
 1

Bernsen NO, Dybkjær H, Dybkjær L: Designing Interactive Speech Systems. From

First Ideas to User Testing.

 2

PREFACE
When we began the Danish dialogue project back in 1991, it was felt that the ultimate

in basic speech recognition technologies, i.e. robust, marketable speaker-independent

continuous speech recognition would have become reality by the end of the project. We are

delighted that this is the case and that advanced speech technologies are now finding their

way into a multitude of practical applications in a growing number of languages. In the same

period, user-oriented spoken interaction model design has developed from a rather esoteric

subject into a focal area of research and practical interest.

This book describes our experiences from developing and evaluating the interaction

model for the Danish dialogue system. Although selected results from this work have been

presented in a number of publications over the years, we believe that it takes a book to really

get the “feel” of a complex interactive speech system. When re-reading our own papers or

reading those of others, there is often the impression that much information of importance to

the understanding of the actual, down-to-earth and practical development and evaluation

process has been left out because it was not deemed of sufficient importance to the

particular point of novelty being presented.

Throughout our work, we have tried to stick to the agenda of application-oriented

research. „Application orientation‟ means a focus on real users, real-time and real tasks for

which interactive speech systems could provide solutions. „Research‟ means that the work

not only aims at demonstrating a working solution but also aims at generalising results to the

extent possible at the time. It is too early to entertain the ambition of creating a textbook on

the subject. At this stage, the best one can offer is a comprehensive description of an

individual development effort coupled with modest or tentative generalisations in terms of

concepts, theories, methods and tools, and spiced with concrete and “dirty” examples and

references to similar efforts by other developers.

We hope that some of the many computer scientists, engineers, and others who are

starting to develop interactive speech systems, might find some of our observations and

results useful to their own work. Graduate students specialising in natural interactive

systems more generally, or interactive speech systems in particular, might also use the book

to form a concrete idea of what it means to develop and evaluate interactive speech systems.

Finally, fellow researchers might at least derive the pleasure of seeing some of the wrong

turns reported, which they themselves have been unwilling to put into print.

The book has a simple structure. Chapter 1 discusses interactive speech systems, tools

and techniques from a structural as well as a state-of-the-art point of view, and presents the

„rationalised development‟ approach adopted in this book. Chapter 2 presents a theory of

the elements of advanced interactive speech systems which in our view should be considered

by today‟s developers. Chapter 3 is the first in a series of chapters which apply a standard

software engineering life-cycle model to the development and evaluation of interactive

speech systems. In particular, Chapter 3 looks at completeness and consistency of

requirements specifications and presents proto-tools for design space development and

speech functionality analysis. Chapter 4 describes how to design the first interaction model

and presents a set of guidelines for interaction model design. Chapter 5 provides a detailed

 3

discussion of the Wizard of Oz system simulation technique. Chapter 6 describes

implementational issues. Chapter 7 is an introduction to the increasingly important subject of

corpus handling during the development and evaluation of interactive speech systems.

Chapter 8 discusses interactive speech systems evaluation based on a distinction between

performance evaluation, diagnostic evaluation and adequacy evaluation. Finally, Chapter 9

takes a look ahead, in two directions. One is towards what we call advanced mixed initiative

interactive speech systems. The other is towards multimodal systems that include speech as

one of their input/output modalities.

ACKNOWLEDGEMENTS

The Danish dialogue project received generous support from the Natural Sciences and

Technical Sciences Research Councils. We gratefully acknowledge their support. Our

colleagues in the Danish dialogue project from the Center for PersonKommunikation,

Aalborg University, and the Centre for Language Technology, Copenhagen, developed the

system‟s platform, speech recogniser, speech telephone interface, player, grammar and

parser. Discussions during project meetings no doubt influenced our work on interaction

model development in many subtle ways. Tove Klausen and Judith Ramsay contributed to

the Design Space Development approach in the Esprit Long-Term Research project

AMODEUS-2. Dimitris Papazachariou contributed to the simulation and analysis of

advanced mixed initiative dialogue in the Human Capital and Mobility Research Network in

Spoken Dialogue and Discourse. Funded by the Nordic Council, Vytautas Zinkevicius

participated in recent studies on how to transfer skills in the use of the cooperativity

guidelines. Norman Fraser might be able to find snippets of his contributions to the DISC

proposal in the state-of-the-art sections in Chapter 1. Our partners in the Esprit Long-Term

Research project DISC have consented to use the software engineering life-cycle approach

to interactive speech systems adopted in this book as one of the points of departure for the

project. And we look forward to extending and revising our understanding of corpus

handling through learning from our partners in the upcoming Telematics MATE project.

Many thanks to you all!

 4

1 INTERACTIVE SPEECH SYSTEMS

1.1 INTRODUCTION

Natural human-computer interaction

When we use a computer system to perform a certain task, the computer system acts

both as a tool and as a partner in communication. It would be stretching the sense of the

term „communication‟ beyond reasonable limits to say that one communicates with a spade

when using it. The computer is different from the spade in important ways. The user must

input information in some form in order to make the system execute. Similarly, to inform the

user of its state, processes and their results, the computer must output information to the

user. The information which is being exchanged between user and system during task

performance can be represented in different forms, or modalities, using a variety of different

input/output devices. For a wide range of tasks, the system can achieve task adequacy as a

tool by exchanging information with its users in ways that are completely different from

those of human-human communication, such as through keyboard and mouse as input

devices, the screen as output device and typed command notation as the key modality for

representing input information. With or without the inclusion of typed command input

notation, this form of interaction is called the graphical user interface (GUI) paradigm.

Within limits of various kinds, users are able to adapt to such highly artificial styles of

communication as long as the input/output devices used for the purpose are reasonably

ergonomical in their design. In the ideal world, however, and whenever desirable, there is no

reason why the exchange of information with computer systems should not be done in ways

that are much more natural to the users. Arguably, the most natural form of situated human-

human communication is two-way, face-to-face discourse using speech, facial expression

and gesture, and incorporating other modalities of information representation and exchange

as needed, such as written text, maps, drawings, graphs, animation, video, soundscapes etc.

Even if such ideal communication with the computer system were to become reality, the

computer would not completely loose its spade-like (or tool) aspects. „Direct‟ manual or

bodily interaction as exemplified by the GUI paradigm would remain useful for many

purposes. But even those aspects could be made much more natural and ergonomical than is

currently the case and they would become reduced to serving the task aspects for which they

can demonstrate superiority with respect to usability.

What is an interactive speech system

Interactive speech systems represent one step towards fully natural communication

with computer systems. For the purpose of this book, interactive speech systems shall be

characterised as computer systems which allow people to perform at least part of their tasks

through some form of spoken language dialogue. The computer is able to understand a

person‟s spoken input utterances and generate appropriate spoken output to the user.

Interactive speech systems, in this sense, are unimodal I/O systems. That is, they use

information represented as speech and nothing else in their two-way communication with

users. The class of unimodal interactive speech systems may be sub-divided into systems

 5

which take continuous, speaker independent spoken input (Figure 1.1 Area 4) and systems

which do not (Figure 1.1 Area 3). We call the former advanced interactive speech systems.

To locate interactive speech systems in the space of interactive systems more generally,

interactive speech systems may be contrasted with two other families of systems: interactive

systems which do not use speech (Figure 1.1 Area 1), such as graphical user interfaces, and

interactive systems which do not use speech interactively (Figure 1.1 Area 2). The latter

class of systems includes all speech systems that either do not understand speech input or do

not generate speech output. Speech-to-text systems, text-to-speech systems, telephone-

based voice response systems (also called touch-tone or DTMF systems) that allow

navigation among pre-recorded or synthesised messages, input command systems for car

phones, graphical screen execution, cockpit equipment operation etc. in which the system‟s

feedback is not spoken output but simply execution of the spoken command, systems that

merely record spoken input, as well as systems, such as standard multimedia systems or

systems equipped with pre-recorded speech alarms, that merely replay speech as output - all

exemplify interactive systems which do not use speech interactively.

Unimodal interactive speech systems may be contrasted with multimodal interactive

speech systems (Figure 1.1 Area 5) which use additional modalities in exchanging

information with their users. Examples of multimodal interactive speech systems are

interactive speech systems coupled with a graphical speaking face aimed to facilitate the

comprehension of synthetic speech [Cole et al. 1996, Bertenstam et al. 1995] or - as yet

non-existent - intelligent multimedia presentation systems that generate as output a co-

ordinated combination of spoken language and graphical images. Only very advanced and as

yet non-existent intelligent multimodal systems which combine spoken language input

understanding and spoken language output generation with many other input and output

modalities would begin to approach the human-human face-to-face paradigm of natural

communication mentioned above.

Mult imodal

Natural language
understanding and generation

Speaker independent
spontaneous speech

Speech

Advanced
ISSISS

Multimodal
ISS

Non-
speech

Speech with
no language

 6

Figure 1.1. Advanced interactive speech systems as defined for the purpose of

this book are unimodal speech systems (or speech-only systems) with speaker

independent spontaneous speech input and natural language understanding and

generation. The figure contrasts such systems (AISS) with two other types of

interactive speech systems (ISS and MISS), as well as with speech systems

which lack understanding of what is being recognised or generated or both, and

systems which do not use speech.

Scope of interactive speech systems

Systems which satisfy the above definition of interactive speech systems are of at least

two types. The first type includes systems which act as a dialogue partner in a restricted

domain, often serving as domain experts. Examples are information and reservation systems,

such as the flight and train timetable inquiry systems developed in the European Sundial

project [Peckham 1993], the Philips [Aust et al. 1995], Swiss Rail [Peng and Vital 1996]

and RailTel [Lamel et al. 1995] train timetable inquiry systems, the Danish Dialogue System

for flight ticket reservation, telephone switchboard service systems, such as the Vocalis

Operetta [http://www.vocalis.com/pages/products/ operetta.htm], various telephone

company service systems, such as telephone service disconnect ordering systems [Mazor et

al. 1994], voice activated telephone extension systems [Naito et al. 1995], systems which tell

why a dialled number did not work [Ortel 1995], systems for the partial automation of

directory enquiries [Forssten 1994], systems for providing information on weather and

yellow pages [Cole et al. 1994, Sadek et al. 1996], systems for switchboard repair [Smith

and Hipp 1994], and appointment scheduling systems [Fanty et al. 1995]. The second type

includes multilingual spoken dialogue translation systems, such as Janus [Lavie et al. 1996,

Zhan et al. 1996], DmDialog for conference registration [Kitano 1991] and Verbmobil

[Wahlster 1993].

Commercial advances: speaker-independent, spontaneous speech recognition

Although inferior with respect to the paradigm of fully natural human-human

communication interactive speech systems promise, on the one hand, substantive progress in

naturalness of human-machine communication and, on the other, intelligent human-machine

communication for tasks that do not easily lend themselves to other modes of interaction,

such as stationary or mobile communication at-a-distance over the telephone or via various

wireless devices, or heads-up control tasks in the cockpit or in the car. What makes

interactive speech systems particularly interesting at the present time is that they have

recently become commercially available in their most versatile and natural form, i.e. real-

time systems that understand speaker-independent continuous speech. Acceptable-quality

speech synthesis in several languages has been in existence for some time already. Moreover,

the best speech recognisers now enable acceptable-quality understanding of over-the-phone,

speaker-independent, continuous speech input of medium-size vocabularies of 1000-2000

words. As a result, the first commercial telephone-based interactive speech systems

accepting speaker-independent, continuous speech input have been installed around the

world (see Section 1.3.2) and others are set to follow at what appears to be a rapidly

increasing pace. Earlier commercial interactive speech systems either use speaker dependent

 7

speech input, which requires that the system be trained to a particular user, and/or non-

continuous speech input in the form of isolated words or connected speech. Speaker

dependent speech input severely restricts the systems‟ versatility. Isolated words input or

connected speech input severely limits the naturalness of providing spoken input to

computer systems. For these reasons, we shall restrict the interactive speech systems

discussed in the present book to systems that accept continuous, speaker independent

spoken input (Figure 1.1 Area 4). These will be called advanced interactive speech systems

or just interactive speech systems in what follows.

The logical process model

Speech recognisers and speech generators still need improvement in many respects,

including basic recognition rate; coping with spoken language specificities, such as

hesitations, repetitions of words or syllables, ill-formed phrases, incomplete sentences etc.;

rejecting non-authorised words or interpreting them using the context of the sentence or

dialogue; and dynamically adapting to the user‟s personal way of speaking (linguistic

behaviour, own stereotypes etc.); voice output quality; and ability to handle input prosody

and output prosody in concatenated pre-recorded speech or speech synthesis. Meanwhile,

the errors and misunderstandings that occur between user and system because of less-than-

ideal speech recognition and generation can often be satisfactorily handled through spoken

interaction. However, the facts that users can now speak to their computer systems in

basically the same way as they speak to other humans, that is, by using continuous speaker

independent speech, and that they can understand the machine‟s spoken response without

significant difficulty, especially when pre-recorded speech is being used, mean that two of

the five logical steps that make up the information processing done by interactive speech

systems are now in place for practical use (Figure 1.2).

User

Speech
recognition

Speech
generat ion

Linguistic
analysis

Natural
language
generat ion

Dialogue
handling

Applicat ion
database

Acoustic models
lexicon

grammars
speech acts

dialogue structure
task record

•••

 8

Figure 1.2. Typical logical structure of an interactive speech system.

The linguistic processing steps

The linguistic processing done by today‟s advanced interactive speech systems consists

in (i) linguistic analysis of the spoken input produced by the speech recogniser and (ii)

generation from an underlying semantic representation of linguistic output to the speech

generator. Natural language generation per se is often absent from current systems because

the underlying output semantics, once chosen by the system, is directly linked to pre-

designed system output phrases which simply have to be played to the user or passed

through the speech synthesiser. When more advanced natural language generation becomes

necessary, there does not seem to be any reason why advanced interactive speech systems

designers could not draw upon what is already known about language generation in the

natural language processing community. The system‟s output will be decoded by humans.

As long as the system‟s messages are clear and precise in the interactive context, it matters

less if they are being phrased somewhat too closely to the grammar of written language as

compared to spoken language. Humans are simply very good at decoding linguistic output

phrases and utterances, However, they are also very good at modelling the system‟s output

phrases, so this would have to be taken care of. The problem is more serious on the

linguistic input side. Most advanced interactive speech systems need some form of linguistic

analysis of the spoken input. However, spoken language behaves very differently from

written language and its behaviour remains poorly understood. This means that there is no

easy way of transferring linguistic progress in written language understanding to the

understanding of spoken input. Thus, there is still no consensus whatsoever with respect to

how to optimise grammars and parsing for advanced interactive speech systems. Full written

language parsing techniques do not work. What actually works, more or less, is commonly

called „robust parsing‟ but this term does not presently have any clear meaning apart from

referring to less-than-full written language parsing. Other issues are: whether to use stand-

alone grammar and lexicon(s) or build these into the speech recogniser; how to achieve

spoken sub-language adequacy (lexicon and grammar) for language understanding and

generation; whether to use morphology (declarative and principled, but slow processing) or

a full-form lexicon (fast); how to integrate syntax and semantics; how to efficiently separate

resources from the procedures which use them (modularity); how to add linguistic

knowledge (grammar and vocabulary) to the system during or after development

(extensibility); and how to build one shared grammar for analysis and generation

(modularity).

Dialogue processing is the core of interactive speech systems/technologies

Despite the very real problems of designing grammars and parsing techniques for

spoken input, it is probably in dialogue processing that current development of advanced

interactive speech systems is furthest removed from theoretical and practical mastery in

terms of best practice development and evaluation procedures, methods, tools, standards

and supporting concepts and theory. The main reason appears to be the comparative novelty

of the problems themselves rather than their unique difficulty. In a very real sense, the

management by machine of spoken dialogue can only be investigated in running interactive

 9

speech systems or in realistic simulations of such systems. Investigations of this nature have

only been possible during the last decade or so whereas research on speech recognition and

generation, and on (written) linguistic input analysis and (written) language generation has a

much longer history. Of course, many individual aspects of human-human conversation have

been investigated for more than a decade but theoretical results have proven difficult to

transfer to spoken human-machine interaction (see Chapter 4). This is because the machine

is a highly inferior partner in dialogue compared to human interlocutors. We propose to

attack the problem of human-machine spoken dialogue from a different perspective. Instead

of attempting to transfer results from human-human conversation theory straight away, we

attempt to lay the foundations of an incremental, application-oriented theory of human-

machine dialogue from the bottom up, starting with the needs of current dialogue design and

calling upon novel theory development and results from human-human conversation theory

based on the demands of practical dialogue design.

The interaction model

In the terms introduced above, the present book addresses the subject of advanced

interactive speech systems with a particular focus on the nature and practical development

and evaluation of their dialogue component as part of the overall system. Despite this focus,

it should be kept in mind that it is impossible to build a dialogue model without regard for

the language model. Language is an inseparable part of dialogue and hence of the interaction

between an interactive speech system and its users. We shall use the term interaction model

to designate the combined model of language and dialogue needed for an interactive speech

system. More generally speaking, an interaction model comprises models for input

understanding, output production, dialogue management, and domain and other contextual

knowledge.

Speech functionality, software systems development, advanced mixed initiative interaction

and intelligent multimodal systems

The development of interaction models for interactive speech systems happens in a

larger context. We shall be addressing part of that context in what follows. First, any

particular case of interactive speech systems development assumes that speech is an

appropriate modality for the exchange of information between user and system with respect

to the system to be developed. Evidently, speech is not always appropriate. So there is a

need for guidance on when to use or not to use, as the case may be, speech in interactive

applications. We shall present an early version of a tool which may assist developers in

deciding when (not) to use speech in particular applications. Secondly, interactive speech

systems development is a particular sub-class of software systems development more

generally. As such it may benefit from tools for the support of the software systems

development process. We shall present and illustrate our use of one such tool, i.e. the

Design Space Development approach to software specification and development. Thirdly,

current advanced interactive speech systems remain primitive and of restricted applicability

when compared to expected future system generations. We shall take a look at two lines of

approach which will have to succeed in order to radically improve system interactivity and

versatility and make real progress towards fully natural communication with computer

systems. One approach is to solve the problems involved in achieving advanced mixed

 10

initiative dialogue between users and system. Another, to integrate speech understanding

and production into intelligent multimodal systems (cf. Figure 1.1).

