

A Methodology for Evaluating Spoken Language Dialogue Systems and

Their Components

Niels Ole Bernsen and Laila Dybkjær

Natural Interactive Systems Laboratory,

Science Park 10, 5230 Odense M, Denmark

nob@nis.sdu.dk, laila@nis.sdu.dk

Abstract
As spoken language dialogue systems (SLDSs) proliferate in the market place, the issue of SLDS evaluation has come to attract wide
interest from research and industry alike. Yet it is only recently that spoken dialogue engineering researchers have come to face SLDSs
evaluation in its full complexity. This paper presents results of the European DISC project concerning technical evaluation and
usability evaluation of SLDSs and their components. The paper presents a methodology for complete and correct evaluation of SLDSs
and components together with a generic evaluation template for describing the evaluation criteria needed.

1. Introduction

Spoken language dialogue systems (SLDSs) are,
finally, proliferating on the market for a large variety of
applications and in an increasing number of languages.
Current commercial SLDSs constitute an application
paradigm in the field of speech technologies, and that is a
major step forward. It means that existing systems can be
copied, ported, localised, maintained and modified to fit a
range of customer and end-user needs without having to
bother about fundamental innovation. This is what creates
an emerging industry. Many research issues remain to be
solved, however, one of which is now becoming critically
important, i.e. the issue of SLDS evaluation.

Only recently have (spoken) dialogue engineering
researchers begun to face systems evaluation in its full
complexity (Fraser, 1995; Bernsen, Dybkjær and
Dybkjær, 1998; Gilbert et al., 1999, DARPA
Communicator http://fofoca.mitre.org/). Roughly, systems
evaluation decomposes into (i) technical evaluation of
systems and their components, (ii) usability evaluation of
the system, and (iii) customer evaluation of systems and
components. Although (i)-(iii) are not completely
dissociated, a technically excellent system integrating
excellent components may have poor usability whilst a
technically secondary system may score highly in terms of
user satisfaction. And the customer may prefer yet a third
system for reasons of, say, cost and platform compatibility
which have little to do with technical perfection or end-
user satisfaction.

The European Esprit Long-Term Research project
Spoken Language Dialogue Systems and Components –
Best practice in development and evaluation (DISC) was
launched in 1997 in order to develop a first dialogue
engineering best practice methodology. In the course of
DISC, it became clear that SLDS evaluation deserved
even more attention and effort than originally planned.
This paper describes two general results. In the
terminology introduced above, DISC presently addresses
technical evaluation of systems and components and
usability evaluation whereas evaluation from the
customer‟s point of view has not been fully addressed,
mainly because of the scarcity of data from systems
deployment available to the consortium from the literature
or otherwise. Within this scope, the first result to be

presented below is a methodology for complete and
correct evaluation of SLDSs and components (Section 3).
The second result is a generic evaluation template for
describing the evaluation criteria needed in complete and
correct evaluation of SLDSs and components (Section 4).
Section 2 briefly presents the DISC approach and Section
5 concludes the paper.

2. Grounding of the DISC Results

This section briefly reviews the empirical basis for the
DISC best practice methodology and presents the core
concepts of the DISC approach to best practice
methodology development. In addition, of course, to
general experience and the literature, the DISC results are
based on in-depth analysis of the following SLDSs and
components: The French LE Arise system on telephone
accessed train time-table information systems (den Os et
al., 1999), the CMU Phoenix parser (Ward and Issar,
1995), the Daimler-Benz dialogue manager (Heisterkamp
and McGlashan, 1996), the Daimler-Benz parser
(Mecklenburg, Hanrieder and Heisterkamp, 1995), the
Danish Dialogue System for flight ticket reservation
(Bernsen, Dybkjær and Dybkjær, 1998), the Vocalis
Operetta automated call routing system (Fraser, Salmon
and Thomas, 1996), the Vocalis Voice Activated Dialling
system (http://www.vocalis.com/products/speechtel/info-
frame.html), the Verbmobil spoken language dialogue
translation system (http://www.dfki.de/verbmobil/), and
the multimodal Waxholm tourist boat information system
(http://www.speech.kth.se/waxholm/waxholm.html). The
common methodology followed in analysing the above
DISC exemplars is described in (Dybkjær et al., 1998). As
can be seen, some of the DISC exemplars are research
prototypes whereas others are commercial. Except for
Waxholm, all exemplars are, or are components in,
speech-only SLDSs. SLDS evaluation, as discussed
below, therefore only addresses evaluation of speech-only
systems and components.

