
The MATE Workbench

Laila Dybkjær and Niels Ole Bernsen

Natural Interactive Systems Laboratory, University of Southern Denmark
Science Park 10, 5230 Odense M, Denmark

{laila, nob}@nis.sdu.dk

Abstract
The growing commercialisation and sophistication of spoken dialogue systems has increased the need for methods and tools in support
of annotating and extracting information from spoken dialogue resources, unimodal as well as multimodal. This paper describes results
and future prospects of the MATE project which investigated spoken dialogue annotation and built a workbench in support of
annotation and information extraction. This workbench may have the potential for being generalised to providing tools support for
multimodal dialogue annotation.

1. Introduction

The growing commercialisation and sophistication
of spoken dialogue systems has generated a strong need
for spoken dialogue corpus annotation and re-use of the
annotated resources. The next generation of dialogue
systems most of which are still in the research labs, will
not be speech-only systems but will include other
modalities as well, such as gestural input and graphics
output. This forces extension of the focus of corpus
annotation to multimodal spoken dialogue resources.
During the next few years, we will probably be seeing a
series of initiatives in tools support, annotation schemes
and standards for multimodal dialogue corpora.

This paper describes results and future prospects of
the MATE project (http://mate.nis.sdu.dk) which ended
by the end of 1999. MATE has successfully addressed
some core issues in spoken dialogue annotation and
tools support and may have the potential for being
generalised to providing tools support for multimodal
dialogue annotation. This is now being investigated in
the ISLE project which started in 2000.

2. MATE

MATE was launched in March 1998 in response to
the increasing need for standards and tools in support of
creating, annotating, evaluating and exploiting spoken
language resources. Corpus annotation is time- and
cost-intensive, and re-use of annotated data would seem
very attractive. So far, however, re-use has usually been
difficult and time-consuming if not downright unattrac-
tive due to the lack of standards and widely used tools.
MATE aimed to facilitate re-use of spoken language
resources by addressing theoretical issues as well as the
practical implementation of solutions.

MATE reviewed more than 60 existing annotation
schemes relating to the annotation levels addressed in
the project, i.e. prosody, (morpho-)syntax, co-reference,
dialogue acts, communication problems, and cross-level
issues. The resulting report, (Klein et al. 1998) provides
details on their coding book, number of annotators who
have worked with it, number of annotated dialogues/-
segments/utterances, evaluation results, underlying task,
list of annotated phenomena, and markup language
used. Annotation examples are also provided. The
amount of pre-existing work varies enormously from
level to level, which causes very different state-of-the-

art problems at the individual levels. The quality of
descriptions of the individual coding schemes analysed,
varies considerably which made it extremely difficult to
compare schemes even within the same annotation
level. Furthermore, with such non-standardised descrip-
tions it would be impossible to create generally reusable
tools within, as well as across, levels.

The collected information and joint experience in
the consortium formed the basis for the development of
the MATE markup framework for spoken dialogue cor-
pus annotation at multiple levels, including those men-
tioned above (Dybkjær et al. 1998). The core concept of
the framework is the coding module which extends and
formalises the concept of a coding scheme. Roughly
speaking, a coding module describes everything that is
needed in order to perform a certain kind of markup of a
particular spoken language corpus. A coding module
prescribes what constitutes a coding, including markup
representation and relations to other codings.

The MATE markup framework ensures a common
approach and uniform description across levels. For
each annotation level, one or more state-of-the-art co-
ding schemes were selected to form the basis of the best
practice coding schemes proposed by MATE (Mengel
et al. 2000). Common to the selected coding schemes is
that these are among the most widely used schemes for
their level, which means that they have been used by
several annotators and for the annotation of many
dialogues. Examples of coding schemes selected for the
MATE workbench are SAMPA, ToBI, MapTask,
Verbmobil and MUC-7. All MATE best practice coding
schemes are expressed in terms of coding modules.

A range of existing tools for annotating spoken
dialogues were reviewed early in the project to provide
input to the specification of the MATE workbench
(Isard et al. 1998). Examples of reviewed tools are the
Alembic workbench, AnnoTag, DAT and Nb.

Building on the specification, the MATE markup
framework, and the best practice coding schemes, a
basic set of coding functionalities has been implement-
ed in the Java-based MATE workbench. Implemen-
tation details are described in (Isard et al. 2000).
Workbench usability is supported by the MATE markup
framework which facilitates use of the same set of
software tools and the same interface look-and-feel
independently of annotation level, and serves as an
intermediate layer ensuring that the user interface need

mailto:nob%7d@nis.sdu.dk

not change even if the underlying XML coding file
representation might be changed and vice versa.

The functionalities offered to the user by the MATE
workbench include:

 The best practice coding modules mentioned
above.