1.2 BACKGROUND AND SCOPE OF THIS BOOK

Current ad hoc practices

The accelerating industrial exploitation of advanced interactive speech technologies

means that development and evaluation practices emerge locally in both research and

industry. These practices are largely ad hoc and fragmented, and tend to emerge without

benefiting from the accumulating but often unrecorded experience in the field as a whole.

This means that errors are being duplicated and that the practice of each team of developers

is likely to be sub-optimal compared to what is possible already. The remedy for this state of

affairs is the sharing of experience and results among development teams in industry and

academia, „results‟ meaning best practice procedures for advanced interactive speech

systems development and evaluation, novel sets of concepts, new methods and tools that can

help removing development uncertainties, speed up time-to-market, improve user

acceptance and reduce development cost.

Our approach

The main background for this book is our work during the past five years on

specifying, designing, rapid prototyping, implementing and evaluating the interaction model

of the Danish Dialogue System. During that work, we encountered a large number of

unsolved problems in spoken interaction model and dialogue component development and

evaluation and attempted to address some of them. The approach that we used in addressing

the problems is illustrated by the „spiral model‟ in Figure 1.3. It consists in, first,

encountering the problem and trying to solve it in practice; secondly, reflecting on the

problem and proposing concepts, theories, procedures, methods and tools to solve the

problem, always aiming at enabling a more general and principled approach to the problem

in future development and evaluation tasks; thirdly, developing and testing, to the extent

possible given limited resources in terms of personpower, accessible corpora, accessible

development projects at other sites etc., the proposed concepts, theories, procedures,

methods and tools; and thereby, fourthly, improving the basis for future interactive speech

systems development and evaluation. Secondary background for the book has been provided

by work done in representing design spaces for designer problem solving in large software

projects, exploratory work on advanced mixed initiative spoken interaction, work on

modality theory, i.e. the theory of which modalities to use in representing and exchanging

information with computer systems given their early requirements specifications, and work

on the specification of an intelligent multimodal system that integrates speech understanding

and production.

 11

Development of concepts, theories,
procedures, methods and tools

Generalisat ion through test on accessible
projects, corpora etc.

Problems encountered in natural interactive
systems development

Improved basis for systems development;
commercialisat ion; next incremental step

Figure 1.3. The spiral model.

A rationalised development process

We can hardly claim to have produced complete and general solutions to any single

unsolved problem in interaction model and dialogue component development and

evaluation. To do so requires a very substantial effort in the investigation of several

different, major advanced interactive speech systems development tasks. Yet we believe to

have made progress on several issues and believe that the best way to share results is to

systematically describe what we have done in a book. Reflecting the approach shown in

Figure 1.3, the description of results will take the form of a rationalised development

process as shown in Figure 1.4. That is, instead of just describing what we actually did, we

describe how we would develop an advanced interactive speech application were we to

make use of the results of our completed project. Figure 4 roughly contrasts the rationalised

development process we offer including its series of limited generalisations (a), with a

possible future, “ideal textbook” view of spoken interaction model development and

evaluation best practice supported by all the relevant generalisations (b). What Figure 1.4

fails to illustrate, however, is the very real possibility that future progress might replace the

results that we are going to describe rather than just generalising those results further and

providing the many needed generalisations that are missing from our account. In describing a

rationalised development process for advanced interactive speech systems, we shall illustrate

the approaches proposed through numerous examples from actual development and

evaluation experience.

Future textbook view

Rationalised development processa

b

 12

Figure 1.4. The rationalised development process of the Danish Dialogue

System incorporates limited generalisations from the actual development process

(a). Some of these generalisations might become included in an ideal future

textbook presentation of the development process (b), providing fully

generalised best practice procedures, methods and tools supported by underlying

concepts and theory.

The Danish Dialogue System

The Danish Dialogue System is a research prototype for Danish domestic flight ticket

reservation. The prototype system was developed in the Danish dialogue project. The

project was supported by the Danish Research Councils for the Technical and the Natural

Sciences and involved an effort of about 30 person/years by the Center for

PersonKommunikation at Aalborg University (speech recognition, grammar, player), the

Centre for Language Technology, Copenhagen (grammar, parsing), and the Centre for

Cognitive Science, Roskilde University (dialogue component and application design and

implementation, interaction model aspects, output design).

The system runs on a PC and is accessed over the telephone. It is a speaker-

independent continuous speech understanding system which speaks and understands Danish

with a vocabulary of about 500 words. The prototype runs in close-to-real-time. Its main

components are shown in Figure 1.5.

When a user calls the system, this is being detected by the telephone line interface.

The speech recogniser then receives the user‟s speech signal. The speech recogniser is based

on Hidden Markov Models (HMMs) and represents a further developed version of the

recogniser that was developed in the Esprit Sunstar project [Lindberg et al. 1992, Lindberg

and Kristiansen 1995]. In addition to user input, the speech recogniser needs predictions

from the dialogue management module (see below) on the particular sub-grammars and

vocabulary to use at any given point during interaction. Predictions are needed because, to

enable real-time performance, at most 100 words can be active in memory at a time. The

sub-grammars used by the speech recogniser are word pair grammars represented as finite

state transition networks in which transitions represent HMMs. Viterbi search is used to find

a 1-best path through the network. This path represents a string of lexical references which

constitutes the output of the speech recognition module.

The lexical string is input to the parser. The dialogue management module also

provides predictions to the parser on which sub-grammars and vocabulary to use and which

semantic objects to fill in on the basis of the input string from the recogniser. The semantic

objects are frame-like structures containing slots for domain relevant information. The

number of available slots varies depending on the expected input. The sub-grammars used

for linguistic analysis are unification-based Augmented Phrase Structure Grammars (APSGs)

implemented in a formalism which is a sub-set of the one used in the Eurotra project

[Copeland et al. 1991]. The parser module analyses the input based on the active sub-

grammars using a chart data structure and an object-oriented implementation of the Earley

parsing algorithm. The parser uses semantic mapping rules for assigning the semantic

interpretations [Povlsen 1994] which in turn are used for filling in the active semantic

objects.

 13

The dialogue management module consists of the Interpretation and Control Module

(ICM) and the dialogue description. The dialogue management module interprets the

contents of the semantic objects and decides on the next system action which may be to send

a query to the database, send output to the user, or wait for new input. In the latter case,

predictions on the next user input are sent to the recogniser and the parser. If no input is

detected during a certain interval, new output is sent to the user.

The database contains information on timetables, flights, reservations and customers

as well as rules for managing the information and queries received. System output is

produced by concatenation of pre-recorded phrases.

The output phrases are selected by the dialogue management module and replayed by

a separate reproductive speech module.

The text recogniser is only used when the speech recogniser is disabled. This has been

useful during debugging and test of the system.

The DDL-tool does not form part of the running system but is a tool used to create the

dialogue description, i.e. the implemented dialogue model.

The Dialogue Communication Manager is a data bus which transfers messages

between all other modules.

The interaction model for the system was iteratively designed by means of the Wizard

of Oz experimental prototyping method. The model resulting from the last WOZ iteration

was implemented and debugged, and the implemented system was tested with naive users.

The WOZ experiments produced a corpus of transcribed dialogues, user questionnaires and

interviews; the implementation and debugging phase produced log files; and the user test

produced log files and a corpus of transcribed dialogues, user questionnaires and interviews.

All these sources of information were subjected to in-depth analysis. Throughout the

development process, the sources have served as a basis for evaluating the interaction model

by identifying interaction problems and revealing unsatisfied design goals and constraints.

 14

Parser

Communicat ion manager

Speech
recogniser

driver driver

Telephone
line interface

driver

Keyboard text
recogniser

driver

Interpretation and
control module

(ICM)

DDL-tool

Dialogue
control

structure

Acoustic and
syntactic
models

Lexicon
and

grammar

Syntactic
models and

abbreviat ions

driver

Reproduct ive
speech player

driver

Application
database

Customer, time/fare,
reservat ion, and

flight files
Computat ion rules

Pre-recorded
phrases

Figure 1.5. The overall architecture of the Danish Dialogue System.

The resulting system is representative of prototype advanced interactive speech

systems developed in the 1990s. Although not (yet) a commercial system, the system has

been developed as a realistic application through substantial interaction with potential end-

users and their organisations. Based on the test results obtained, we believe that the system

is commercialisable given an appropriate speech recogniser and appropriate grammars and

parsing strategies.

Generalisation

Our development of the dialogue control component (the dialogue description) and

various other parts of the interaction model of the Danish Dialogue System formed the basis

of a series of generalisations which may be useful to other developers of advanced

interactive speech systems. The requirements specification phase and subsequent

development phases were used to test an approach to design space representation and

reasoning called Design Space Development. The Wizard of Oz simulation phase was used

to collect detailed how-to-do-what-and-when information on the Wizard of Oz method. The

Wizard of Oz simulation phase was also used to develop a first set of guidelines for the

design of co-operative system interaction. These guidelines were subsequently refined and

compared to a well-established theory of co-operative human-human conversation. Finally,

the guidelines were validated as part of the final user test of the implemented system. It

turned out that the guidelines could form the backbone of a rigorous method for diagnostic

evaluation of spoken interactive system behaviour. In addition, the principles appear

promising as guidelines for the design of co-operative system interaction prior to

implementation. Evaluation of the implemented system led to a more general investigation of

some of the problems involved in evaluating advanced interactive speech systems. Work on

 15

the many information sources produced during system development and evaluation led to

experience with corpus handling and text markup methodology for advanced interactive

speech systems development and evaluation. Analysis of task-oriented human-human spoken

dialogue and Wizard of Oz simulations of advanced mixed initiative dialogue led to ideas on

how to machine-implement identification of the speech acts that are contextually relevant

during task-oriented dialogue. Modality theory supported investigation of speech

functionality, i.e. of when to use speech in an application and when not do so, leading to first

ideas on a tool to support decision making during early design. Finally, throughout the

development process we worked on systematising a bottom-up approach to a theory of task-

oriented spoken interaction. These are the generalisations in terms of theory, concepts,

methods and tools that we propose to present as part of the rationalised development

process to be described in the following chapters.

Related publications

At the time of writing, no other comprehensive publication appears available with a

focus similar to that of the present one. Related work is [Smith and Hipp 1994] which

presents a theory of dialogue based on the implementation and test of an application for the

repair of electronic circuits. The authors focus on operational and implementational issues,

such as dialogue processing and parsing, rather than on the dialogue design process, co-

operativity and evaluation. Jönsson [1993] addresses how to manage coherent dialogue in

natural language interfaces. He describes use of a Wizard of Oz simulation environment for

the investigation of written, multimodal natural language dialogue. The empirical results on,

among other things, focus and dialogue act structures are used in the design of a dialogue

manager for natural language interfaces, specialised for various database applications such as

car and travel sales. [Cole et al. 1996] surveys the vast field of language technologies and

the opening vistas of multimodal systems incorporating language technologies. The book

consists of thirteen chapters written by 97 different authors. It is a very useful source of

overviews and references.

EAGLES-I (the Expert Advisory Group on Language Engineering Standards) was an

LRE project launched in 1993 and aimed at accelerating the provision of common functional

specifications for the development of large-scale speech and language resources in Europe.

One of the first activities in EAGLES-1 was to conduct a survey of existing resources and

standards. Based on the survey, a set of initial recommendations was disseminated to the

speech and language communities for comments. The exercise was iterated, leading to the

dissemination of a set of final recommendations and obtaining feedback on those. For more

information on EAGLES-I, see [Calzolari and McNaught 1996, Gibbon et al. 1997].

EAGLES-II (1997-1998) aims at consolidating, extending and disseminating work done in

EAGLES-I.

Useful source material on speech functionality is presented in [Baber and Noyes

1993]. Several books on various aspects of interactive speech systems are underway,

including [Peckham and Fraser, forthcoming], and [Bernsen and Fraser, forthcoming].

 16

1.3 STATE OF THE ART

In this brief overview of the state-of-the-art we shall focus on research prototype and

commercial advanced interactive speech systems which take speaker independent continuous

speech input and generate spoken output. Multimodal systems that include advanced

interactive speech will be discussed in Chapter 9.3. We distinguish between research

systems, i.e. running prototype systems built for research and demonstration purposes

(Section 1.3.1), and commercial systems which are already on the market (Section 1.3.2). In

addition, we describe some advanced tools and techniques in support of interactive speech

systems development and evaluation (Section 1.3.3).

1.3.1 RESEARCH SYSTEMS

Advanced interactive speech research systems have been, and continue to be,

developed and implemented in Europe, US and Japan since the late 1980s. These systems

obviously did not emerge out of thin air but had many precursors among less sophisticated

applications using less, or no, speaker independence, having connected words input, lacking

realistic domain specifications, simulating important parts of their functionality and/or having

been developed for typed rather than spoken interaction. Examples are APHODEX [Haton

1988] and EVAR [Niemann et al. 1988]. Since the late 1980s, valuable research on

interactive speech systems has been done under the DARPA, later ARPA, spoken language

systems programme which involves competitive evaluations and includes, among other

participants, MIT, SRI, CMU, BBN and European laboratories, such as LIMSI in France.

Papers on these systems can be found in a series of workshop proceedings published by

Morgan Kaufmann [DARPA 1989, 1990, 1991, 1992; ARPA 1994]. [Young 1997] reviews

the ARPA Programme. The common domain used by all the participants was that of Air

Travel Information Systems (ATIS). CMU has developed the Janus system for speech-to-

speech translation of meeting scheduling dialogue contributions in several languages,

including English, German, Korean, Japanese and Spanish [Lavie et al. 1996, Zhan et al.

1996]. In Europe, a strong base of expertise has been established through projects such as

Esprit Sundial, the Danish dialogue project and the German VerbMobil. Sundial addressed

air and train travel information systems. The Danish dialogue project addressed air travel

reservation. The large VerbMobil project which began in 1993 and was continued for

another 3-year period in 1996, is aimed at developing a spoken language conversation

support system for German/English and German/Japanese human-human negotiation

dialogues in face-to-face situations.

We shall look in more detail at Sundial and Verbmobil. The following descriptions are

based on [Peckham 1993], on information provided by Scott McGlashan from Sundial and

on the Verbmobil information available at http://www.dfki.uni-sb.de/

verbmobil/Vm.Infobrosch.Text.8.3.96.html.

Sundial

The Sundial (Speech UNderstanding in DIALogue) project, 1989-93, was one of the

largest collaborative speech technology projects in Europe at the time. The goal of the

project was to build real-time integrated dialogue systems capable of maintaining co-

operative dialogues with users over standard telephone lines [Peckham 1991, 1993,

 17

Peckham and Fraser 1994, Fraser and Thornton 1995, Peckham and Fraser forthcoming].

Systems were developed for four languages - French, German, Italian and English - within

the task domains of flight reservation and information query (UK and France), and train

information query (Germany and Italy). Systems functionality was partially specified on the

basis of Wizard of Oz simulations and was evaluated with potential users under a variety of

conditions. The vocabulary size is about 1000 words for each system.

In order to maintain spoken dialogues with users, each system carries out three

principal functions: the interpretation of user utterances, the generation of system utterances,

and management of the dialogue so that system utterances are natural and coherent in the

light of user utterances. In each system, these functions are distributed over five modules

(compare Figure 1.2 above). Linguistic interpretation is dealt with by two modules: an

acoustic processing module based on sub-word models using Hidden Markov Models

(CDHMM) which takes acoustic signals as input and outputs word or phoneme lattices

[Kuhn et al. 1992], and a linguistic processing module which parses the input, extracts a

plausible string and provides syntactic and semantic representations of the utterance [Andry

and Thornton 1991]. The dialogue manager module takes each linguistic representation and

gives it an interpretation within the dialogue context [McGlashan et al. 1992, Eckert and

McGlashan 1993]. Using this interpretation, the dialogue manager decides how the dialogue

might continue and, if it is the system's turn to speak, plans a schematic linguistic

representation for the system utterance. Generation of the system utterance is carried out by

the message generation module which produces a detailed linguistic representation, and the

speech synthesis module which synthesises the representation for telephone output.

Each of the Sundial systems aims to engage in an unconstrained dialogue with (naive

or expert) users in order to establish and, if possible, meet their information needs. To

achieve this, empirical data was collected and analysed. In addition to data from human-

human dialogues, data was collected using the Wizard of Oz technique [Fraser and Gilbert

1991a]. Comparison between human-human and human-computer dialogue corpora

revealed that with a computer (or what is perceived to be a computer), spoken interaction is

significantly more constrained than interaction with a human [MacDermid 1993]. These

findings were used to prioritise problems in system design and to inform the design of

subsequent simulations.

It is typical of Wizard of Oz simulations that they are often used to perform focused

experiments in addition to serving overall system development (cf. Chapter 5). In the first

UK Wizard of Oz simulation study, all components of the Sundial system were simulated

except for the text-to-speech synthesiser. The study examined naive subjects' response to

masculine and feminine synthetic voice quality, different confirmation strategies used by the

wizard and the effect of breakdown and repair sequences on the dialogue. The second study

examined naive subjects' response to standard and enhanced prosody in the synthetic speech.

A multiple parameter confirmation strategy was used throughout. The main focus of the

third study was to examine the formulation of requests by naive subjects who were

professional users of flight inquiry services, in comparison to a control group of members of

the public. No constraining guidance for naive callers was given to subjects. However,

following subjects' comments in the previous simulations, repetition of target parameters and

phone numbers in solutions was added. The final study examined the impact of printed user

guidelines for prospective users of Sundial. These guidelines help callers use the UK

 18

demonstrator system in the most efficient way.