In the DISC approach, an SLDS has six aspects:
speech recognition, speech generation, natural language
understanding and generation, dialogue management,
human factors, and systems integration. In simple
systems, the natural language understanding and
generation aspect may be non-existent but the five other
aspects probably must be present for the system to be an

SLDS at all (even low quality human factors are human
factors). From the point of view of best practice, an SLDS
should be the result of (a) correct choices among the
available options, technological and otherwise, within
each aspect and (b) correct development (including
evaluation) practice.

Based on analysis of the range of existing SLDSs and
components referred to above, DISC has developed what
we call a grid best practice analysis per aspect. Each grid
defines a space of aspect-specific issues which the
developer must, or may have to, face. When developing a
dialogue manager, for instance, the developer should
decide whether or not the dialogue manager should
provide top-down support for input language processing.
For each issue, the available options are laid out in the
grid together with the pros and cons for choosing a
particular option (cf. (a) above). In addition to the grid
analyses per aspect, and again based on the DISC
exemplars, DISC has developed a life-cycle best practice
analysis per aspect, which includes recommendations on
how the development process should proceed (cf. (b)
above). In summary, the way DISC tackles the task of
specialising software engineering best development and
evaluation practice to the particular purposes of dialogue
engineering, is to model an SLDS as having at most six
aspects, present each aspect as a space of issues to be
addressed, and describe the development process per
aspect. At the time of writing, most DISC results are
being made available on the DISC Best Practice Guide
website (http://www.disc2.dk).

3. Evaluation Completeness and Correctness

It is clear from Section 2 that there is no way of
guaranteeing that DISC has identified a complete set of
issues per aspect. In fact, this is as unlikely as can be. The
sophistication of speech-only SLDSs and their
components will no doubt continue to develop for many
years to come, leading to even more complex issue spaces
than those charted in DISC. Still, one can only evaluate
what is there and we hope that DISC has managed to chart
at least large fractions of the aspect-specific issue spaces
confronting today‟s developers.

Based on the grid issue spaces, it is possible to define
an aspect-specific notion of evaluation completeness.
Suppose that, for instance, the dialogue management grid
includes 24 issues for consideration by dialogue manager
developers, such as which types of dialogue histories to
include in a particular application. If the SLDS to be
developed is a relatively simple one, not all of the 24
issues are likely to be relevant, so the developer selects
options within, say, 14 of the issues and ignores the
remaining issues because these are relevant only to more
sophisticated dialogue managers than are presently
needed. In this case, the developer must apply evaluation
criteria on 14 chosen dialogue manager options in order to
do a complete evaluation of the dialogue manager aspect
of the application. Process and results of generating a
complete set of evaluation criteria for human factors in
SLDSs are presented in (Dybkjær and Bernsen, 2000).

Evaluation completeness or, more generally speaking,
knowing what to evaluate, is not enough, however. How
to evaluate, or evaluation correctness, is just as important.

To follow best development practice, developers have to
evaluate a chosen option at the right time(s) and in the
right way(s). Thus, evaluation correctness is a matter of
applying a particular evaluation criterion correctly at the
right stages during the development life-cycle.

What the DISC best practice methodology aims to do,
in other words, is to support the developer in (a) choosing
the right options for the application at hand and (b)
properly developing and evaluating an SLDS
incorporating those options. Both of these aims come
together in the filled evaluation templates to be used in the
development of the SLDS and its components.

