annotation.

7. References

Bernsen, N.O., Dybkjær, H. and Dybkjær, L., 1998.
Designing Interactive Speech Systems. From First Ideas
to User Testing. Springer Verlag.

Dybkjær, L., 1999. CODIAL - a Tutorial and Tool in
Support of Co-operative Dialogue Design.
http://www.disc2.dk/tools/codial/.

Dybkjær, L., Bernsen, N.O., Dybkjær, H., McKelvie, D.
and Mengel, A., 1998. The MATE Markup Framework.
MATE Deliverable D1.2.

Isard, A., McKelvie, D., Cappelli, B., Dybkjær, L., Evert,
S., Fitschen, A., Heid, U., Kipp, M., Klein, M., Mengel,
A., Møller, M.B. and Reithinger, N., 1998.
Specification of Workbench Architecture. MATE
Deliverable D3.1.

Isard, A., McKelvie, D., Mengel, A., Møller, M.B.,
Grosse, M. and Olsen, M.V., 2000. Data Structures and
APIs for the MATE Workbench. MATE Deliverable
D3.2.

Klein, M., Bernsen, N.O., Davies, S., Dybkjær, L.,
Garrido, J., Kasch, H., Mengel, A., Pirrelli, V., Poesio,
M., Quazza, S. and Soria, S., 1998. Supported Coding
Schemes. MATE Deliverable D1.1.

Mengel, A., Dybkjær, L., Garrido, J., Heid, U., Klein, M.,
Pirrelli, V., Poesio, M., Quazza, S., Schiffrin, A. and
Soria, C., 2000. MATE Dialogue Annotation
Guidelines. MATE Deliverable D2.1.

CES: http://www.cs.vassar.edu/CES/
EAGLES: http://www.ilc.pi.cnr.it/EAGLES/home.html
MATE: http://mate.nis.sdu.dk
TEI: http://etext.virginia.edu/TEI.html
Transcriber:

http://www.etca.fr/CTA/gip/Projets/Transcriber/