The Sundial systems have been evaluated in terms of both `black box' and `glass box'

metrics [Simpson and Fraser, 1993]. Black box metrics assume that the internal workings of

the system are invisible to the evaluator. Glass box metrics assume that system-internal

representations are available for inspection at key points during processing. In this way, fine-

grained evaluation of system sub-components can go hand-in-hand with more general

evaluation of the system as a whole. Black box metrics include contextual appropriateness (a

measure of the appropriateness of a system utterance in its immediate dialogue context), and

transaction success (a measure of the success of the system in providing users with the

information they require, if such information is available in the database). Glass box metrics

include word and sentence accuracy as well as information content which measures the

system's ability to extract task-relevant information from user utterances. The results of

evaluating the system based on 255 German intercity timetable inquiry dialogues are

summarised in Figure 1.6.

Contextual appropriateness appropriate 98%

 inappropriate 2%

Transaction success success 6%

 relaxed constraints 80%

 announcing no solution 14%

Accuracy word accuracy 66.5%

 sentence accuracy 47.1%

Figure 1.6. Evaluation results from 255 dialogues with the German intercity

timetable inquiry system.

By the end of Sundial, real time over-the-telephone conversational dialogues were

being demonstrated in the laboratory with transaction success rates of up to 96%. For

example, Figure 1.7 shows a very simple dialogue with the British system collected over a

long distance telephone line with an untrained user.

Figure 1.7. Sundial dialogue over long distance telephone line with untrained

user (example provided by Norman Fraser).

System: Welcome to British Airways flight information service. How can I help you?

User: I wonder whether you could tell me what time the next flight from Paris to

Heathrow gets in.

System: Was that from Paris?

User: Yes.

System: Did you say to Heathrow Airport?

User: Yes.

System: That flight arrives at ten fifteen. Do you have another inquiry?

User: No thank you.

System: Thank you for calling. Good-bye.

 19

Large-scale collaboration on advanced interactive speech systems for flight and train

time-table inquiry and reservation, such as Sundial, has had lasting effects in Europe. The

Danish dialogue project built on the Sunstar project with respect to the speech recogniser

[Lindberg et al. 1992] and the DDL/ICM architecture [Bækgaard et al. 1992]. Sunstar ran in

parallel with Sundial. A significant number of other, subsequent projects, some of which aim

at developing multimodal systems, may be mentioned, such as Railtel for mixed initiative

dialogue telephone access to French Rail‟s static timetable information as well as to limited

additional information about services offered on the trains, fare-related restrictions and

supplements [Lamel et al. 1995]; MASK which developed a prototype multimodal

multimedia service kiosk for train travel information and reservation [Chhor 1997]; MAIS

which aimed to foster the deployment of multilingual inquiry systems, providing voice-

controlled access to information and transaction services

[http://guagua.echo.lu/langeng/en/mlap94/mais.html]; Waxholm which is a multimodal

system providing information on boat traffic in the Stockholm archipelago [Bertenstam et al.

1995]; and a recent project, ARISE, on train information services [http://www2.echo.

lu/langeng/en/le3/arise/arise.html]. In addition, the Sundial process probably contributed to

the establishment of companies such as Vocalis in Cambridge, and the rather massive general

effort in the field helped produce Philips‟ commercial train time-table enquire system

(Section 1.3.2).

Verbmobil

Verbmobil (launched 1993) is a very large-scale (95.9 Mio. DM 1993-96) R&D

project sponsored by the German Federal Ministry of Science, Research and Technology.

The project involved from early on 22 academic and 7 co-financing industrial laboratories,

and this number of participants now seems to have increased. Most partners are from

Germany but the consortium includes two US laboratories and one Japanese group. The aim

is to develop a speaker-independent, spontaneous spoken language translation support

system for German/English, German/Japanese human-human negotiation dialogues in face-

to-face situations. It is assumed that the dialogue partners communicate in English and that

both of them have at least a passive knowledge of English. In making their dialogue

contributions, the partners can use the VerbMobil system to translate utterances in their own

language into spoken English. English contributions are processed by the system as well in

order to gather contextual information and construct a discourse model. The system uses

this knowledge to disambiguate utterances and improve the quality of its translations. The

domain is in the first phase limited to dialogues aimed at agreeing on a meeting date, place

etc. (appointment scheduling). In this phase the vocabulary is approx. 2300 words. A

research prototype was presented in the autumn of 1996 and plans exist for larger-scale

applications after 1997.

The Verbmobil speech recogniser evaluates the probability of the words recognised

and organises these in a word hypothesis graph. An evaluation done in 1996 showed a

recognition rate of 73,3% of words from non-trained spontaneous dialogues in the domain.

The Verbmobil prosody module does segmentation of phrase- and sentence boundaries

based on information about pauses, intonation, duration and signal strength. The module is

able to distinguish 93% of the relevant phrase boundaries, thereby reducing the scope of

syntactic interpretation by 70%.

 20

In linguistic processing, Verbmobil combines syntactic and semantic constraints.

Syntactically ambiguous input, such as whether an occurrence of „you‟ designates a person

or a group of persons, is presented as semantically underspecified for the semantic analysis

which takes the dialogue context into account in attempting to disambiguate the input. Also

the dialogue module supports translation through the use of statistical models for the

identification and prediction of dialogue acts. In 1996, 70% of the dialogue acts were

identified in this way. Following dialogue act identification, a plan recogniser organises the

identified dialogue acts into phases which represent the course of the dialogue in abbreviated

form. In future, this representation will be used in the production of a dialogue protocol that

may serve as a summary of the dialogue. The results of syntactic-semantic processing are

sent to the transfer module which translates the sentence into an abstract, foreign language

semantic predicate representation. Based on this representation, the language generator

constructs syntactically correct sentences. Finally, the speech synthesiser produces the

English translation in as natural a form as possible, including relevant intonation.

To improve the robustness of Verbmobil, „flat‟ processing techniques have been added

to the above-mentioned, combined in-depth syntactic/semantic analysis. Input which cannot

be handled in the latter way is sought handled through a spotting technique which attempts

to capture the central pieces of information from the word hypothesis graph, such as

dialogue act and date. Foreign language schemata are then used to produce the translation.

The Verbmobil dialogue manager may tell users to speak louder and can initiate

clarification dialogues with users when receiving, for instance, inconsistent user input, such

as “30 February”, or contradictory temporal information, such as “in the morning at 4

o‟clock in the afternoon”.

In the second phase of the project (1997 -), the system‟s application domain is being

extended, more language pairs are being added and use of Verbmobil for distance working

will be tested. An example dialogue is provided in Figure 1.8.

Figure 1.8. Dialogue with Verbmobil.

1.3.2 COMMERCIAL SYSTEMS

Current commercial interactive speech systems are still highly limited in their

interactive capabilities. Still, these systems are able to carry out routine tasks that were

previously done by humans, thereby generating significant savings in the companies or public

institutions that install them. Such systems are now achieving significant real-world

applications in large markets such as banking, finance, insurance, travel, leisure, PTO

markets and market research [Blyth and Piper 1994].

A: I guess we should meet in September. How about Friday the first of September.

B: (mouse click) Montag wäre mir lieber (mouse click).

Verbmobil: I would prefer Monday.

A: OK, so Monday the third. That's fine with me. What about 11 o'clock?

B: (mouse click) Gut, wir treffen uns dann in meinem Büro (mouse click).

Verbmobil: OK, so then we meet in my office.

 21

Early commercial systems: Bell, AT&T

Let us first mention a number of commercial interactive speech systems which are not

yet „advanced‟ in our sense but which show lines of development towards such systems. In

1989 Bell Northern Research began deploying 'Automated Alternate Billing Services'

through local telephone companies in the USA, with Ameritech being the first. The system

rang customers, told them they had a collect call, and asked whether they would accept the

call. Using a very small vocabulary (yes/no and some synonyms), the system successfully

completed about 95% of the calls that were candidates for automation [Bossemeyer and

Schwab 1991].

In 1992, AT&T introduced a service to automate the other end of the transaction,

allowing customers to place collect calls, use a calling card, order a person-to-person call, or

place bill-to-third-number calls. User trials were considered successful, not just from a

technical standpoint, but also because customers were willing to use the service [Franco

1993]. By the end of 1993, it was estimated that over 1 billion telephone calls each year

were being automated by this service.

Key differences between the two systems are that the latter introduced word spotting

and barge in technologies. Word spotting allows keywords to be recognised in the midst of

additional acoustic material. Barge in (also known as talkover or echo cancellation), allows

users to speak and be recognised while the system is playing a message. A small but growing

number of interactive speech services using these technologies have now been trialled by

PTOs, mostly in the USA. These have focused on areas such as voice dialling and directory

assistance call completion. NYNEX thus has a system called VOIS in their public telephone

system since 1990. It uses automatic speech recognition to identify the number (the system

asks for the number) that the customer has dialled but that for some reason was not valid or

working. The system gives a spoken message why the connection did not occur [Ortel

1995].

Advanced interactive speech systems: SPEECHtel, Operetta, Philips

The following systems illustrate the gradual emergence of advanced interactive speech

systems.

SPEECHtel, developed by Vocalis, partly demonstrates advanced interactive speech

technology because it uses a combination of speaker dependent and speaker independent

technology. SPEECHtel is a voice dialling system which allows telephone users to place

calls by speaking the name of the person they want rather than keying in their telephone

number. The system maintains personal directories for each subscriber. However,

SPEECHtel also includes speaker independent capabilities to allow users to speak the

number they wish to dial or navigate through a range of value-added services, such as voice

messaging and network feature control. The system works across both fixed and mobile

telephone networks. SPEECHtel systems are currently being trialled by a number of

European network operators [http://www.vocalis.com/pages/products/spchtel.htm].

As advanced interactive speech systems approach current limits, such as those of

speech recognition technology or of manageable task complexity, human backup support

becomes necessary to ensure user acceptability. Operetta from Vocalis combines automation

with human fall-back. Operetta takes messages and handles and routes all incoming calls

 22

automatically. The system interrogates callers to find out who they wish to speak to and acts

appropriately. Operetta allows callers to interact entirely through speech, with no pressing of

telephone buttons, listening to long lists of extension numbers or remembering which

extension number to press. Combining automation with human fall-back liberates

receptionists or secretaries to perform other tasks. Operetta handles many simultaneous

incoming calls and continues on its own when the receptionist has gone home

[http://www.vocalis.com/pages/products/operetta.htm].

Perhaps the most impressive advanced interactive speech system in current operation

in Europe is the Philips train timetable information system [Aust et al. 1995. Aust and

Oerder 1995]. A demonstrator has been in operation and publicly available in Germany since

February 1994 on telephone number +49 241 604020. Since January 1996, Swiss Rail

commercially operate a descendant of the Philips system on telephone number +41 157

0222. Another descendant of the Philips system is being developed in the Netherlands and is

expected to be in operation before the end of 1997 [Strik et al. 1996].

The Philips system provides information on train connections between 1200 German

cities. The system runs on a DEC AXP PC (275 MHz) and is accessed over the telephone. It

is a real-time, speaker-independent continuous speech understanding system which speaks

and understands German with a vocabulary of about 1850 words. The system has five main

components: speech recognition, speech understanding, dialogue control, database and

speech output generation.

The Philips PHICOS system is used for speech recognition. It uses Hidden Markov

Models with continuous mixture densities, six-state left-to-right phoneme models for a total

of 40 phonemes, and a tree-organised beam search. As output the speech recogniser

produces a directed acyclic word graph whose nodes represent points in time and whose

edges are labelled with a word and an accompanying acoustic score. Each path through the

graph represents a sentence hypothesis. The word graph is passed on to the speech

understanding module whose task it is to find the best path through the graph and determine

its meaning. The meaning it attempts to determine is something which can serve as the basis

for a database query, such as „from cityA to cityB‟. Other parts of the input utterance are

not subjected to further processing. This makes it easier to deal with incorrect grammar or

insufficiently recognised utterances. The understanding module transforms the word graph

into a concept graph which has concepts along the edges instead of words. A stochastic

context-free grammar is used to add probabilities and model the concepts. An attribute

grammar is used to determine the meanings of concepts. In the dialogue control module,

most aspects of automatic inquiry dialogues, such as questions, slot definitions and

verification phrases, are specified in a declarative way. An interpreter takes care of the

selection of appropriate questions to the user in cases of ambiguity, contradiction etc.,

handles the results from the speech understanding module and creates a database query. The

database is the real one from German Rail although the system is not connected with the

official information service of German Rail. Results from the database and questions to users

are passed to the speech output component in the form of complete written sentences.

Speech output is produced by concatenating pre-recorded words and phrases corresponding

to the input to this component.

 23

By 1995 more than 10.000 dialogues had been collected. Approximately one third of

these could not be used for evaluation because people only played with the system. Of the

remaining two thirds, 10% seemed to consist of real requests while 40% had been performed

by users who apparently just wanted to try the system. For the remaining 50% it cannot be

decided which of these two possibilities are actually the case. The transaction success rate,

i.e. the percentage of users who received the information they asked for, averages about

80% for these three groups. One quarter of the remaining calls failed due to poor

recognition performance and the rest because of train stations that were not in the

vocabulary. An example dialogue is provided in Figure 1.9.

Figure 1.9. Dialogue from field test of Philips‟s German train timetable

information system. Translated from the German.

Why advanced interactive speech systems did not come on the market earlier

Many have speculated why advanced interactive speech has not become commercial

reality much earlier and faster than is actually the case. The linguistic problems involved

have been addressed for decades with far more sophistication than is actually needed. And

speech researchers have claimed for more than a decade that sufficient-quality speech

recognition was just around the corner. We do not profess to fully explaining this

phenomenon. However, it seems to be a fact that sufficient-quality, speaker independent

System: Good morning. This is the automatic time-table information service. How can I help

you?

Caller: Good morning. I need a connection from Hamburg to Munich.

System: When would you like to go from Hamburg to Munich?

Caller: Next Friday, er, at eight o‘clock.

System: So you want to travel on Friday the 23rd of September at 8 am?

Caller: Exactly.

System: There is the following connection: with Intercity Express 793, departure from

Hamburg at 8:02, arrival in Munich at 14:05. Would you like me to repeat the

connection?

Caller: No, but I need a train for the return trip on Sunday.

System: At what time would you like to go from Munich to Hamburg on Sunday the 25th of

September?

Caller: I have to arrive in Hamburg late in the evening.

System: So you want to arrive in Hamburg between 8 pm and 11 pm?

Caller: Yes.

System: There are three connections. This is the first one: with Intercity Express 880,

departure from Munich at 15:54, arrival in Hamburg at 21:58. Would you like me to

repeat the connection?

Caller: No, thank you.

System: Would you like the next connection?

Caller: No, thanks, this one is fine.

System: Do you need another connection?

Caller: No.

System: I wish you a pleasant journey. Thank you for calling. Good bye.

 24

continuous speech recognition was not just around the corner ten years ago but has only

recently become feasible in commercial applications. Many linguists still consider speech as a

form of incorrect language, to the extent that the title of a panel at the COLING „96

conference was “Is Speech Language?” [Mariani and Krauwer 1996]. We have seen

(Section 1.1) that there is still no consensus with respect to how to optimise grammars and

parsing for advanced interactive speech systems. Moreover, building advanced interactive

speech systems remains expensive and risky. Much will be gained when reasonably versatile

hardware and software platforms which could support the development and maintenance of

larger families of applications, start to become available. For instance, it can be a difficult

commercial proposition to first develop, at high cost, an interactive speech system that

provides access to a database and then have to incur further high costs whenever the

database has been updated in ways that require modifications to be made of the interaction

model.

Even given the advent of versatile platforms, and with the problem of sufficient-quality

speech recognition practically solved, the absence of principled linguistic approaches to

speech processing and many unsolved issues in interaction model development and

evaluation will continue for some time to make life hard on commercial developers (see

Section 1.4).

User familiarity is another important factor. Consumers are now getting used to voice

response inquiry services. The next step may be that users become familiar with systems that

replace the voice response technology with single-word commands, such as in some of the

systems mentioned above or in the European Union‟s MAX system which had a vocabulary

of 16 words and could inform users on ECU exchange rates, basic statistics, ECHO latest

news, ECHO calendar, European Community programmes, concepts in information

technology, European Community institutions and European Community press offices

[MAX 1991]. As such interfaces become as common as they will ever be, consumers may

well start demanding the kind of capabilities that only advanced interactive speech systems

can provide. This demand could be the "user pull" that will be more successful than any

"technology push" in getting advanced interactive speech systems to the market (Lyn Bates

in [Ostler 1996]). The fact that user acceptance depends on what customers are used to and

like was highlighted in an investigation made by NYNEX Science and Technology [Basson

et al. 1996]. Based on the Wizard of Oz simulation method, a number of field trials were

carried out to assess the feasibility of speech recognition for telecommunications services.

Several applications were explored including directory assistance call completion, partial

automation of directory assistance, banking over the telephone and partial automation of a

Customer Call Centre. The results suggested that speech applications would be most

successful when deployed with novel services or with touch-tone services that had achieved

only limited success, whereas the replacement of a successful touch-tone system with an

interactive speech system tended not to be well received by users.

Another important point is that marketing is at least as important, perhaps even more

important, than technical capability. User acceptance depends heavily on many factors that

have little to do with the interactive capabilities of the system, such as whether the time to

produce an answer is predictable, or how easy the system is to configure and update, (Lyn

Bates in [Ostler 1996]). This is also reflected in the following remark:

 25

 “From a commercial perspective, the success of a spoken dialogue system is

only slightly related to technical matters. The key to commercial success is

marketing: how a system is advertised to the end-users, how the system presents

the company to those end-users and how smoothly errors are being handled. I

have, for example, seen trial systems with a disgracefully low word accuracy

score receiving a user satisfaction rating of around 95%. I have also seen

technically excellent systems being removed from service due to negative user

attitudes.” [Norman Fraser, personal communication.]