4. A Generic Evaluation Template

Given that the developer knows, per SLDS aspect and
for the particular application at hand, what to evaluate,
such as how well the dialogue manager handles error
loops and graceful degradation, focus can shift to how to
do the evaluation. In DISC, we have iteratively developed
an evaluation template to support the „how‟ of evaluation.
The template is a model of what the developer needs to
know in order to apply an evaluation criterion to a
particular property of an SLDS or component, such as the
noise models used by the recogniser. This knowledge is
specified by the template‟s ten entries which are
numbered 1 through 10. Depending on the purpose of use
of the template, we have developed three different
versions of the template including different information,
as follows. (A) The basic template presents and defines
the ten entries. The basic template is not meant to be filled
with specific information but has the role of supporting
the understanding of how to use the template for
evaluation purposes. (B) The empty template simply
includes the ten entries of the DISC evaluation model.
The empty template is meant to be filled with information
for specifying particular evaluation criteria. Thus, an
empty template has to be filled for each property, i.e. each
selected option in aspect-specific issue space, to be
evaluated. (C) A filled template specifies a particular
evaluation criterion.

Figure 1 shows the empty evaluation template.
Examples of filled templates can be found on the DISC
web site, e.g. at (http://www.disc2.dk/slds/dm/-
DMevaldetail.html). The basic template is shown below.

1. What is being evaluated
2. System part evaluated
3. Type of evaluation
4. Method(s) of evaluation
5. Symptoms to look for
6. Life-cycle phase(s)
7. Importance of evaluation
8. Difficulty of evaluation
9. Cost of evaluation
10. Tools

Figure 1. The empty template.

• 1. What is being evaluated
This entry describes the property or properties of an

SLDS or component that is being evaluated, such as

speech recognition success rate. In some cases, an
evaluation criterion refers to a generic property which
covers several different specific properties. Dialogue
segmentation, for instance, can be done in several
different ways depending on the segmentation units
involved, such as user and system turns, or dialogue acts.
When dealing with generic properties, the evaluators
using the template will have to do the appropriate
additional specifications of the specific properties which
they will be evaluating.

• 2. System part evaluated
This entry describes which component(s) of an SLDS

are being evaluated, if any. This could be, e.g., the parser,
the speech generation component or the system as a
whole.

• 3. Type of evaluation
This entry describes the type of evaluation, i.e.

whether evaluation is quantitative, qualitative or
subjective and whether or not evaluation is comparative.
Some evaluation criteria are comparative by nature. Many
others can in principle be used for comparative evaluation.
It is, of course, satisfying to obtain a quantitative score
from the evaluation which can be used to measure
progress, and which may even be objectively compared to
scores obtained from evaluation of other SLDSs.
However, many important evaluation issues relating to
SLDSs cannot be subjected to quantification. Note that a
particular property under evaluation may be subjected to
several different types of evaluation.

Terminology
Quantitative evaluation consists in counting

something and producing an independently
meaningful number, percentage etc. It should be noted
that, even if quantitative measures may make little
sense in absolute terms, i.e. as independently
meaningful numbers or scores, quantitative measures
can be useful for progress evaluation in which
improvements are being measured against, e.g., a test
suite. However, we would argue that quantitative
progress evaluation is not ”real” quantitative
evaluation as long as progress is not being measured
against an independently meaningful quantitative
standard or target. Independently meaningful scores
are not only very important for purposes of
comparative evaluation of systems and components,
they are also difficult to achieve. For instance, many
published speech recogniser recognition success rates
suffer from under-specification in terms of factors
such as recording environment, microphone quality,
corpus selection, corpus size, speaker population
details etc.

Qualitative evaluation consists in estimating or
judging some property by reference to expert
standards and rules. The standards to apply may derive
from the literature, from experience or from expert
consultants.

Quantitative and qualitative evaluation are both
objective evaluation.

Subjective evaluation consists in judging some
property of an SLDS or, less frequently, component by
reference to users‟ opinions.

Comparative evaluation consists in comparing
quantitative, qualitative or subjective evaluations for
different SLDSs and components. Comparative
evaluation is often done internally in a development
process in order to measure progress (progress
evaluation). In most cases, this does not produce
independently meaningful scores which can be used in
comparisons with other SLDSs or components. An
equally important but much more difficult form of
comparative evaluation is comparison between
different SLDSs or components. The general problem
with external comparative evaluation of SLDSs and
components is that it can be difficult to ensure
evaluation under strictly identical conditions, such as
same task, same test suite, same-sized user population
etc. As a rule, the easier it is to ensure strictly identical
conditions, the more specific is the property being
evaluated. However, customers and end-users tend to
be more interested in global evaluations that take into
account many different properties, asking: which
SLDS or component among several is globally the
best one? Such evaluations are at best qualitative and
often include subjective elements.