 The possibility of adding new coding modules
via an easy-to-use interface.

 Support for header file documentation.
 Support for annotation/transcription according

to some selected coding module.
 An audio tool for listening to speech files and

displaying the sound file as a waveform.
 A number of default style sheets which define

how output to the user is visually presented.
 Information extraction from annotated MATE

corpora, including statistical information.
 Import of files from XLabels and BAS Partitur

to XML format.
 Easy addition of other converters (import as

well as export).
The following sections describe and illustrate the

MATE workbench functionalities in more detail and
discuss future prospects.

3. Workbench functionalities

The workbench is written in Java 1.2 to make it
platform-independent. It has been tested on Unix (Sola-
ris) and Windows (NT and 98). It does not currently run
on Macintoshes because there is not yet a version of
JDK1.2 for this platform. The MATE workbench allows
reuse of other software, either by using XML as data
interchange format or by calling other Java modules
which access the internal representation and the MATE
display structure using well-defined interfaces.

The MATE workbench has the following major
components: An internal database which is an in-mem-
ory representation of a set of hyperlinked XML docu-
ments; a query language and processor which are used
to select parts of this database for subsequent display or
processing; a stylesheet language and processor which
respectively define and implement a language for des-
cribing structural transformations on the database; a dis-
play processor which handles the display and editing
actions; and a user interface which handles file manipu-
lation and tool invocation.

To run the MATE workbench on a Windows’98 PC
the user opens a DOS prompt in the directory with the
MateWorkbench.jar file and types ‘java mate.Work-
bench’ to open the windows shown in Figures 1 and 2.

The ‘controller window’ is the main window from
which all workbench tool windows can be opened. New
tools can be added to the workbench and will then
automatically be made available in the tools menu. One
or more corpus folder windows can be opened from the
‘File’ menu. Status messages are written into the white
area under the menu. ‘Corpus folder’ windows are used
for browsing, adding or editing corpus files. The ‘help’
menu gives access to the ‘help window’ shown in
Figure 3, which explains and describes various
workbench topics.

The MATE best practice coding schemes are
included in the workbench as example coding modules
which the user may choose to use. These allow the user

Figure 1. The MATE controller window.

Figure 2. The corpus folder window.

Figure 3. The MATE help window.

to annotate corpora at the levels addressed by MATE.
However, users are also offered the possibility of

adding new coding modules for existing or new levels
via the easy-to-use interface of the MATE coding mod-
ule editor. This editor is accessible from the ‘tools’
menu in the ‘controller’ window, cf. Figure 4. The
editor has a graphical user interface which resembles
the user interfaces found in most popular and wide-
spread programs. It contains features like ‘copy and
paste’ and ‘drag and drop’ which make it easy to reuse
parts of one coding module in another. The markup
declaration section of the coding module is represented
as a tree, and the user adds entities, elements, attributes,
and comments to the tree to construct the markup dec-
laration. For each node the name, type, etc. is specified.
The tree can be parsed to create a coding module text
document. On the basis of the entered markup declara-
tion, a DTD is automatically generated that defines
which tags are available and how they can be used
during markup of a corpus. The interface of the coding
module editor builds on the MATE markup framework.

Figure 4. The coding module editor.

From the ‘file’ menu in the corpus folder window
(Figure 2) it is possible, e.g., to create a new project
folder. The ‘edit project’ menu allows the user to create
a new file in a folder, add an existing file, or remove a
file. If the user chooses to make a new file, s/he is first
asked what kind of file s/he wants to create (XML,
stylesheet (msl), or run). If the choice is an XML file,
the window shown in Figure 5 will appear. The infor-
mation to be filled into this window is a kind of header
information plus administrative information. The new
file is given a name, the user can indicate a stylesheet
for use during annotation and files to which the new file
will refer, such as a transcription. A coding module or a
DTD must be selected which will form the basis for the
annotation and determine which tags can be used. In
addition, as Figure 5 shows, some information about the
coder and the file may be included. If ‘add’ is chosen
from the ‘edit project’ menu the window show in Figure
6 will appear. The user can browse folders and files on
the computer and select the file to be added.

One of the tools available from the tools menu in the
corpus folder window is the conversion tools which
enables the user to easily convert files in BasPartitur or

Figure 5. Creating a new XML file.

Figure 6. Adding a file to a project folder.

Figure 7. Converting from Xlabel format to XML.

Xlabel format to XML. The conversion tool window for
Xlabel format is shown in Figure 7. The user can brow-

se and select the file to convert into XML. Other con-
verters can easily be added to the workbench. Export to
file formats other than XML may be achieved by using
style sheets. For example, information extracted by the
query tool may be exported to HTML in order to serve
as input to a browser.