In view of the above, some hesitation among large end-user companies with respect to

whether the time is ripe for introducing advanced interactive speech technologies, is

understandable. It seems likely that the commercial reality of advanced interactive speech

systems, such as the Philips train timetable information application, could help convince

those companies that the technology has become an option for serious and immediate

consideration.

Who prepares systems

We believe that a considerable number of commercial, advanced interactive speech

systems are now well underway to the market place. For obvious reasons of commercial

confidentiality, it is difficult to tell just how many and which systems are being built.

Indications are that systems are in preparation in companies such as IBM, Microsoft, BBN,

Bell, AT&T, Canon, British Telecom, NTT, MITRE Corp., Philips, Lernout and Hauspie

and Vocalis.

1.3.3 ADVANCED TOOLS AND TECHNIQUES

Development of the dialogue component and interaction model aspects of advanced

interactive speech systems is currently under-supported in terms of tools and techniques.

Useful support tools are few and this scarcity also characterises well-described

methodologies and techniques. We briefly describe a number of existing and emerging tools

and techniques that we are aware of.

Wizard of Oz

Wizard of Oz is an experimental prototyping method in which a human (the wizard)

simulates part or whole of the interaction model of the system to be developed and does so

in interaction with users who are made to believe that they interact with a real system. The

method is described in Chapter 5. To our knowledge, Wizard of Oz support tools have so

far been developed for local use only. The following are examples of such tools. ARNE-3 is

a simulation environment with the following main features [Jönsson 1993]: a response editor

with canned texts and templates that are easily accessed through menus; provision of access

to various background systems; presentation of graphical information; an editor for creating

queries to database systems; and an interaction log with time stamps. In the Dutch

SCHISMA project a simulation environment was developed which supports the wizard

through multi-window presentation of information. One window shows the dialogue

between wizard and subject and has a pop-up menu that provides standard utterances; a

second window has a form for querying the database and shows the result of the query. A

 26

menu in this window allows the wizard to select utterances containing slots that can be filled

with data from the database query; a third window, the dialogue control window, allows the

wizard to choose the states to go to from the current state of the dialogue [Andernach and

Buis, unpublished]. Palantype is a special keyboard designed to increase the wizard‟s speed

when keying in user input [Newell et al. 1991]. For the user test of the Danish Dialogue

System we created a tool which enabled the wizard to use abbreviations for, i.a., airports

when keying in user input. A second tool corrected typos and turned the user‟s input into

something which could have been recognised by the real recogniser (see Section 8.2.2).

Corpus handling

Several tools for corpus handling exist. The Text Encoding Initiative (TEI) is the most

comprehensive tool in existence for the representation of text including transcribed speech.

TEI includes a formalism and guidelines on how to use the formalism (see Chapter 7). Other

software tools for corpus handling are: tools for editing, automatic tagging, viewing, and

extracting data for statistical work and other evaluation purposes (see Chapters 7 and 8).

Dialogue model implementation

Several tools exist for the representation and implementation of dialogue management.

DDLTool is a graphical editor which supports the representation of dialogue management

software in the Dialogue Description Language (DDL). CSLUrp is a graphical rapid

prototyping environment which in many respects is similar to DDLTool. CSLUrp is a major

part of the OGI toolkit (see below). A third example of a tool for representing dialogue

management is HDDL [Aust 1996]. In contrast to DDLTool and CSLUrp, HDDL supports

textual dialogue representation. In particular DDL and DDLTool are discussed in more

detail in Chapter 6.

Test and debugging

There are plenty of advanced techniques and tools for debugging and test of software

in general. These include techniques and tools for blackbox testing and glassbox testing, and

various debuggers, such as DDLTool, part of CSLUrp, Gnu‟s C++ debugger and Purify. As

debuggers are not specific to interactive speech systems, they will not be discussed in more

detail in this book.

Evaluation

In the DARPA ATIS collaboration a software tool was developed to automatically

compare a set of canonical answers to those produced by various systems [Bates et al.

1990]. The set of queries to which canonical answers were produced was chosen from a

dialogue corpus. Only such queries were used to which clear and well-defined canonical

answers could be constructed.

Toolkits

The Oregon Graduate Institute (OGI) has recently made a toolkit available on the Web

called the CSLU toolkit. The CSLU toolkit is meant to support a wide range of activities

related to the development of interactive speech systems, including data capture and

analysis, corpus development, research in multilingual recognition and understanding,

 27

dialogue design, speaker recognition and language recognition. The toolkit consists of two

main modules: CSLUsh and CSLUrp. CSLUsh is the programming shell and includes a

collection of core libraries. CSLUrp is, as already mentioned, an authoring environment. The

toolkit includes, among other things, a recogniser, software for answering the telephone and

software for recording speech input. Incorporation of a text-to-speech synthesis system is

promised [Sutton et al. 1996].

Tool/technique development

The above list of tools and techniques is not exhaustive. Useful information on a range

of hardware, software and resources for speech systems can be found at comp.speech

[http://svr-www.eng.cam.ac.uk/comp.speech/FAQ.Packages.html].

In the following chapters, we present some candidate additions to the above list of

tools and techniques. A point which merits emphasis is that transferring research results into

practically useful tools and techniques is a non-trivial exercise in generalisation. Standardly,

the exercise begins with (i) an approach which has proved successful in a single development

process, and (ii) an idea that the approach might be worth generalising into something that

could be useful to other developers. Generalisation then follows a cycle of refinement and

evaluation until the tool or technique in question is deemed sufficiently mature for transfer to

other developers in industry or academia who should be able to use it without the personal

support of its originators. Experience has shown that it is often useful to follow a cycle of

in-house conceptual development and testing involving several development projects;

followed by development and testing in “consultancy mode” at other partners‟ sites and in

industry; followed again by real “transfer” testing and evaluation without interference from

the originators of the tool or technique in question. Only when the latter test cycle yields

satisfactory results, can a novel method or tool be considered a validated improvement on

current practice. Central problems in following the procedure just described are that it (a)

can be very demanding on resources; (b) assumes access to several development projects or

at least to complete records of certain aspects of such projects. Such records rarely exist;

and (c) assumes, at least in the final development stage of a tool or technique, collaboration

by other developers, which can be difficult to attain in the real world.

1.4 UNSOLVED PROBLEMS

Despite unquestionable progress, particularly in those parts of the interactive speech

systems components field which have been delivering commercial applications for more than

a decade, the design, development and evaluation of usable interactive speech systems is

today as much of an art and a craft as it is an exact science with established standards and

procedures of good engineering practice. The route from initial idea through analysis,

requirements specification, design-and-evaluation cycles, prototype development, in-house

and field testing to the final product and its evaluation is replete with unknowns and

development steps that are undersupported in terms of procedures, concepts, theory,

methods and tools. Standard software practices can of course take the development teams

some way forward with respect to domain and task analysis, development languages,

platforms, architectures and modularity, off-the-shelf components and state-of-the-art in

some of the component technologies, such as speech recognisers and synthesisers, testing

 28

conformance with specifications etc. Moreover, a consequence of the increasing

commercialisation of language technologies in general is that evaluation of language and

speech systems is emerging as a scientific sub-discipline in its own right [Hirschmann and

Thompson 1996]. Work on evaluation of interactive speech systems has received significant

stimulation from the ARPA Spoken Language Technology initiative [Galliers and Jones

1993, ARPA 1994], and progress is being made in Europe as well [Calzolari and McNaught

1996]. A major effort in this area is foreseen under the European Union's 5th Framework

Programme for Research and Technological Development which starts in 1998. However,

the unknowns and undersupported development steps are evident from the following list of

examples of unsolved problems that derive from considering primarily the interaction model

development and evaluation cycle. Problems addressed in this book are marked with an

asterisk.

Project requirements and realism

 Can a modular, extensible and reusable architecture be found that will ultimately

warrant the development costs of the first application? What are the minimal

requirements for computational resources of the application?

 How to develop a typology of interactive speech systems which can tell which type of

system to use for which purpose?

 * When should interactive speech be included in an application given its task, domain,

environment, user population, business requirements etc.? Which input speech mode is

needed for the application (single word vs. connected word vs. continuous speech)? Is

word spotting sufficient? Which output speech mode is needed (speech synthesis, pre-

recorded speech)?

 * Should spoken language modalities be combined with other modalities of

information representation and exchange, such as graphics, and additional external

devices, such as pointing devices, and how, i.e. what should be their respective roles

given the task, domain, environment, user population, business requirements etc. of

the application? How useful is graphic lip movement and face synthesis for the

enhancement of speech output understanding? How useful is lip movement

interpretation for the enhancement of speech input understanding?

 How far is an integrated resource containing domain and semantic knowledge needed

and feasible?

Development

 * How to efficiently develop the interaction model taking into account such aspects as

dialogue type, dialogue strategies and minimal interaction model functionality needed

for the application. For instance, should the application have system directed dialogue,

user directed dialogue or mixed initiative dialogue; which type(s) of dialogue history

should it have; does the application need a user model? Answering such questions

requires an applied interactive speech theory which, based on early requirements

specifications, can tell which interaction model aspects are needed for the application.

 29

 * How to create tools for preventing dialogue design problems during early dialogue

design, i.e. prior to implementation?

 * How to guide the choice of words in dialogue?

 How to handle awkward input?

 * How to design system feedback?

 * How to ensure usability and correctness of system communication with its users in

context?

 * What are the efficient error handling mechanisms and strategies that may

counterbalance a less than 100% recognition rate?

 How to make dynamic adaptation within the task structure to the course of the

dialogue?

 * How to decide whether to develop the application using the Wizard of Oz method or

through an implement-test-and-revise approach? What are the trade-offs?

 * What is needed for efficient, cost saving WOZ design?

 Which corpus techniques should be used for rapid characterisation of the domain and

identification of expression variants?

 * Which tools to use for the capture, viewing and analysis of data on user-system

interaction during performance evaluation and diagnostic evaluation anywhere in the

development process?

 Which implementation formalisms to use?

Evaluation

 How to assess the effects of speech recognition errors on spoken language

understanding and dialogue flow?

 * How to evaluate system wordings in dialogue?

 * How to perform diagnostic evaluation throughout the development process

following a rigorous methodology (apart from traditional glass box and black box

evaluation)?

 * How to perform a systematic performance evaluation of the interaction model, i.e.

measurements of the performance of the system in terms of a set of quantitative

parameters, in particular dialogue management performance?

 * How to get beyond crude measures of interaction quality, such as duration, number

of turns and error counts, and identify interaction problems, their types, severity and

remedies?

 * How to evaluate user satisfaction and confidence through questionnaire/multiple

scaling design?

 * How to objectively measure transaction success?

 30

 * How to create general methods and criteria for adequacy evaluation of integrated

interactive speech systems, i.e., methods and criteria for how well a particular system

fits its purpose and meets actual user needs and expectations?

 How to make comparative performance and adequacy evaluation across interactive

speech systems for different tasks?

 How to make correlation of errors, speaker style, politeness etc. with human ratings?

 How to evaluate portability of systems across application domains?

Issues such as the above are shared by developers of interactive speech systems more

or less, depending on the sophistication of the applications they are currently developing.

Solutions to some of them are underway.

The need for a best practice scheme

Whereas we shall only be dealing with aspects of spoken interaction such as those

indicated above, what is ideally needed is a consolidated best practice scheme for the

development and evaluation of advanced interactive speech systems and their components,

thereby establishing the field as a sub-discipline of software engineering. Those needs

include optimising the user friendliness of advanced interactive speech systems which will

ultimately determine their rank among emerging input/output technologies. The lack of a

consolidated best practice scheme continues to generate uncertainty about the potential of

advanced interactive speech systems technologies, their proper domains of application, the

user satisfaction they will create, the cost of producing them and the prospects of starting to

do so, their development time and the quality of products in both absolute and comparative

terms. In June 1997, the authors and colleagues from KTH, Stockholm, LIMSI, Paris, IMS,

Stuttgart, Daimler-Benz, Ulm, and Vocalis, Cambridge have started an Esprit project

(DISC) with the aim of establishing a first best practice methodology for the development

and evaluation of interactive speech systems [http://www.elsnet.org/disc/].

 31

2 SPEECH INTERACTION THEORY

2.1 INTRODUCTION

With the spreading of interactive speech systems technologies, a clear need arises for

theory which may adequately support the development of increasingly sophisticated but still

restricted interactive speech systems. A complete and applied theory of spoken human-

machine interaction would rigorously support efficient interactive speech systems

development from initial requirements capture through to the test and maintenance phases. It

would include support for interaction model development and implementation, appropriate

functionality design, usability optimisation, interactive speech systems evaluation and

maintenance. Above all, such a theory would have to be based on the fact that the

interaction models of today‟s interactive speech systems are all task-oriented, they enable

the system to carry out spoken interaction with users in limited application domains [Smith

and Hipp 1994]. When combined with a basic level of meta-communication, or

communication about the interaction itself, task-orientation is what enables current systems

to successfully undertake spoken dialogue with humans despite their many limitations

compared to human interlocutors. These comparative limitations may be briefly illustrated by

taking a look at spoken human-human communication.

As humans we learn to perform spoken interaction fluently, effortlessly and efficiently

about almost any topic and for almost any purpose. Human-human conversation serves both

to organise social life in general and as the basis for more specific types of interaction, such

as getting others to do something, obtaining information from them, or solving problems

together co-operatively. The ability to perform human-human-quality conversation requires

a large number of skills and other characteristics, as illustrated in Figure 2.1. Spoken human-

computer interaction, on the other hand, is constrained by the conversational limitations of

the computer and rarely has any social function—at least not for the computer. This means

that interaction models for interactive speech systems have to be very carefully crafted in

order to work at all, even within limited domains. In interactive speech systems

development, usability considerations are not a luxury but a dire need. This is one more

reason for developing interactive speech theory.

 Recognition of spontaneous speech, including the ability to recognise

words and intonational patterns, generalising across differences in gender,

age, dialect, ambient noise level, signal strength etc.

 A very large vocabulary of words from widely different domains.

 Syntactic-semantic parsing of the complex, prosodic, non-fully-sentential

grammar of spoken language, including characteristics of spontaneous

speech input such as hesitations (“ah”, “ehm”), repetitions (“could could I

…”), false starts (“on Saturday, no, Sunday”) and non-words (coughs, the

sound of keystrokes).

 Resolution of discourse phenomena such as anaphora and ellipsis, and

tracking of discourse structure including discourse focus and discourse

 32

history.

 Inferential capabilities ranging over knowledge of the domain, the world,

social life, the shared situation and the participants themselves.

 Planning and execution of domain tasks and meta-communication tasks.

 Dialogue turn-taking according to clues, semantics, plans etc., the inter-

locutor reacting in real time while the speaker still speaks.

 Generation of language characterised by complex semantic expressiveness

and style adapted to situation, message and dialogue interlocutor(s).

 Speech generation including phenomena such as stress and intonation.

Figure 2.1. Some of the characteristics of human-human conversation. The list

is not complete nor does it state how the listed capabilities are actually realised

in the human cognitive system. Somehow, the human system is powerful enough

to implement the listed phenomena.

Most spoken or written language interaction theory has so far dealt with unrestricted

human-human conversation and has not clearly focused on task-oriented dialogue. While no

single, unified interaction theory has yet emerged from the various frameworks and

approaches that have been proposed in the literature, parts of these theories and the aspects

of dialogue they cover are potentially relevant to the more limited purpose of establishing a

task-oriented theory of spoken human-computer interaction. This is true of speech acts

theory [Searle 1969], Gricean theory of co-operativity in dialogue [Grice 1975], discourse

representation theory [Kamp and Reyle 1993], plan-based approaches to dialogue [Litman

1985, Carberry 1990], Grosz and Sidner‟s intentional approach [Grosz and Sidner 1986,

Grosz et al. 1989], relevance theory [Sperber and Wilson ***1986 ->1987] and rhetorical

structure theory [Mann and Thompson 1987a, 1987b], among others. However, a theory of

spoken interaction in support of interactive speech systems development and evaluation

cannot simply transfer results from interaction theories which deal with unrestricted human-

human dialogue. Instead, it is necessary to define the level of interaction which current

interactive speech systems are capable of, in order to be able to:

 precisely characterise each individual system including its limitations;

 precisely characterise similarities and differences between current systems;

 support the design and implementation of interactive speech systems;

 define the needs for research and technological development which might help to

incrementally improve the capabilities of current interactive speech systems; and

 facilitate the transfer of relevant results from human-human interaction theories.

A theory with these properties may be characterised as a practical, bottom-up theory

of interactive speech systems. It does not primarily synthesise the existing, often fragile and

conflicting results from spoken human-human interaction theories nor does it primarily aim

at specifying the properties of the ideal interactive speech system which we shall not be able

to build in the foreseeable future anyway. Rather, the theory departs from the properties of

current, comparatively simple interactive speech systems; aims to make sure that these have

been understood before proceeding towards more complex systems; incorporates results

 33

from existing human-human interaction theory only when relevant to the technological state

of the art; and creates the elements of theory needed to support the design of high-level

interaction models for specific interactive speech systems.

This chapter presents steps towards a practical bottom-up theory of spoken human-

computer interaction. The theory provides a set of interaction elements and takes the form

of an incremental task-oriented interaction theory which attempts to anticipate some of the

problems to be addressed in developing successive systems generations. Incrementality

means that novel interaction elements can be added without the rest of the theory necessarily

having to be revised.

Section 2.2 presents a model of the elements of the theory and illustrates these in a

walk-through of a spoken human-computer dialogue. Sections 2.3 through 2.7 presents the

elements in more detail, grouped into the layers context (2.3), control (2.4), language (2.5),

speech (2.6) and performance (2.7). Section 2.8 demonstrates how the theory may be used

in characterising interactive speech systems.

2.2 ELEMENTS OF INTERACTIVE SPEECH THEORY

The goal of interactive speech theory development is to describe the structure,

contents and dynamics of spoken human-computer interaction from the point of view of the

interactive speech system. On the one hand, users should have a pleasant and efficient

conversation, on the other, the theory should have good computational properties and

support systems development.