• 4. Method(s) of evaluation
This entry describes the methods of evaluation which

may be used at various stages in the life-cycle. In early
design and specification, evaluation tends to be
conceptual rather than based on real data. Later in the life-
cycle, data capture and analysis dominate the evaluator‟s
activities (see 5 below).

Terminology
Design analysis consists in using experience and

common sense, thinking hard when exploring the
design space during the specification and design
phases, doing walkthroughs of models, comparing
with similar systems, browsing the literature, applying
existing theory, guidelines and design support tools, if
any, involving experts and future users, the procurer
etc. The completeness of the requirements
specification may be judged by checking whether all
relevant entries in the DISC grid(s) have been
considered, see (http://www.disc2.dk). Evaluation also
consists in checking whether the design goals and
constraints are sound, non-contradictory and feasible
given the resources available. Note that design
analysis can be performed at any time during the life-
cycle, not only during the early design phase. For
instance, a customer considering alternative offers
may want to analyse the requirement specifications
and design specifications of the products on offer.

Wizard of Oz data analysis consists in analysing
problems posed by phenomena observed in data from
simulated user-system interactions. The simulations
are performed by one or several humans and address
the non-implemented parts of the system. These may
range from the entire system to a single sub-module,
such as a fully implemented system in which only,
e.g., the recogniser is switched off and replaced by a

simulation. The advantage of simulations is that, if
done extensively and analysed carefully, a large
number of problems with design concepts and the
phenomena that will be present in the deployed
application can be spotted early in the development
process. Their disadvantage is the cost of setting up
and running several simulations, and of analysing the
generated data. The perception of the SLDS or
component by the users involved in the simulations
can be investigated through methods such as
questionnaires and interviews.

No standards exist for which questions to ask in
questionnaires and interviews. No standards exist on
how to interpret the results of questionnaires and
interviews. Still, these methods can give crucial
insights into the users‟ perception of the system.

For questionnaires, a standard procedure is to ask
users to express their subjective perceptions of the
SLDS as a series of properties on a five-point scale.
Questionnaires should contain a “free-style
comments” section.

Post-trial interviews are useful for capturing user
observations which might otherwise have been missed
and which might have implications for virtually any
kind of system deficiency. Interviews are often a good
complement to questionnaires.

Diagnostic evaluation is of central importance in
the early development process but should require less
effort in the final phase by which time most errors
should have been removed. During debugging of the
implemented SLDS or component, two typical types
of test are glassbox tests and blackbox tests.

A glassbox test is a test in which the internal
system representation can be inspected. The evaluator
should ensure that reasonable test suites, i.e. data sets,
can be constructed that will activate all loops and
conditions of the program being tested.

In a blackbox test only input to, and output from,
the program are available to the evaluator. Test suites
are constructed in accordance with the requirements
specification and along with a specification of the
expected output. Expected and actual output are
compared and deviations must be explained. Either
there is a bug in the program or the expected output
was incorrect. Bugs must be corrected and the test run
again. The test suites should include fully acceptable
input as well as borderline cases to test if the program
reacts reasonably and does not break down in case of
errors in the input. Ideally, and in contrast to the
glassbox test suites, the blackbox test suites should not
be constructed by the programmer who implemented
the system since s/he may have difficulties in viewing
the program as a black box.

Test suites are useful for evaluating one or several
sub-components independently of the rest of the
system. Use of test suites for component evaluation
should always be accompanied by rigorous and
explicit consideration of the match between the test-
suite evaluation conditions and the actual operating
conditions for the component in the integrated system.
Any mismatch, such as lack of representativeness of
the test suite data or of the acoustic signal conditions,

may render the test suite evaluation results irrelevant
to judging the appropriateness of the component for
the task it is to perform in the integrated system. Test
suites are a natural part of glass-box and black-box
evaluation.