Support for transcription in the workbench itself is
fairly primitive. However, it is possible to use Trans-
criber (www.etca.fr/CTA/gip/Projets/Transcriber) for
the transcription process and then use the transcription
files in the MATE workbench for further annotation at
the desired level(s). Figures 8 and 9 show two examples
of what the interface looks like when some of the
MATE best practice coding modules are used for anno-
tating dialogues. Figure 8 shows an example of annota-
tion at the morpho-syntactic level (word level). Figure 9
shows dialogue acts annotation using MapTask coding.

A number of default style sheets define how output
is visually presented to the user. For instance, phenom-
ena of interest in the corpus may be given a certain
colour or shown in boldface, cf. Figures 8 and 9. A
MATE stylesheet is written in the MATE Stylesheet
Language (MSL). The emerging standard in this area is
XSLT. Since XSLT was not fully defined when the
workbench was being designed, and since XSLT lacks
various necessary functionalities it was decided to im-
plement a slightly different and simpler transformation
language. MSL uses the MATE query language but is
otherwise similar to XSLT. The user may modify a
style sheet or define new ones. However, as no style-
sheet editor is available yet, a fairly detailed understan-
ding of XSLT concepts and structure is required.

The audio tool, cf. Figure 11, allows the user to load
a sound file which is then displayed as a waveform and
which can be played. It is also possible to play parts of a
file by setting up display actions with a stylesheet.
Clicking on the green PLAY buttons in Figure 9 will
cause the utterance audio file to be played.

The workbench supports information extraction
from annotated corpora, including statistical informa-
tion. Moreover, computation of important reliability
measures, such as kappa values, is enabled. Figure 10

shows the MATE query window. The user must first
select the documents to be queried. Secondly, one choo-
ses element types to be included in the query expression
from those available in the selected documents. Then
the query expression can be built. The result of a query
is a document with a list of tuples of elements that are
hrefs to the elements found. Since the output of the
query is XML, the results can be displayed to the user
in the same way as the data itself, using a stylesheet. A
default stylesheet is provided, but different views could
be desirable for specific purposes.

4. Future prospects

A major aim of MATE has been to support spoken
language dialogue systems development. The market
for these systems is growing rapidly and so is the need
for re-usable resources and tools which facilitate their
creation. MATE has therefore in many respects been
timely and appropriate in responding to actual needs.

However, the next generation of spoken dialogue
systems are taking first steps towards more natural
interactivity by combining speech with other modalities
such as gesture and facial expression. As such mul-
timodal dialogue systems are gaining ground, the need
for reusable multimodal resources, for tools, and for
standardisation efforts in support of the development of
such systems is also increasing. A natural follow-up on
MATE would therefore be to map out existing coding
schemes and tools for markup of gesture or facial
expression using the same successful approach as for
spoken dialogue in MATE. Several projects in the area
have been initiated recently, e.g. TalkBank and ATLAS.
A survey of such coding schemes and tools is being
made in the ISLE project. ISLE results plus MATE
results could form an appropriate point of departure for
the development of a standard framework covering not
only speech but also gesture and facial expression, and
for the development of best practice coding schemes
and a set of tools in support of annotation and exploi-
tation of multimodal dialogues.

Figure 8. Dialogue annotation at the morpho-syntactic level (word level).

Figure 9. Dialogue annotation of speech acts.

Figure 10. The MATE query window.

Figure 11. The audio tool.

5. References

MATE deliverables are available from the MATE web
site at http://mate.nis.sdu.dk.

Dybkjær, L., Bernsen, N.O., Dybkjær, H., McKelvie, D.
and Mengel, A., 1998. The MATE Markup
Framework. MATE Deliverable D1.2.

Isard, A., McKelvie, D., Cappelli, B., Dybkjær, L.,
Evert, S., Fitschen, A., Heid, U., Kipp, M., Klein, M.,
Mengel, A., Møller, M.B. and Reithinger, N., 1998.
Specification of Workbench Architecture. MATE
Deliverable D3.1.

Isard, A., McKelvie, D., Mengel, A., Møller, M.B.,
Grosse, M. and Olsen, M.V., 2000. Data Structures
and APIs for the MATE Workbench. MATE
Deliverable D3.2.

Klein, M., Bernsen, N.O., Davies, S., Dybkjær, L.,
Garrido, J., Kasch, H., Mengel, A., Pirrelli, V.,
Poesio, M., Quazza, S. and Soria, S., 1998. Supported
Coding Schemes. MATE Deliverable D1.1.

Mengel, A., Dybkjær, L., Garrido, J., Heid, U., Klein,
M., Pirrelli, V., Poesio, M., Quazza, S., Schiffrin, A.
and Soria, C., 2000. MATE Dialogue Annotation
Guidelines. MATE Deliverable D2.1.