The theory to be presented is far from complete. It is, rather, an organised conceptual

toolbox of elements at least some of which need to be taken into consideration when

developing today‟s interactive speech systems. We are aware that the elements and their

organisation may be disputed on many points. There simply is no complete, general and

accepted theory yet, and even a structured conceptual toolbox is bound to suffer from not-

fully-analysed relationships between the elements and types of element it proposes.

Conceivably, satisfactory analysis will have to wait until the problem space posed by

interactive speech systems development has been explored in much more depth than is

currently the case.

Still, there is emerging consensus on several issues, and a number of concepts and

techniques have proved useful to the building of interactive speech systems. Figure 2.2

shows a model of the elements of an interactive speech theory. The elements all appear

important and sometimes necessary to the design and construction of interactive speech

systems. The model will be used as reference throughout this book. The model is software-

oriented, focusing on the objects or elements that go into the system. Hardware, including

telephones and microphones, is not included and the same holds for the user‟s physical work

environment. From the point of view of the model, these aspects belong to the many other

constraints that have to be taken into account during interactive speech systems specification

(see Section 3.2). In explaining the model below, we shall focus on the elements that are

most relevant to the dialogue component and, more generally, to the interaction model of

interactive speech systems.

 34

Speech Input
Acoustic models

Grammar
Prosody

Intentional Structure
Tasks

Communicat ion types
Interact ion level

Interaction History
Linguistic

Topic
Task

Performance

System Utterances
Lexicon

Grammar
Semantics

Style

User Utterances
Lexicon

Grammar
Semantics

Style

Domain Model
Data
Rules

Linguistic Structu re
Speech acts
References

Discourse segments

User Model
Goals
Beliefs

Preferences
User group
Cognition

System Performance
Cooperat ivity

Init iat ive
Influencing user behaviour

Speech Output
Coded speech

Parametric speech
Prosody

C
o

n
te

x
t

C
o

n
tr

o
l

L
a
n

g
u

a
g

e
S

p
e
e
c
h

P
e
rf

o
rm

a
n

c
e

Attentional State
Focus

Expectat ions

Figure 2.2. Elements of an interactive speech theory. Element types are shown

in boldface. The grey band and grey boxes reflect the logical architecture of

interactive speech systems (see Figure 1.2).

The elements of Figure 2.2 may be used to construct high-level models of interactive

speech systems and explain their behaviour. We shall refer to the model in Figure 2.2 as the

basic speech interaction model. The model exhibits two modes of organisation:

First, the elements have been organised into five layers. At the bottom of the figure,

the context layer includes aspects of the history of interaction, domain model and user

model. At the level above the context layer, the interaction control layer includes states of

attention as well as the structures defined by the interlocutors‟ intentions and structural

aspects of the linguistic exchanges. System control is largely based on structures at this

level. The following, language layer describes the linguistic aspects of interaction. Then

 35

follows the acoustic layer which includes the transformations between speech signals and the

symbolic expressions of language. Finally, the performance layer is a function of the other

layers taken together and includes some general aspects of the system‟s behaviour.

Secondly, the grey band in Figure 2.2 indicates the overall processing flow among the

various types of element - input, intention and attention, output and performance - in a

context defined by contextual elements. Developers often refer to elements or element types

in terms of the corresponding system modules, such as the recogniser, parser, dialogue

manager, inference engine, text generator and player, system performance being replaced by

an abstraction of the (physical) user (cf. Figure 1.2).

It should be noted that some elements, such as lexicon size, user background and co-

operativity, are in focus only at design time whereas other elements, such as linguistic

structure, interaction history and user goals are run-time constructs which are used

dynamically by the system. In the present chapter, interactive speech theory will be

presented primarily from an operational (or implementational) viewpoint. In Section 2.8 the

theory will be used from a functional viewpoint as a vehicle for characterising interactive

speech systems. In the following chapters, the theory will be used to clarify and structure the

development and evaluation process.

Figure 2.2 reflects a number of interactive speech systems analyses and components

from theories of spoken human-human interaction, including [Carberry 1990, Figure 1.1;

Eckert and McGlashan 1993, Figures 1 and 2; Smith and Hipp 1994, Figure 3.3; Grau et al.

1994, Figure 1; Jönsson 1993, Figures 7.1 and 7.2; Zue 1994; Aust et al. 1995; Grosz and

Sidner 1986; Bunt 1994]. Given these origins, it is clear that the concepts used in the model

have been drawn from widely different disciplines, such as linguistics, computer science and

cognitive science.

2.2.1 AN INTERACTION WALK-THROUGH ILLUSTRATING THE ELEMENTS

Following the flow organisation of Figure 2.2, we begin by exemplifying the elements

in a walk-through of a human-computer dialogue from the user test of the Danish Dialogue

System (Figure 2.3). Throughout this section, the system refers to the Danish Dialogue

System and not to interactive speech systems in general. Since the flow model links elements

that are related in many different ways, a flow model walk-through might start at different

points.

 36

Figure 2.3. A dialogue from the user test of the Danish Dialogue System

(translated from the Danish). The user interacts with the system for the first

time. Turn numbers refer to the transcription of the dialogue with subject (or

user) number 13 [Dybkjær et al. 1996]. For ease of reference the turns are sub-

divided into utterance units. For instance, “S1” is the first system turn which

consists of two utterance units (S1a) and (S1b), and the user‟s answer is turn

“U1” which consists of one utterance unit (U1a).

 S1a Hello, this is the DanLuft

reservation system.

 b Do you know this system?

 U1a Nope, I don’t. No.

 S2a The system can reserve

tickets for Danish domestic

flights. You use it by

answering the system’s

questions. In addition you

may use the two special

commands repeat and change to

have the most recent

information repeated or

corrected. The system will

only understand you when you

answer its questions briefly

and one at a time.

 b Please state your customer

number.

 U2a The customer number is 4.

 S3a Customer number 4.

 b How many persons will travel?

 U3a Two persons, one adult and

one child.

 S4a One person.

 b Please state the id-number of

the person.

 U4a It was not one person, it was

two persons, one adult and

one child.

 S5a Id-number 1, Jens Hansen.

 b Where does the journey start?

 U5a Change.

 S6a First person, id-number 1.

 b Is that correct?

 U6a No, id-number 4.

 S7a Id-number 4, Marie Hansen.

 b Where does the journey start?

 U7a From Copenhagen.

 S8a From Copenhagen.

 b Where does the journey end?

 U8a Karup.

 S9a To Karup.

 b Do you want a return ticket?

 U9a No thanks.

 S10a On which date will the

journey start?

 U10a The 11
th
 of February.

 S11a Saturday the 11
th
 of February.

 b At which time?

 U11a Around noon.

 S12a Sorry.

 b I did not understand.

 U12a Around noon, 11:50.

 S13a 11:50.

 b You have now booked one

ticket for id-number 4, Marie

Hansen, from Copenhagen to

Karup on Saturday the 11
th
 of

February at 11:50.

Your reference number is 49.

 c The total price is 680

kroner.

 d The ticket will be available

at check-in desk number 19 in

the airport. Tickets must be

picked up at the latest 20

minutes before departure.

 e Do you want more?

 U13a Yes, please. I would like to

book a similar ticket for one

person.

 S14a Customer number 4.

 b Is that correct?

 U14a Yes.

 S15a How many persons will travel?

 U15a One person.

 ••• (The user now books a ticket

for the second person).

 37

System performance. The interaction model is task-oriented. It assumes that user and

system have a common task, that is, to make flight ticket reservations, and that the aim of

user-system interaction is to perform this task in as rational a manner as possible. System

performance should therefore be co-operative, i.e. the system should enable the interaction

to proceed as efficiently as possible towards the common goal. We shall have more to say

later on co-operativity in general and with respect to dialogues such as the one shown in

Figure 2.3 in particular. For the moment, we leave it to the reader to judge the system‟s co-

operative behaviour.

Initiative. It is clear from Figure 2.3 that the system has the overall initiative in the

dialogue as shown in (S2b, S3b, S4b, …). The system preserves the initiative through

concluding all its turns by a closed question to the user, i.e. a question which asks for a well-

defined piece of information, such as in (S2b). However, the user may take the initiative in

meta-communication. This sometimes works, as in (U5a), and sometimes this does not

work, as in (U4a), cf. on linguistic structure and intentional structure below.

Influencing user behaviour. The dialogue in Figure 2.3 shows some cases in which the

system‟s choice of terms probably influenced the user‟s own choices, such as „persons‟ in

(S3b) and (U3a) and „person‟ in (S4a-b) and (U4a). The system persistently seeks to

influence the user‟s linguistic behaviour through using words that belong to its input lexicon.

In addition, the user‟s correct use of „change‟ in (U5a) is clearly based on the system‟s

instruction in (S2a).

Speech input. An effect of the way the system‟s speech recogniser works can be seen

in (U4a-S5a). The speech recogniser expects the user to either provide an id-number (cf.

S4b), that is, a number, or to say „change‟ or „repeat‟. The recogniser misrecognises (U4a).

The actual words used are not among its active acoustic models and the grammatical

constructs are neither in the active nor in the passive part of its grammar. The misrecognised

word string, however, still contains three of the four numbers provided but the parser only

selects the final one of these, thus making its own contribution to the misunderstanding. The

speech recogniser is not sensitive to prosody in the dialogue in Figure 2.3.

User utterances. Although the recogniser gets (U3a) completely right, the semantic

analysis fails by wrongly choosing the final „one‟ as the semantic value for the expected

number of persons. The problem is caused by the grammar which does not accept

conjunctions. In (U3a) it would also be difficult for the system to decide if there are four or

just two persons who are going to travel because the grammar does not handle co-ordinates.

The word „noon‟ (U11) is not in the lexicon. The general style of the user‟s utterances is

rather terse as required by the system in (S2a). Exceptions are (U4a) and (U13a) which are

misrecognised or only partially recognised.

Attentional state. The system focus set comprises the current sub-task, i.e. the one

addressed by the system in its latest question and which the user is expected to address in

the next utterance, and the user-initiated meta-communication tasks. Based on the system

focus, expectations concerning what the user will be saying next assist the system in

choosing which sub-set of the acoustic models, the lexicon and the grammars will be used by

the recogniser and the parser in decoding the subsequent user utterance. The

misunderstanding following (U4a) was partly caused by inadequate system expectations.

 38

Intentional structure. The global structure of the dialogue is defined in terms of tasks,

such as „reservation‟ (S2b…S13d), which in their turn include a number of sub-tasks, such

as „customer‟ (S2b…S3a) and „route‟ (S5b…S9a). Note how some tasks, such as „delivery‟

(S13d), do not always require user turns. In the dialogue in Figure 2.3 the reason is that the

user has no choice but must pick up the tickets in the airport. If the journey starts more than

three days later the user may choose to have the tickets mailed. Domain communication is

communication about the task domain and occupies most of the dialogue in Figure 2.3. As

we have seen, users may at any point initiate meta-communication to resolve

misunderstandings or lack of understanding by using one of the keywords „repeat‟ and

„change‟. Contrast, for instance, the system‟s reactions to (U4a) and (U5a). The system

ignores the user‟s meta-communication intention in (U4a) but recognises that intention in

(U5a). The system may initiate meta-communication as well, for instance by telling the user

that it did not understand what was said (S12a-b). In addition, the dialogue illustrates

several phenomena which cannot be characterised as either domain communication or meta-

communication, such as the opening greeting “Hello” (S1a), the information about the

system itself (S1a, S1b, S2a), and the expressive “Sorry” (S12a). The dialogue in Figure 2.3

does not show many cases of the system deviating from its standard level of interaction.

However, following the „change‟ command (U5a), the system descends to the more

cumbersome, but safer, level of asking for explicit confirmation (S6a-b).

Linguistic structure. At a primitive level, the system distinguishes between two types

of user speech acts: commands and statements. User input in terms of one of the keywords

„change‟ (U5a) and „repeat‟ is interpreted as commands. All other user input is considered

as statements in response to factual system questions. With respect to reference resolution,

the system handles simple ellipses, such as “From Copenhagen” (U7a) and “Karup” (U8a).

The system does not use discourse segmentation information.

Interaction history. The linguistic history is primitive and only records the Boolean

contents, i.e. the semantics but not the exact wording, of the latest system utterance in order

to correctly interpret users‟ “yes” and “no” utterances. For instance, the analysis of (U9a)

needs to establish whether “no” means one-way or return. In a different situation, the system

might have asked “One-way ticket. Is that correct?” The topic history records the order of

sub-tasks treated during the dialogue and is used in handling repair and clarification meta-

communication as in (U5a). The task history stores task-relevant information provided by

the user as well as information retrieved from the database. This information is used in the

summarising feedback (S13b) and when actually booking the ticket in the flight database,

although the current system does not carry out any “real” booking. The system does not use

a performance history.

Domain model. The system‟s data is consulted after each task-relevant answer from

the user. For instance, the system checks that the customer number (U2a-S3a) and the route

(U7a-S9a) exist. Additional rules define world knowledge that is necessary to the semantic

interpretation, such as how to infer the day of the week from a date (S11a).

User model. The user is assumed to only have the goal of making a reservation as is

made clear in (S2b). The system models the user‟s beliefs via a status field for each

information item. For instance, when starting the second reservation task (S14a), the system,

 39

using the task history, assumes that the user believes the customer number to be the same as

in the previous reservation task and asks for confirmation (S14a-b) instead of asking anew

as in (S2b). Had the user‟s answer to the return ticket question (S9b) been “yes”, the system

would have asked if the user has a preference for discount fares and their associated

departure times. A model of the user serves to guide adaptation to users during the dialogue.

Thus the system‟s introduction (S2a) provides information to the users who lack expertise

with the system (S1b, U1a). In (U4a) the user forgets to use the keyword „change‟ for repair

meta-communication, probably due to cognitive overload after the misrecognition in (S4a).

System utterances. These are constructed using a simple grammar that concatenates

pre-defined words and phrases. For instance, (S3a-b) is a concatenation of the four words

and phrases „Customer number‟, „four‟, „period‟ and „How many persons will travel?‟

(“period” inserts a short pause). No lexicon is used. The system uses a terse and direct style

of expression.

Speech output. The system‟s output speech is coded as references to pre-recorded

phrases that are simply replayed. However, as a recording of system output would have

shown, and despite the fact that care has been taken to record phrases uniformly and with an

even voice, prosodic patterns are impossible to get completely right with today‟s

concatenation technology.

We now proceed to presenting the elements in more detail, following the layered

model in Figure 2.2. As said earlier, the layered elements concern development-time as well

as run-time issues. We shall focus on the topics that are central to this book and occasionally

defer further discussion to the appropriate chapters.

2.3 CONTEXT

Context is of crucial importance to language understanding and generation and plays a

central role in interactive speech systems development. The context provides constraints on

lexicon, speech act interpretation, reference resolution, task execution and communication

planning, system focus and expectations, the reasoning that the system must be able to

perform and the utterances it should generate. Contextual constraints serve to remove

ambiguity, facilitate search and inference, and increase the information contents of

utterances since the more context, the shorter the messages need to be [Iwanska 1995].

Specification of context is closely related to the specific task and application in question. In

a sense, each element is part of the context of each other element.

In this section, we review the three generic contextual elements of Figure 2.2:

interaction history, domain model and user model. The interaction history is primarily

relevant to the local discourse and used in the dynamic run-time model; the domain model

represents the world context in the run-time model; part of the user model is used at run-

time whilst other parts are used at development-time only.

 40

2.3.1 INTERACTION HISTORY

An interaction history is a selective record of information which has been exchanged

during interaction. It is useful to distinguish between at least four types of interaction

history.

The linguistic history records the surface language, its semantics and possibly other

linguistic aspects such as speech acts and the order in which they occurred. The linguistic

history encapsulates the linguistic context and is necessary in advanced systems in which the

linguistic analysis is no longer context free. For instance, the capture of surface language is

needed in cross-sentential reference resolution.

The topic history records the order in which sub-tasks have been addressed. The topic

history encapsulates the attentional context and is used in guiding system meta-

communication.

The task history stores the task-relevant information that has been exchanged during

interaction, either all of it or that coming from the user or the system, or some of it,

depending on the application. The task history encapsulates the task context. It is used in

executing the results of the interaction and is necessary in most interactive speech systems.

The task history may be used in providing summarising feedback as in the Danish Dialogue

System.

The performance history updates a model of how well interaction with the user is

proceeding. The performance history encapsulates the user performance context and is used

to modify the way in which the system addresses the user. Thus the system may be capable

of adapting to the user through changing the interaction level.

2.3.2 DOMAIN MODEL

The domain of an interactive speech system determines the aspects of the world about

which the system can communicate. The system usually acts as front-end to some

application, such as an email system or a database. The domain model captures the concepts

relevant to that application in terms of data and rules. For instance, during domain-related

interaction the system evaluates each piece of user input by checking the input with the

application database and/or already provided information stored in the task history.

Information retrieved from the application, or provided earlier but to be used now, is

checked with the user. The domain model usually has to include both facts and inferences

about the application and general world knowledge. Among other things, the system‟s

database contains explicit facts on flight departures, rules stating that the out date must be

the same or earlier than the return date, and inference patterns enabling the system to infer

dates from input such as “today” (date completion).

A vast literature of general relevance to domain modelling has been produced in

disciplines such as artificial intelligence, knowledge bases and expert systems, see [Russell

and Norvig 1995]. The interested reader is referred to this literature. Clearly, domain

modelling for a particular interactive speech system depends heavily on the application and

domain in question (cf. Section 3.2). It may be noted that there is a tendency in the more

recent literature, e.g. [Gasterland et al. 1992, Christiansen et al. 1996] to relate application

knowledge representation techniques more closely to interface development. Such integrated

 41

use of the domain model of an interactive speech system can be seen, for instance, in [Smith

and Hipp 1994]. Their system, the Circuit-Fix-it-Shop, provides problem solving assistance

for the repair of electronic circuits. Domain model and tasks are described in declarative

logic. Problem solving is executed via theorem proving and the dialogue is driven by the

proofs. The spoken language interaction supplies missing actions. In this case, the entire

interaction model is in some sense controlled by the domain model. Proofs may be

interrupted, suspended and reopened, and the paradigm that proofs-are-tasks-are-dialogue

issues the domain with a central and natural role in the interaction model.