User-system interaction data analysis consists in
analysis of data from the interaction between the fully
implemented system and real users, either in
controlled experiments with selected users and
scenarios which they have to perform, or in field
studies where the SLDS or component is being
exposed to uncontrolled user interaction. User-system
interaction data is useful or even necessary in many
cases, i.e. when too little is known in advance about
the phenomena that will be present in the deployed
application. This data, if comprehensive, has high
reliability because of deriving from a test corpus of
sufficient size and realism wrt. task and user
behaviour. Unfortunately, the data cannot be obtained
until late in the development of the system. User-
system interaction data analysis, if performed
extensively rather than cursorily, is costly. This kind
of analysis can be partly replaced by Wizard of Oz
data analysis which is costly as well but which
happens early enough in the life-cycle to enable
prevention of gross errors. Since there is significant
cost in both cases, cost which is only offset by
corresponding risks, this is where (early) design
support tools are most desirable.

• 5. Symptoms to look for
This entry describes the symptoms the evaluator

should look for in the data. These could be, e.g., lack of
understanding by the system, apparently irrelevant system
responses, or user complaints in a questionnaire.

• 6. Life-cycle phase(s)
This entry describes the life-cycle phases in which

evaluation of the property in question should be
performed. In general, the earlier evaluation can start, the
better. Distinction is made between early design,
simulation, implementation, field evaluation, final
evaluation, maintenance and porting.

Terminology
Early design includes requirements and design

specification. This is the most important life-cycle
phase for system and component evaluation. However
difficult this may be to do in any formal way, it is
essential to carry out a systematic and explicit
evaluation of whether the design goals and constraints
are reasonable, feasible and non-contradictory. Caught
at this stage, errors due to rash design decisions will
not be causing trouble later on. There is no substitute
for qualitative evaluation and sound judgement during
early design. This explains the importance of applied
theory, guidelines and tools in support of early design.

Simulation and implementation. These are the life-
cycle phases in which modules, such as the dialogue
manager and its sub-modules, should be severely
tested. To begin with, (part of) the SLDS or
component may be simulated. The end result of this
phase should be an implemented and debugged system

or component which is ready for external trials.
Simulation-before-implementation can be advisable in
many cases, not least with respect to dialogue manager
development. Applied theory and guidelines are at this
stage mainly used in support of scenario and test suite
development.

Field evaluation is performed by exposing the
SLDS or component to uncontrolled interaction with
users. Field evaluation may precede the final
acceptance test.

Final evaluation may consist in an acceptance test,
i.e. a more or less formal and controlled evaluation
experiment which should decide if the SLDS meets
the evaluation criteria specified as part of the
requirements specification. What is primarily being
evaluated is the behaviour of the system as a whole. In
addition to controlled experiments, final evaluation
may include design analysis and blackbox tests. The
evaluation methods used during final evaluation may
also be used for customer evaluation in which a
potential customer wants to understand the positive
and negative sides of an SLDS or component.

Maintenance deals with updating the SLDS or
component in various ways, such as updating the
database linked to the dialogue manager.

Modification deals with re-using the SLDS or
component for new purposes. This includes
localisation, customisation, additions and other kinds
of changes.

• 7. Importance of evaluation
This entry comments on the importance of evaluating

a certain property. Note that importance is a multi-faceted
concept and may depend on, among other things:
 is evaluation of this property relevant to all or only

some current systems or components?
 if the system or component has the property under

consideration, how crucial is it to get the property
right? What are the penalties?
Evaluation importance can be described as low,

medium or high together with a statement of the reasons
for the grading. Stating those reasons is important to
understanding the grading proposed. For instance, it may
be crucial to get some property right even if that property,
such as speech acts identification, is relevant only to few
current systems.

• 8. Difficulty of evaluation
This entry comments on the difficulties involved in

performing the evaluation.
 the difficulty of evaluation may depend on various

forms of complexity, such as task complexity, user
input complexity, dialogue manager complexity, or
overall system complexity, see (http://www.disc2.dk);

 the difficulty of evaluation may depend on the
existence of unsolved research problems. These may
be more or less severe.

• 9. Cost of evaluation
This entry comments on the costs involved in

performing the evaluation.

 evaluation is more or less costly to perform in terms of
time, manpower, or skilled labour;

 difficult evaluation may be relatively uncostly, for
instance if it can be done quickly by an external expert
(the problem is to find and motivate the expert); easy
evaluation can be costly, for instance because of the
volume of data involved;

 Wizard of Oz simulations, field studies and their
associated data analysis are costly.