2.3.3 USER MODEL

User modelling is important in interactive speech systems development. The better the

system can take aspects such as user goals, beliefs, skills, preferences and cognition into

account, the more co-operative the system can be [Gasterland et al. 1992]. The general

fragility of current speech systems means that they must be particularly carefully crafted to

fit the behaviour of their users. Still, even if the subject of user modelling is huge in itself it

represents but a single corner of speech interaction models.

At run-time, user goals determine which tasks and sub-tasks the system actually has to

execute among those that the system is capable of performing. In the Swiss Rail system

***Rail [Peng and Vital 1996], for instance, the user is assumed to just have one overall

goal, namely to obtain train timetable information. Other systems may be capable of

satisfying several different general user goals, such as checking emails over-the-phone and

consulting an appointment schedule.

The system should model relevant user beliefs, i.e. what some or all users believe to be

true of the system, the domain and relevant states of affairs in the world. Figure 2.4

illustrates how crucial a proper understanding of user beliefs can be. After the feedback in

(S26a), the Danish Dialogue System assumes that the user accepts the fed back information

unless the user subsequently applies the „change‟ command. However, the consternated user

forgets about the command since the fed back id-number is right but the name is wrong. The

user then interprets the system‟s “Sorry” (S27a) as an acceptance of (U26a) whereas what

the system actually meant was “I did not get any relevant information from your utterance”.

The system should have said (in S27a), for instance, “Sorry, I did not understand. Where

does the journey start?” to make sure that the user shares the system‟s beliefs about the

exchange. A system introduction to interaction (cf. Figure 2.3) is a useful vehicle for

modifying the user‟s expectations with respect to the interaction. More generally speaking,

interaction model developers should be prepared to anticipate, sometimes even false, user

expectations of many different kinds: concerning the interaction, domain facts, the world etc.

 42

Figure 2.4. The importance of taking relevant user beliefs into account

illustrated from a dialogue with subject number 13. The user later reserved a

correct ticket but the faulty one was not deleted.

User preferences are options preferred by all, or some, users, such as to let departure

time depend on discount availability (domain related), to perform the interactive task in a

certain order, or to have the initiative during interaction (interaction related). The latter

preference, like many user preferences, may be regarded as a soft constraint, i.e. a constraint

that may be ignored at development time if harder constraints have to be satisfied.

User groups represent relevant classifications of potential users. The novice-expert

distinction is one such classification. User expertise may be characterised along two

dimensions: domain novice/expert and system novice/expert. With respect to systems for

everyday use, most users can be considered experts to some degree. Thus, most users

involved in the development of the Danish Dialogue System were used to book flight (or

other forms of transport) tickets. In comparative terms, these users were domain experts

although not at the level of travel agents, but they had never before interacted with an

interactive speech system. As these users were representative of the intended user

population, the system provided little domain help and sought instead to make clear how

users should interact with it. In addition to these novice-expert distinctions among users,

many other user groupings may have to be taken into account by interactive speech systems

developers, for instance distinctions between users from different professional communities,

between native and non-native speakers, or between speakers of different dialects. To deal

with the latter, the recogniser may apply dialect and language adaptation/identification

[Dobler and Ruehl 1995, Hazen and Zue 1994], or do as the Swiss Rail information system

does when communication fails: ask the user “Bitte Hochdeutsch sprechen!” (“Please speak

High German!”).

In addition to user properties such as those mentioned above, developers should keep

in mind that users have to perform rapid, situation-dependent cognitive processing during

interaction and that users‟ capabilities of doing so are severely limited. In U26a (Figure 2.4),

the user should have said “Change” according to the instructions provided in the system‟s

introduction. The reason why the user apparently forgot the instruction, is probably

cognitive overload. This suggests that designer-designed keywords, such as „Change‟, are a

liability in interactive speech systems.

2.4 INTERACTION CONTROL

Controlling the interaction is a core function in interactive speech systems. Interaction

control determines what to expect from the user, how to interpret high-level input

structures, consultation of the context elements, what to output to the user, and generally

 S26a Id-number 1, Jens Hansen.

 b Where does the journey start?

 U26a No, it is not Jens Hansen, id-number 1 is Lars Bo Larsen.

 S27a Sorry, where does the journey start?

 U27a In Ålborg.

 43

when and how to do what. Being done at run-time, control builds on structures determined

at development time. The nature of these control tasks implies that control has to operate on

superordinate interaction structures and states. Following [Grosz and Sidner 1986], the

interaction model distinguishes three types of superordinate interaction structure and state.

The attentional state includes the entities in current interaction focus. The intentional

structure addresses the purposes involved in interaction, and the linguistic structure includes

characterisation of high-level structures in the input and output discourse.

2.4.1 ATTENTIONAL STATE

We use the term attentional state [Grosz and Sidner 1986] to refer to the elements

that concern what is going on in the interaction at a certain point in time. The attentional

state is inherently dynamic, recording the important objects, properties and relations at any

point during interaction. The system represents the attentional state as a focus set. The focus

set includes the set of sub-tasks about which the system is currently able to communicate.

The focus set may include all sub-tasks as in the Philips timetable information system

(Section 1.3.2), or only a sub-set thereof as in the Danish Dialogue System. The latter

strategy is used if only a sub-set of the system‟s input vocabulary and grammar can be active

at any one time.

The focus is the topic which is most likely to be brought up in the next user utterance.

For instance, if the system has asked for a departure airport, this topic will be in focus with

respect to the next user utterance. If the user instead provides a destination airport this may

still be understood if included in the focus set.

Expectations may be attributed to the system if not all sub-tasks are in the focus set.

Then expectations serve as a basis for constraining the search space by selecting the relevant

sub-set of the acoustic models, the lexicon and the grammars to be active during processing

of the next user input. If the user chooses to address other sub-tasks than those in the focus

set, system understanding will fail unless some focus relaxation strategy has been adopted.

The more stereotypical the task structure is, the easier it is to define appropriate

expectations provided that the user is co-operative. In the Danish Dialogue System,

information on sub-tasks in system focus is hardwired. This means that expectations are

static, i.e. they are fixed at run-time. This approach will not work for mixed initiative

dialogue because there the user has the opportunity to change (sub-)task by taking the

initiative. When part of the initiative is left to the user, deviations from the default domain

task structure may be expected to occur. In such situations, the system should be able to

determine the focus set at run-time. Mixed initiative dialogue therefore either requires a

dynamically determined focus set or an unlimited focus set.

2.4.2 INTENTIONAL STRUCTURE

We have chosen the term intentional structure [Grosz and Sidner 1986] to subsume

the elements that concern tasks and various forms of communication. These elements all

concern intentions, or goals and purposes. We distinguish between tasks, communication

types, and interaction level. The intentional structure serves to control the transactions of the

system.

 44

Intentions can be of many kinds, such as to obtain information, make somebody laugh,

or just chat, and are in general not tied to tasks. In today‟s interactive speech systems,

however, spoken human-computer interaction is performed in order for a user to complete

one or more tasks. From this task-oriented, shared-goal viewpoint, intentions coincide with

task goals. According to [Grosz and Sidner 1986], an intention I1 is said to dominate

another intention I2 if the satisfaction of I2 contributes to and serves to satisfy I1. And

intention I2 has precedence to I3 if it is necessary to satisfy I2 before it is meaningful or

possible to satisfy I3. Similarly, a task T1 may include a sub-task T2, and T2 may have to

precede T3. For example, to make a flight reservation one must determine, among other

things, a route (origin and destination) and a time. Reservation thus includes the sub-tasks

route and time. Moreover, as it is meaningless to determine the departure time until the

route has been determined, route precedes time. Note that relevant intentions need not show

up during interaction. For instance, one of the system‟s tasks in executing a reservation is to

compute the price of the ticket. Although it might be co-operative to do so, a realistic

application would not necessarily inform the user of the computed price but might simply

store it in the reservation file.

A single interactive speech system may be able to accomplish several different

superordinate tasks. These may all belong to a single domain, such as when the system both

performs ticket reservation and provides information on a variety of travel conditions that

are not directly related to ticket reservation; or the superordinate tasks may belong to

unrelated domains such as the provision of telephone access to email, calendar, weather and

stock exchange information [Martin et al. 1996].

Reservat ion system System known = no: Introduct ion

 Reservat ion Customer number

 Number of travellers

 Traveller id-numbers

 Route From

 To

 Journey = single: Outday

 Outhour

 = return Discounting

 Outday

 Outhour

 Homeday

 Homehour

 Make reservation

 Delivery

 More = yes: Reservat ion

 = no: Close

 45

Figure 2.5. The task structure of the implemented Danish Dialogue System.

Meta-communication tasks are not shown. A labelled box indicates a task. If a

box A contains another box B then B is a sub-task relative to A. At some points

during dialogue the path to follow depends on the user‟s answer to the most

recent system question. In such cases, an answer is indicated as „= [answer]:‟

followed by the tasks to be performed in this case.

We distinguish between well-structured and ill-structured tasks. Well-structured tasks

have a stereotypical structure that prescribes (i) which pieces of information must be

exchanged between the interlocutors to complete the task, and often also (ii) a natural order

in which to exchange the information. If the stereotype is known, shared and followed by the

interlocutors, the likelihood of successful completion of the task is significantly increased.

Stereotypical tasks, even when comparatively large and complex, are well-suited for the

predominantly system directed or user-directed interaction that is characteristic of today‟s

interactive speech systems. An example is the ticket reservation task stereotype of the

Danish Dialogue System shown in Figure 2.5. This structure conforms to the most common

structure found in corresponding human-human reservation task dialogues recorded in a

travel agency [Dybkjær and Dybkjær 1993]. Another example is MERIT [Stein and Maier

1994] in which strategies captured by dialogue scripts suggest or prescribe certain

sequences of dialogue acts. Strategies are global structures that combine speech acts into

larger, meaningful sequences. Strategies correspond to task templates and are domain

dependent and prescriptive.

Ill-structured or non-stereotypical tasks contain a large number of optional sub-tasks

whose nature and order are difficult to predict. An example would be a comprehensive

information system on travel conditions. This system would include many different kinds of

information at many different levels of abstraction, such as fares, general discount rules,

discounts for particular user groups or particular departures, departure times, free seats,

rules on dangerous luggage, luggage fees, rules on accompanying persons, pets etc. In

specifying the Danish Dialogue System we found that a complex information task of this

nature could not be modelled satisfactorily for being accomplished through system directed

interaction. The problem was that a user might want a single piece of information which

could only be retrieved through a lengthy series of answers to the system‟s questions. This

difficulty might be overcome through more sophisticated interaction models, such as the use

of advanced mixed initiative dialogue (Section 9.2) combined with the use of larger active

vocabularies than we had at our disposal.

Given a task-oriented approach to interaction theory, there is a relatively clear

distinction between three types of interaction between user and system. The first is basic,

task-oriented interaction or domain communication, which is what the dialogue is all about.

We illustrate (Section 2.5.3) considerations pertinent to domain communication design

through considering questions and feedback.

The second interaction type is meta-communication which has a crucial auxiliary role

in spoken human-machine interaction. Meta-communication serves as a means of resolving

misunderstandings and lacks in understanding between the participants during task-oriented

dialogue. In current interactive speech systems, meta-communication for interaction repair

 46

is essential because of the sub-optimal quality of the systems‟ recognition and linguistic

processing of spontaneous spoken language. Similarly, meta-communication for interaction

clarification is likely to be needed in all but the most simple advanced interactive speech

systems. We shall have more to say later on this subject (Section 4.2).

Domain communication depends on the domain and the dialogue model. Models of

meta-communication, on the other hand, might to some extent be shared by applications

which are different in task and/or domain [Bilange 1991]. It should be remembered,

however, that meta-communication is often domain dependent, such as in “Did you say

seven o‟clock in the morning?”.

In addition to domain- and meta-communication, most interactive speech systems need

other forms of communication which do not belong to either of these two categories.

Examples were mentioned in the walk-through of the dialogue in Figure 2.3 (Section 2.2),

including opening and closing of the dialogue and communication about the system. We

shall not go into a deeper analysis of these examples.

Finally, the interaction level expresses the constraints on user communication that are

in operation at a certain stage during interaction. At least the five levels listed in Figure 2.6

may be distinguished. The interaction level may require hard constraints to be imposed on

the user‟s vocabulary, grammar and style. In the extreme, the system may ask the user to

spell the input (Level 1). At the other extreme, no constraints on user input exist beyond

those of general user co-operativity (Level 5).

Level Expected input

1 Spell.

How do you spell the name?

The answer is spelled.

„B‟ „e‟ „r‟ „n‟ „s‟ „e‟ „n‟

2 Yes/no.

Do you want a return ticket?

Yes or no.

Yes.

3 Multiple choice. List of acceptable values.

 47

Do you want a one-way or

return ticket?
A return ticket, please.

4 General but focused.

Which day does the journey

start?

Any answer within current focus.

Monday next week.

5 General and unfocused.

How may I help you?

Any answer.

Can I take a cat with me on the flight?

Figure 2.6. Levels of interaction and their influence on expected user input.

The notion of interaction level has been employed in graceful degradation. Graceful

degradation is a strategy for meta-communication according to which the system, in a

stepwise fashion, adds constraints on user input to facilitate comprehension. In the Sundial

project [Section 1.3.1, Heisterkamp 1993] graceful degradation was deployed in this way in

case of system understanding failure. When interaction levels are used for this purpose, the

level of expected input must be made clear to the user. There is not a one-to-one relation

between system phrases and interaction level. For instance, the system‟s “Do you want

more?” which literally is at the yes/no level is pragmatically being interpreted as belonging at

the general and unfocused level.

2.4.3 LINGUISTIC STRUCTURE

The linguistic structure of the interaction includes the elements: speech acts,

references and discourse segments.

The speech act is a basic unit of conversational theory [Searle 1969]. All speech acts

have propositional content, that is, the state of affairs addressed by a particular speech act,

such as “departure at 8 o‟clock”. Instances of different types of speech act may have the

same propositional content. What distinguishes them, and hence what distinguishes different

types of speech act, is what the speakers do with their speech. The departure at 8 o‟clock,

for instance, may be questioned, promised, ordered etc. In the request in S9a in Figure 2.7

“On which date does the journey start?”, the system tries to make the user respond with an

inform statement whose propositional content is a date, which follows in U9a. Speech acts

are often called dialogue acts [Bunt 1994, Stein and Maier 1994] or moves [Carletta et al.

1996a].

 48

Figure 2.7. Segmentation of a dialogue between the Danish Dialogue System

and subject number 2. The segmentation was done for the purpose of illustration

only. „Date‟, „hour‟ and „meta‟ in the left-hand column indicate discourse

segments. Following utterance identification (second column from the left), the

speech act expressed in each utterance is shown in square brackets. [.] is a pause

of less than a second, [..N] is a pause measured in seconds.

What types of speech acts are there? Searle [1969, 1979] identified the five generic

speech act categories shown in Figure 2.8. Useful and even fundamental as these five types

may be, they are not likely to be sufficient for interactive speech systems development

purposes. Although much work has been going on lately on this issue [Dybkjær and Heid

1996], there still is no universally recognised taxonomy of speech acts available at a more

detailed level. The speech acts types which have been added during annotation in Figure 2.7

thus cannot claim any particular status, neither theoretically nor in terms of standardisation.

Still, speech act identification not only constitutes a useful tool for increasing current

understanding of spoken discourse, there is also good reason to believe that speech act

identification by machine will be necessary in future advanced interactive speech

applications. Clearly, it can make a huge difference to the system‟s understanding of, and

action upon, user input whether the user expressed a commitment to book a certain ticket or

merely asked a question.

A particular problem is that speech acts can be indirect as well as direct. In a direct

speech act, the surface language expresses the intended speech act. An indirect speech act is

one in which the surface language used does not disclose the “real” act intended by the user.

For instance, if someone asks if you have a match, it is likely that the question is not being

asked merely in order to be able to record the fact. Rather than being a request for

information, this act is a request for the act of providing fire for some purpose, such as

lighting a candle. Indirect speech acts remain difficult to identify by machine. Several

interactive speech research systems projects have been, or are, wrestling with this problem,

such as Esprit PLUS [Grau et al. 1994] and Verbmobil [Jekat et al. 1995]. We shall return

to this problem in Section 9.2.

Assertives Commit the speaker to something being the case.

E.g. “There is a departure at 8 o‟clock.”

Directives Represent attempts by the speaker to get the hearer to do

date S9a [request] [..3] On which date does the journey start?

 U9a [inform] [.] [Ehm] A Friday.

 S10a [confirm] [..11] Friday the 13 of January.

hour S10b [request] At which time?

meta U10a [request] [..2] Change.

date S11a [inform] [..3] The journey starts on Friday the 13 of

 January.

 S11b [request] Is this correct?

 U11a [inform] No.

 •••

 49

something.

E.g. “Answer the questions briefly and one at a time.”

Commissives Commit the speaker to some future course of action.

E.g. “I would like to reserve a ticket for Copenhagen.”

Expressives Express the psychological state with respect to a state of affairs

specified in the propositional contents.

E.g. “Sorry, …”

Declaratives Bring about some alteration in the status or condition of the

referred object solely in virtue of the fact that the declaration

has been successfully performed.

E.g. “You have now booked one ticket for ...”

Figure 2.8. The five general categories of speech acts according to [Searle

1979].

A typical use of speech acts in interactive speech systems is to arrange them in a

network to control the local exchange structure of the interaction. The computational roles

model (COR) defines the local dialogue structure by sequencing it into dialogue acts (Figure

2.9). The COR model is symmetric with respect to user and system and defines a

hierarchical structure in which atomic dialogue acts are combined into moves. The COR

model has been used in several systems, such as MERIT [Stein and Maier 1994] and

SPEAK! [Grote et al. 1997].

request(A,B)
reject(B,A)

withdraw(A,B)

promise(B,A)

accept(A,B)

withdraw(B,A)

reject(A,B)

offer(B,A)

withdraw(A,B)

withdraw(B,A)
1

2

2'

3
inform(B,A)

4

Figure 2.9. Basic dialogue act network of the COR model [Fischer et al. 1994].

A and B are the participants.

The handling of references (or, strictly speaking, co-references) is a classical problem

in linguistics. The problem is that many different words or phrases can refer to the same

extra-linguistic entity or entities. Basically, language is not about itself, although it can be,

but about something extra-linguistic. This means that expressions referring to extra-linguistic

entities abound in written text and spoken discourse. Often, two or more expressions refer

to the same extra-linguistic entity. Normally, the first occurrence of an expression will make

its extra-linguistic reference quite clear. This is not always true but may perhaps be taken for

granted in practical, task-oriented written text and spoken discourse. However, given that

 50

the first expression has made clear its extra-linguistic reference, language offers many ways

of economising with the following, co-referring expressions, i.e. the expressions which have

the same extra-linguistic reference as the first one. For instance, the system might say

“Should the tickets be sent or will they be picked up at the airport?”, to which the user

might answer, using a pronoun instead of the original noun phrase (the tickets): “They

should be sent”. Humans are very good at resolving co-references, such as the one in the

systems utterance “... the tickets (i.e. the flight tickets around which the entire dialogue has

been evolving)...”. So the system‟s human interlocutor is not the problem. However, current

systems are far from experts in resolving co-references such as the one in the user‟s answer

“They (i.e. the tickets) ...”. So what do they do if they are "realistic" systems like the Danish

Dialogue System and not specifically built to explore co-reference resolution algorithms?

Possibly the simplest answer to the question of the state-of-the-art in co-reference

handling in current realistic interactive speech systems, is that co-reference is not being

handled at all but that the problem of co-reference constitutes one of the many reasons why

many systems perform word spotting or “robust parsing” rather than full parsing of the

users‟ input. The point is that co-reference resolution is hard - and not just for machines.

Among other themes, the 6th Message Understanding Conference (MUC-6) in 1995 dealt

with co-reference evaluation. It was found that human inter-annotator agreement on co-

referring nouns and noun phrases (which is only a sub-set of co-referring expressions) was

so low that the systems being evaluated could not improve much before they went up

against the uncertainty about the applied metric itself [Hirschmann et al. 1997]. However,

with the increased sophistication required of the language processing component in

interactive speech systems for complex, large-vocabulary tasks, co-reference resolution is

becoming a practically important research topic.

Discourse segments are supra-sentential structures in spoken or written discourse.

They are the linguistic counterparts of task structure and in the conversational theory of

Grosz and Sidner [1986], intentions are restricted to those that are directly related to

discourse segments. Each discourse segment is assigned one intention only, the discourse

segment purpose. Furthermore, the intention as determined by the originator of a given

discourse segment must be recognisable by the interlocutors in order to serve as a discourse

segment purpose. Consider the example in Figure 2.7. In utterances S9a through S10a the

purpose of the (date) discourse segment is to fix a date for the start of the journey. With the

confirmation in S10a the system closes the segment and opens a new discourse segment, i.e.

the hour segment, with the request in (S10b). However, the user‟s utterance in U10a does

not continue the hour segment. The system correctly interprets this utterance as a request

for re-opening the date segment, and starts by stating its current information followed by re-

negotiation of the departure date.

The example illustrates that the parts of a discourse segment have particular roles, just

like words in a phrase [Grosz and Sidner 1986]. The request-inform-confirm structure, for

instance, is very common in discourse segments. Other commonly described segment

structures are presentation/acceptance [Clark and Schaeffer 1989] and initiative/response

[Ahrenberg et al. 1995, Carletta et al. 1996a]. LINLIN, a natural language dialogue system,

employs dialogue grammars for such structures to control the dialogue [Jönsson 1993]. The

 51

dialogue grammars are extracted automatically from empirically annotated dialogues (Figure

2.10). Note how the grammar symbols combine dialogue acts and topics.

QD/AD QS/AS

(U 16> I would like a car with a large boot)

QD S 17> How big (litres)?

QS U 18> I don't know

AS S 19> They vary in size from about 200 to 350 litres

AD U 20> I want at least 300 litres

Figure 2.10. Car selling example [Jönsson 1993]. The utterances are annotated

with act/topic pairs. Acts are „Q‟ for query, „A‟ for answer. Topics are „D‟ for

domain, „S‟ for system.

More elaborate relations between discourse segments than just the structural sequence

of speech acts have been elaborated in Rhetorical Structure Theory (RST). RST was

originally developed for written text segmentation [Mann and Thompson 1987a] and later

applied to dialogue systems [Fischer et al. 1994, Stein and Maier 1994]. RST describes

relations between discourse segments hierarchically. An example is shown in Figure 2.11.

Asymmetrical relations obtain between the nucleus which contains highly relevant

information and satellites which contain less significant information. A relation is described

in terms of four fields as exemplified by the following description of the evaluation relation

in Figure 2.11:

 Constraints on the nucleus: the participants may possibly expect a given claim in the

nucleus to be true.

 Constraints on the satellite: the participants either already believe the satellite or will

find it credible.

 Constraints on the combination of nucleus and satellite: agreeing on the satellite will

increase the participants‟ shared belief in the nucleus.

 The effect: The shared belief in the nucleus between the participants is increased.

Other relations are solutionhood, cause, and reject. The extra information provided by

the more elaborate segment relations may be used in the generation of more appropriate

system utterances.

 52

directive (request)

S3-56b: On which date will the journey start?

assert ive (inform)

U3-56a: A Friday.

declarative (conf irm)

S3-57a: Friday the 13 of January

S
O

L
U

T
IO

N
H

O
O

D

E
V

A
L
U

A
T

IO
N

Figure 2.11. Rhetorical structures manually applied to a segment of a dialogue

from the user test of the Danish Dialogue System. Utterances are tagged with

speech act categories which constitute the atomic segments of RST. An arrow

points from a satellite to a nucleus.

2.5 LANGUAGE

Spoken language is very different from written language [Baggia et al. 1994, Waibel

1996]. One of the differences is that people typically do not follow rigid syntactic and

morphological constraints in their utterances (cf. Figure 2.1). This lack of written-language

formality in spontaneous spoken language makes linguistic analysis-by-machine both more

difficult than, and different from, analysis of written language. However, Waibel [1996]

reports that although cross-talk data have lower recognition accuracy (70%) than push-to-

talk data (71% recognition accuracy), the transaction success in terms of speech-to-speech

translation performance is much better for cross-talk dialogues (73%) than for push-to-talk

dialogues (52%). One explanation is that although more different from written language than

push-to-talk speech, cross-talk produces shorter turns that are easier to translate. As argued

in Section 1.1, the corresponding, added difficulties involved in the generation of spoken

language are less pronounced, if only because human interlocutors are much more capable of

decoding the machine‟s spoken messages.

The language layer includes two types of elements: user (input) utterances and system

(output) utterances. The term „utterance‟ is vague - some would say, fruitfully so - such as

in the following definition: an utterance is a coherent, linguistically meaningful message that

a person speaks during conversation [Nofsinger 1991, Traum and Heeman 1996]. We shall

be using the terms „turn‟, „utterance‟ and „utterance unit‟ as follows: a turn is what is being

said by an interlocutor from when this interlocutor starts speaking and until another

interlocutor definitely takes over. A turn may consist of one or more utterance units (or sub-

utterances, cf. Figure 2.3). Capitalising on the vagueness of the term, an utterance is a turn

or an utterance unit. Normally, turns are easily recognised by the machine. Yet problems

remain with the classification of turns which include talk-over and, perhaps, turns which

include very long pauses [Traum and Heeman 1996]. We shall be treating talk-over as

consisting of utterance units overlaid onto somebody else‟s turn. Utterance units are much

more difficult to recognise by machine than are turns, given the non-sentential characteristics

of much of spoken language. It remains to be seen, however, whether this is a difficulty to

be overcome by future progress in spoken language processing or whether the difficulty will

just go away because systems do not need to recognise utterance units anyway.

 53

The elements subsumed by user (input) utterances and system (output) utterances are:

input lexicon, input grammar, input semantics, input style, output lexicon, output grammar,

output semantics, and output style.

2.5.1 USER UTTERANCES

The lexicon is a list of words, a vocabulary, annotated with syntactic (including

morphological) and semantic features. The fact that vocabularies of current interactive

speech systems are still limited, implies that some application domains cannot be addressed

because the required vocabulary is too large. For those applications which may be addressed

as far as their expected vocabulary size is concerned, the problem is to identify the

vocabulary, and hence the lexicon, that the application needs.

Vocabulary identification is part of the larger enterprise of determining the sub-

language for the application, including vocabulary as well as grammar. For the moment,

sub-language identification has to be done empirically through simulation experiments,

domain studies, human-human spoken interaction in the domain and/or field studies of user

interaction with a system prototype.

Convergence is an important measure of success in sub-language vocabulary

development. It means that iterated user-system interactions produce less and less new

words that have to be included in the system‟s lexicon, thus converging on zero which is the

situation in which the system has the vocabulary it needs for the application. Strictly

speaking, convergence is a pragmatic notion. One can always find additional, more or less

out-of-the-ordinary words and phrases which may be used in accomplishing the task and

which the system does not have in its lexicon. For instance, although the Roman Catholic

Saints calendar references were once known in Denmark, still survive in fragments, and can

be used in uniquely identifying travel dates, these references have not been included in the

lexicon for the Danish Dialogue System.

Grammars describe how words may be combined into phrases and sentences. The

input grammar for the application is specified empirically as part of the sub-language

identification process. An important goal in input grammar specification is to include all

intuitively natural grammatical constructs, possibly up to a certain level of complexity, in the

system‟s input grammar. Users will have little patience with a system which does not accept

perfectly ordinary and grammatically simple ways of saying things.

User utterances usually consist of one or several lexical strings or graphs received

from the recogniser. In some systems, linguistic analysis of user utterances is done by

parsers which use grammars derived from written language processing. This is the case in

the Danish Dialogue System (Figure 2.12). The excessive formality of written prose as

compared to spoken language (cf. above) means that the system must apply “robust parsing”

or “error” recovery procedures when the ordinary parsing fails [Music and Offersgaard

1994, Povlsen 1994]. A promising approach to robust parsing is to focus the analysis on

sub-sentences and phrases [Aust et al. 1995].

Input:

Word

String

“Den elvte” (the eleventh)

 54

Lexicon den_1 = { lex=den, dalu=den, cat=det, scat=no,

 defs=def, gend=comm, nb=sing }.

elvte_1 = { lex=elvte, dalu=elvte, cat=ord,

 scat=date, mth=yes, post_comb=no, int=11}.

APSG:

Augmented

Phrase

Structure

Grammar

date_p_1a =

 {cat=date_p}

 [{cat=det, scat=no, nb=sing, gend=comm},

 {cat=ord_p, scat=date}

].

Semantic

Mapping

Rule

date_p_map2a = { sem={day={ones={number=C}}}

 {cat=date_p}}

 [{cat=det},

 {cat=ord_p}

 [{cat=ord, scat=date, int=C}

]

].

Output:

Semantic

Object

day = {ones={number=11}}}

Figure 2.12. Parsing and semantic representation of the user utterance “´Den

elvte” in the Danish Dialogue System [Music and Offersgaard 1994].

Semantics are abstract representations of the meanings of words, phrases and

sentences. We shall not go into issues such as the selection of semantic formalisms for

interactive speech systems or the advantages or disadvantages of carrying out syntactic and

semantic analysis sequentially or in parallel. In the Danish Dialogue System, syntactic and

semantic analysis is done in parallel. Lexical entries are defined as feature bundles including

lexical value, category (determiner, ordinal), semantic category (none, date), gender

(common) and selectional features („elvte‟ can be a month), cf. Figure 2.12. The grammar

has several rules describing the construction of dates. Figure 2.12 shows the rule for forming

a date from a determiner and an ordinal. The semantic mapping rules extract semantic values

from syntactic sub-trees. The figure shows a rule for the extraction of a date from a sub-tree

created from the Augmented Phrase Structure Grammar (APSG) rule example.

In general, style may be analysed in terms of the vocabulary used, which may be

formal or informal, slang etc., sentence length, use of adjectives, figures of speech,

synonyms, analogies, ellipses, references etc. [Jones and Carigliano 1993]. Style is generally

described in terms such as terseness and politeness. In interactive speech systems, user input

style may be considered an important dependent variable which must be influenced through

instruction and example. The aim is to avoid that users address the system in styles that

involve lengthy, verbose or convoluted language, such as when users are excessively polite.

A system introduction to that effect would appear useful in many cases (cf. Figure 2.3).

Influencing user input style by example is done through the system‟s output (see below).

2.5.2 SYSTEM UTTERANCES

The design of system utterances is important to the user‟s perception and

understanding of, and successful interaction with, the system as well as to how the user will

 55

address the system. It is somewhat difficult to distinguish between the effects of output

lexicon, output grammar, output semantics and output style. It seems to be a well-

established fact that the system‟s style of speaking influences the way the user addresses the

system. If the system is overly polite, users will tend to address the system in a verbose

fashion that does not sit well with the need for brief and to-the-point user utterances that can

be handled by current speech and language processing [Zoltan-Ford 1991]. Style is a

function of, among other things, grammar and lexicon (cf. above). It seems plausible,

therefore, that output grammar and output lexicon do influence the grammar and lexicon to

be found in the user‟s input. It follows (i) that the output lexicon should not include words

which the user may model but which are not in the input lexicon; and (ii) that output

grammars should not inspire the user to use grammatical constructs which the system cannot

understand.

The generation of system utterances is determined by elements in the control and

context layers. For instance, the interaction level limits the form of user response expected

and should be made clear in the system‟s utterances (Figure 2.6); the output vocabulary and

language (formal or informal, etc.) is determined by the expected user group; the attentional

state determines the narrowness of system questions (see below); and the interaction level,

references, segment structure and speech acts may dynamically affect the kind and form of

feedback from the system (see below).

System questions differ on a narrow-to-open scale, influenced by the attentional state.

A narrow or focused question concerns a single topic, such as in “Where does the journey

start”, whereas an open or unfocused question invites the user to address a range of different

topics, as in “How can I help you?”. The current version of the Danish Dialogue System

ends the reservation task by asking the question on the left in Figure 2.13. However,

although the intention was to elicit a yes/no answer from the user, many users would take

the opportunity of the system‟s open request to raise any issue lingering on their minds from

the preceding interaction. The system cannot handle such input and it is clear that the more

specific and narrow question on the right is preferable. It does the job needed without

inviting unpredictable user input. In other words, open questions are dangerous and should

only be used in interactive speech systems when the task is constrained enough for the

system to manage whatever the co-operative user may say.

S: Do you want more?

S: Would you like to make

another reservation?

Figure 2.13. An unfocused and a focused system question.

It is useful to distinguish between explicit and implicit feedback (also called direct and

indirect confirmation). In providing explicit feedback the system asks for explicit verification

of the recognised input, whereas in providing implicit feedback the system merely includes

the feedback information in its next turn and immediately carries on with the task. If the user

accepts the feedback, no explicit response from the user is required. The example in Figure

2.14 is adapted from Philips‟s train timetable inquiry system [Aust et al. 1995]. The

drawbacks of explicit feedback are an additional risk of system misunderstanding (the

requested user answer may be misunderstood), and that explicit feedback demands

 56

additional turn-taking. By comparison, however, the implicit feedback (right) makes it easier

for users to ignore the system‟s feedback, a problem also seen in the Danish Dialogue

System. Niimi and Kobayashi [1995] show mathematically that explicit feedback may

increase the probability that information in the user utterance is correctly conveyed, and that

implicit feedback may reduce the average number of turns exchanged.

S: So you would like to go from

Hamburg to Berlin?

S: When would you like to go

from Hamburg to Berlin?

Figure 2.14. Explicit and implicit feedback.

A second distinction is between immediate feedback and summarising feedback. The

difference is shown in the examples in Figure 2.15. On the left, the system provides

immediate feedback. On the right, the route information provided by the user is not

confirmed until the end of the route sub-task (S3a). The two forms of feedback do not

exclude each other (cf. S13b in Figure 2.3).

 S13-7b Where does the journey

start?

 U13-7a From Copenhagen.

 S13-8a From Copenhagen.

 b Where does the journey end?

 U13-8a Karup.

 S13-9a To Karup.

 b Do you want a return ticket?

 S1 Where does the journey start?

 U1 From Copenhagen.

 S2 Where does the journey end?

 U2 Karup.

 S3a From Copenhagen to Karup.

 b Do you want a return ticket?

Figure 2.15. Immediate and summarising feedback.

Concerning the effects of output semantics, in particular, as well as of part of what has

been termed output style above, we shall be much more specific later (Section 4.2). System

co-operativity throughout the interaction is a function of its output semantics and, to a lesser

extent, output style.

2.6 SPEECH

The speech layer concerns the relationship between the acoustic speech signal and a,

possibly enriched, text (lexical string). The relationship is not simple. Speech includes a

number of prosodic phenomena—such as stress, glottal stops, and intonation—that are only

reflected in text in a simplistic manner. Conversely, words and their different spellings as we

know them from text, do not have natural expressions in speech.

Speech recognition must cater for extra-linguistic noise and other phenomena, such as

that the speech rate varies over time, the speech signal is mixed with environmental noise

from other people speaking, traffic and slamming doors, the pronunciation varies with the

speaker, and speech from different participants may overlap, for instance with the system‟s

utterances [Waibel 1996, Baggia et al. 1994].

 57

2.6.1 SPEECH INPUT

The input to the interactive speech system is an acoustic signal which typically, but not

always, represents a spoken utterance. The transformation of the acoustic signal into some

lexical representation, such as a word sequence or lattice, is called speech recognition..