• 10. Tools
This entry references software tools and other kinds of

support which may be of help in performing the
evaluation.

In DISC, we have produced draft filled templates for a

wide range of evaluation criteria of importance to the
evaluation of most aspects of SLDSs. These criteria are
still being refined. For several reasons, as has transpired
above, an evaluation criterion represented as a filled
template is not a self-explanatory construct. First, it uses
but does not itself explain the terminology explained in
the basic template above. Secondly, because the
evaluation criterion has been generated from
issues/options/pros and cons in some DISC grid, it must
be interpreted by reference to that grid. This is why the
hypertext structure of the DISC Best Practice Guide
website has been found particularly helpful for
representing the DISC results, see (http://www.disc2.dk).

5. Conclusion

In this paper we have presented the DISC approach to
generating complete and correct evaluation criteria for
SLDSs and components. It is probably uncontroversial
that the SDLS global community could benefit strongly
from having best practice standards for the development
and evaluation of SLDSs and their components. The DISC
Best Practice Guide website is an attempt to address this
need. The website will continue to be developed and we
would like to take this opportunity to invite all readers to
send us their comments and criticisms on what is there or
what is not there but should be. In addition to continued
improvement of the DISC Best Practice Guide website
according to the DISC agenda, future plans include
extension to best practice for the development and
evaluation of multimodal SLDSs.

6. References

Bernsen, N. O., Dybkjær, H. and Dybkjær, L., 1998.
Designing Interactive Speech Systems. From First
Ideas to User Testing. Springer Verlag.

den Os, E., Boves, L., Lamel, L. and Baggia, P. 1999.
Overview of the ARISE Project. In Proceedings of the
European Conference on Speech Technology,
EuroSpeech, 1527-1530.

DARPA Communicator: http://fofoca.mitre.org/
DISC Best Practice Guide: http://www.disc2.dk
Dybkjær, L. and Bernsen, N. O., 2000. Issues in Making

Usable Spoken Language Dialogue Systems. To appear
in Natural Language Engineering.

Dybkjær, L., Bernsen, N. O., Carlson, R., Chase, L.,
Dahlbäck, N., Failenschmid, K., Heid, U., Heisterkamp,
P., Jönsson, A., Kamp, H., Karlsson, I., Kuppevelt, J.v.,
Lamel, L., Paroubek, P., and Williams, D., 1998. The
DISC Approach to Spoken Language Systems
Development and Evaluation. In A: Rubio, N. Gallardo,
R. Castro, and A: Tejada (eds.): Proceedings of the
First International Conference on Language Resources
and Evaluation, Granada, 1998. Paris: The European
Language Resources Association, 185-189.

Fraser, N. M., 1995. Quality Standards for Spoken
Language Dialogue Systems: A Report on Progress in
EAGLES. In Proceedings of the ESCA Conference on
Spoken Dialogue Systems, Theories and Applications,
Vigsø, 157-160.

Fraser, N. M., Salmon, B. and Thomas, T., 1996. Call
Routing by Name Recognition: Field Trial Results for
the Operetta(TM) System. IVTTA’96, NJ, USA.

Gilbert, N., Cheepen, C., Failenschmid, K. and Williams,
D., 1999. Guidelines for Advanced Spoken Dialogue
Design.
http://www.soc.surrey.ac.uk/research/guidelines.

Heisterkamp, P. and McGlashan, S., 1996. Units of
dialogue management: an example. In Proceedings of
ICSLP’96, Philadelphia, 200-203.

Mecklenburg, K., Hanrieder, G. and Heisterkamp, P.,
1995. A Robust parser for continuous spoken language
using PROLOG. In Proceedings of Natural Language
Understanding and Logic Programming 1995, Lisbon,
Portugal, 127-141.

Verbmobil: http://www.dfki.de/verbmobil/
Voice Activated Dialling: http://www.vocalis.com/-

products/speechtel/infoframe.html
Ward, W. and Issar, S., 1995. The CMU ATIS System. In

Proceedings of the ARPA Workshop on Spoken
Language Technology, 249-251.

Waxholm: http://www.speech.kth.se/waxholm/waxholm.-
html