Basically, speech recognition is a mapping process in which the incoming acoustic signal is

mapped onto the system‟s repertoire of acoustic models, yielding one or several best

matches which are passed on to linguistic processing. The dominant speech recognition

technology uses hidden Markov models combined with a dynamic programming technique

[Bahl et al. 1983, Rabiner 1988, Kamp 1992]. The acoustic models may represent, for

instance, triphones (context-dependent phonemes), phonemes, word forms or entire phrases.

For historical reasons, acoustic models are sometimes called word models, but note that the

number of acoustic models used may be very different from the vocabulary size which is the

number of lexical entries that may occur in the output from the recogniser.

Current speech recognition techniques are typically limited to the extraction of lexical

references, excluding information on pauses, stress etc. The machine therefore has much

more difficulty interpreting what the user said than humans have, because humans are also

able to use prosody to decode input from their interlocutors [Buchberger 1995]. However,

the Verbmobil system uses stress and pauses to support, e.g., semantic disambiguation.

Typical measures of recognition quality are word accuracy and sentence accuracy.

Word accuracy (or precision) is the proportion of correctly recognised words to the total

number of words in an orthographic transcription of the input. Similarly, a sentence has been

correctly recognised if every word it contains has been recognised correctly and no extra

words have been inserted.

The recognition may assume isolated words (words spoken one at a time, clearly

separated by pauses), connected words (words pronounced as isolated words, but with less

stress and no, or little, separation) or continuous speech (standard naturally spoken language

with contracted words and no separation of words) as input. Isolated and connected word

recognition techniques are somewhat simpler than continuous speech recognition and yield

better recognition results. However, those techniques require that the user speaks with a

strained, unnatural voice, which is unnatural and in the longer term may damage the vocal

apparatus.

When accepting connected words and continuous speech, the recogniser has some

simple syntactic model (or grammar) of utterances. Typical examples are bigrams (allowed

word pairs) and finite transition network grammars. The amount of syntactic constraints to

impose is a trade-off: syntactic constraints increase the likelihood that input conforming to

the model is recognised correctly, but highly constraining syntactic models allow fewer user

utterances to be recognised.

In general, it is desirable to have available a large number of acoustic models for

spontaneous speech recognition. In practice, the number needed depends on the task and the

user group. On the other hand, a large number of acoustic models both increases the search

space with the results that more memory is required and a faster CPU is needed to maintain

real-time performance, and the models tend to become more similar to one another, making

it harder for the recogniser to find the right match. This trade-off is similar to that between

the syntactic models mentioned above.

 58

A frequently adopted approach to avoid these trade-off problems is to let the active

grammars and the active vocabulary (and the acoustic models needed) be contextually

constrained by the focus set. If the sub-languages related to different focus sets are

sufficiently different in nature, and each is smaller than the language of the application, then

contextual constraints may be employed whilst keeping low the risk of users not being able

to conform to the constraints. Often, however, equally good results may be obtained by

using a phrase spotting technique where the recognition concentrates on extracting

keywords or key phrases from the input.

Recognition may run in real time or batch. For interactive systems, real time

recognition is a necessity. Today‟s commercial recognisers run in real time, perhaps with a

slight delay for long utterances.

Recognition may be speaker dependent or speaker independent. Speaker independent

recognition is necessary in all public service systems. Speaker dependent recognition has

better performance and may be used in, e.g., personal computers.

Recognition may be speaker adaptive, i.e. the speech recognition may adapt to groups

of users (sex, dialect, language) or may be individually trained. The latter is often the case

with speaker dependent systems. However, speaker independent recognition may extend its

vocabulary through online training (automatic or explicit), or it may recognise which

language the user speaks among several different ones.

Two examples of current state-of-the-art recognisers are the IBM voice dictation

system and the Philips continuous speech recogniser. IBM provides as part of the operating

system Warp4, a recogniser which is intended for dictation and command purposes: it is real

time, speaker independent with 30K words vocabulary and 90% word accuracy, speaker

adaptive with 95% word accuracy and adding up to another 40K words, and accepts

isolated word dictation and continuous speech commands [IBM 1996]. Philips has produced

German and Swiss public train timetable information systems which use speech recognition

via the telephone: the recogniser is real time, speaker independent, recognises continuous

speech, has a word accuracy of about 75%, and a fixed vocabulary of about 1800 words

[Aust et al. 1995]. The accuracy of the two systems cannot be compared. The IBM

measures concern the overall performance using a good microphone, whereas the Philips

measure concerns only the recogniser and is measured over an ordinary telephone line.

2.6.2 SPEECH OUTPUT

Computer speech is produced by generating an acoustic speech signal from a digital

representation.

Hansen et al. [1993] distinguish coded and parametric speech. Coded speech is pre-

recorded words and phrases which are concatenated and replayed. Coded speech ensures a

natural voice and is widely used in voice response systems. Drawbacks are that prosody is

impossible to get completely right, and that maintenance of system phrases may be difficult

and costly. New phrases to be added must be produced by the speaker who did the previous

recording(s), and using the same voice quality, or all words and phrases must be re-

recorded.

 59

For parametric speech (or synthetic speech), a synthesiser generates an acoustic signal

based on a model of human speech. Prosodic features, such as intonation, pauses and stress,

may be included in the model and employed on the basis of prosody markers from the

system utterance generation inserted on the basis of discourse information [Hirschberg et al.

1995]. Parametric speech makes it easy to generate new system phrases at any time. A

drawback is that the parametric speech quality is still low for many languages.

2.7 PERFORMANCE

Any advanced interactive speech system has many of the elements described in the

previous sections but no current system has them all. Together, the elements determine the

observable behaviour or performance of the system during interaction. The system‟s

performance itself has a number of more or less complex properties that emerge from the

nature of the elements presented above and which should be considered during development.

We discuss these interdependent properties in terms of the performance elements co-

operativity, initiative and the system‟s influence on user behaviour.

2.7.1 CO-OPERATIVITY

Habitable user-system interaction requires that both user and system behaviour be co-

operative. It is a well-established fact that today‟s interactive speech systems are based on

the assumption of co-operative user dialogue behaviour [Eckert and McGlashan 1993, Smith

and Hipp 1994]. This fact does not, however, pose much of a problem for dialogue

developers because the penalty for non-co-operativity is that users fail to get their task done.

There is no point in designing the dialogue for non-co-operative users who do not care if

they succeed with their task or not. Indeed, this design goal is impossible to achieve in the

foreseeable future. However, if the system fails to be co-operative, penalties can be severe,

ranging from users having to repeatedly initiate clarification and repair meta-communication

with the system through to failing to get the task done or abandoning interactive speech

systems technologies altogether. We believe that system co-operativity is crucial to

successful interaction model development: it contributes to smooth interaction and reduces

the need for meta-communication. Co-operativity and its use in the development of

interactive speech systems will be treated in depth in Sections 4.2 and 8.3.

2.7.2 INITIATIVE

The interlocutor who determines the current topic of the interaction is said to have the

initiative or to control the course of the interaction. Initiative appears to be a function of the

speech acts performed by the interlocutors. Depending on the speech act performed, a

speaker who already has the initiative may offer it to the interlocutor as in the question (a):

“How may I help you?”; or show a wish to keep the initiative as in the question (b): “Where

does the journey start?”. The interlocutor may leave the initiative with the speaker, for

instance in responding to question (b): “The journey starts in Copenhagen”; take the offered

initiative in responding to question (a): “I would like to book a ticket from Copenhagen to

Aalborg”; or take the initiative without having been invited in responding to question (b): “I

want to travel on Monday”. The relationship between speech act and initiative is potentially

useful to system developers. Whittaker and Stenton [1988] propose generalisations such as

 60

the following: the speaker has control in a request unless followed by a request or directive;

in an assertion unless it is a response to a request; and in directives (commands); the listener

has (gets) the control in a prompt because the speaker abdicates control. If valid, such rules

may enable the system to derive who has the initiative once it has identified the speech act.

The latter is difficult, however. For instance, both (a) and (b) above look like requests (for

information) but (a) acts as a prompt that gives initiative away whereas (b) acts as a request

that preserves initiative (cf. Section 2.4 above).

It is useful to distinguish between the following modes of interaction from the point of

view of who has the initiative or who controls the course of the dialogue. An interactive

speech system is called system directed if the system has the initiative throughout the

interaction; user directed if the user has the initiative throughout; and mixed initiative if both

(or all) interlocutors may take the initiative at some or all points during interaction. These

modes of interaction may all be found in today‟s interactive speech systems except, perhaps,

the “free” variety of mixed initiative interaction in which any interlocutor may take the

initiative at any time. Several advanced interactive speech systems, such as the Danish

Dialogue System and the Philips train timetable inquiry system (Sections 1.2 and 1.3.2), use

limited mixed initiative interaction in which one of the interlocutors may take the initiative

at some points during interaction. Free mixed initiative systems do not yet appear feasible

for any but the simplest of tasks. In the Sundial project (Section 1.3.1), experiments were

made with free mixed initiative dialogue openings of the “Can I help you?” - type. This

opening turned out to strongly invite human-human-style, lengthy and complex accounts

from users which the system had no chance of understanding. As the modes of interaction

have been defined above, most future advanced interactive speech systems may be expected

to have limited mixed initiative. A further distinction among such systems is proposed by

[Smith and Hipp 1994].

2.7.3 INFLUENCING USER BEHAVIOUR

By contrast with the system and its behaviour, users are system-external factors that

cannot be controlled directly. The fact is, however, that interactive speech systems are vastly

inferior to ordinary humans as communication partners. If users do not realise this, they may

have unnecessary difficulty completing their interactive task with the system. Somehow,

therefore, a reasonably adequate model of how to interact with the system must be

communicated to users. Part of this user interaction model can be directly and explicitly

conveyed. However, it would be counter-productive to try to explicitly communicate all the

system‟s peculiarities and relative deficiencies as an interactor. Rather, at least the following

sources may help users build a reasonable user interaction model:

 Explicit system instructions provided in the system‟s introduction (cf. S2a in Figure

2.3) or elsewhere during the interaction.

 Implicit system “instructions”.

 Explicit developer instructions.

Implicit system “instructions” is the most interesting item on this list. What we call

“implicit instructions” build on the fact that speakers adapt their behaviour to the observed

properties of the listener. Some of these “instructions” are provided through the systems

 61

vocabulary, grammar and style as discussed above (Section 2.5). Moreover, it appears that

people tend to use less sophisticated spoken language when they believe that they

communicate with a computer system rather than a human being [Amalberti et al. 1993].

This is useful, and whatever strategy may be found which induces users to treat the system

as an idiot savant, should be considered by developers. Finally, of course, the system‟s

repair and clarification meta-communication will affect the user interaction model by making

some of the system‟s recognition and understanding difficulties clear to users. However,

developers should not interpret the latter point as a license to ignore the central goal of

optimising system co-operativity (Section 4.2). Strong system meta-communication facilities

are not an acceptable alternative to smooth interaction which requires little or no meta-

communication. Furthermore, strong meta-communication facilities do not yet exist in

interactive speech systems.

Explicit designer instructions comprise all sorts of (system-) external information

provided to users prior to use of the system. The provision of such information may make

sense in, e.g., controlled user tests. Similarly, speaker-dependent interactive speech systems

may come with ample written instruction to their users. One of the crucial advantages of

advanced interactive speech systems, however, is that speaker-independent spontaneous

speech is a highly natural modality which is extremely well suited to walk-up-and-use

applications. And for such systems it is often not possible to provide written instructional

material.

2.8 CHARACTERISING SYSTEMS

The presentation of speech interaction theory in the preceding sections provides few

specific choices of means of representation or algorithms. Its primary aim is to offer a

standard conceptual structure for speech interaction theories, models and systems. In later

chapters, the theory will be used to guide discussion and structure presentations.

In this section, we illustrate the theory‟s potential for providing high-level system

overviews. Writings on systems, parts of systems, and system experiments tend to document

only selected parts of the overall system, and the documentation does not have any standard

conventions to follow. It is therefore often difficult or impossible to compare results,

because of insufficient context, and systems, because of insufficient and incomparable

information. One approach to reducing these very real problems is to use a standardised

scheme which may provide the minimum information required for describing an interactive

speech system in a way which contextualises the results presented and allows comparison

with other systems. Figure 2.16 presents one such scheme which, based on speech

interaction theory, describes the Danish Dialogue System.

The interaction model of the Danish dialogue system

The Danish dialogue system is a realistic research prototype of a telephone based

interactive speech system for reservation of Danish domestic flight tickets.

 62

System performance

Cooperativity Conformance with the guidelines (Section 4.2).

Initiative Overall system initiative; users may initiate meta-

communication.

Influencing users Explicit and implicit user instructions; walk-up-and-use

system.

Speech input Continuous; speaker-independent; Danish.

Acoustic models Based on HMMs; whole word models; approximately 500

words; at most 100 words active at a time; word-accuracy

(laboratory) 78%.

Grammar Bigrams and finite state network mixture.

Prosody -

Speech output Normal human voice; Danish.

Coded/parametric Coded speech.

Prosody -

 63

User utterances

Lexicon Approximately 500 words; lexical entries defined as feature

bundles.

Grammar APSG.

Semantics Mapping rules extract semantic values from syntactic sub-

trees.

Style Terse.

System utterances

Lexicon Pre-defined words and phrases.

Grammar Simple grammar for concatenating pre-defined words and

phrases.

Semantics -

Style Terse.

Attentional state

Focus Current sub-task plus meta-communication tasks.

Expectations Predictions sent to recogniser and parser; task dependent

parsing.

Intentional structure

Tasks Danish domestic flight ticket reservation; well-structured

task.

Communication System-directed domain communication.

 Mixed initiative meta-communication; users may initiate

meta-communication through keywords.

 System-directed other communication, such as the opening

and closing of a dialogue.

Interaction level Some questions are yes/no or multiple choice, most are

general and focused.

Linguistic structure

Speech acts Primitive distinction between commands (meta-

communication) and statements (answers) in user input; use

of commands (questions), and statements for providing

feedback, error messages and other information in output.

References No anaphora resolution; ellipses are handled.

Segments -

Interaction history

Linguistic Only semantic contents.

Topic Order of exchanges.

Task Information exchanged.

Performance -

Domain model

Data Timetable, fares, flights, customers, reservations.

Rules Completions and constraints.

 64

User model

Goals Assumed to be flight ticket reservation.

Beliefs Handled to a moderate extent at run-time.

Preferences Determined at run-time; the scope is the current reservation

task.

User group System novice/expert distinction; the system‟s introduction

and discount information is optional.

Cognition Natural response packages addressed; cognitive overload

problem.

Figure 2.16. High-level description of the Danish Dialogue System (cf. Figure

2.2).

 65

3 DEVELOPING INTERACTIVE SPEECH

SYSTEMS

3.1 INTRODUCTION

In the following chapters, we describe the development and evaluation of interaction

model and dialogue component aspects of advanced interactive speech systems in

accordance with the idea of a rationalised development process presented in Section 1.2.

Ideally, development and evaluation would be exhaustively presented on the basis of a

consolidated and transparent version of a theory of spoken interaction such as the one

presented in Chapter 2. For the time being, we can offer only a less comprehensive and more

fragmented view. Advanced interactive speech systems development has so far taken place

mainly in research projects and a complete best practice methodology which can support,

improve, make more efficient and help standardise the development and evaluation of

advanced interactive speech systems is still far away. The methodology should specialise

software engineering best practice to the particular purposes of advanced interactive speech

systems engineering by specifying in detail the methods (procedures, guidelines, heuristics),

concepts and tools to be used in developing and evaluating advanced interactive speech

systems as well as providing guidelines on when and how to use each method, set of

concepts or tool.

This chapter sketches a development and evaluation life cycle model for advanced

interactive speech systems. The survey process is discussed in more detail including

requirements specification, evaluation criteria and design specification. Iterative analysis,

design and evaluation are only outlined (Section 3.2), as these aspects will be addressed in

detail later. The following three sections each present a prototype tool or method in support

of the specification of interactive speech systems. Section 3.3 presents a preliminary method

in support of completeness and consistency in requirements specification. Section 3.4

presents a simple tool which supports the explicit representation of requirements, design

decisions and design reasoning throughout the development process. A second tool helps

decide whether speech is appropriate for the application to be developed given the evolving

specification (Section 3.5).

3.2 THE DEVELOPMENT AND EVALUATION PROCESS

A general software engineering life cycle model

At a high level of abstraction, any standard software engineering life cycle model, such

as [Yourdon 1982, Sommerville 1992], applies to the development and evaluation of

advanced interactive speech systems. However, as such models are aimed at describing

software development processes in general, they do not specialise to the development and

evaluation processes which are specific to particular classes of systems, such as advanced

interactive speech systems. In addition, general software engineering life cycle models do

not include advise on the methods and tools to be used when developing such systems.

 66

Figure 3.1 shows a general software engineering life cycle model which has been

slightly specialised to the development and evaluation of interactive speech systems.

Obviously, the model only provides an overall framework. Based on the model, we review

the development and evaluation process for advanced interactive speech systems. Figure 3.1

shows the development and evaluation phases which will be discussed in Chapters 3 through

8. Development and evaluation phases beyond the acceptance test stage, such as systems

maintenance and systems re-engineering will receive little discussion (Section 3.4).

Development and evaluation processes sometimes differ depending on whether the system

being developed is a research system or a commercial system. We shall mention some of the

differences as we go along.

Research ideas Commercial request

Survey

Simulate
evaluate

revise

Acceptance tests

Analysis and design

Requirements
specification

and
evaluation criteriaImplement

test
revise

Design
specificat ion

Figure 3.1. A software engineering life cycle model for the development and

evaluation of interactive speech systems. Rectangular boxes show process

phases. The development and evaluation process is iterative within each phase

and across phases. Arrows linking process phases indicate the overall course of

the process. The requirements specifications and evaluation criteria, and the

design specification (rounded white boxes) are used throughout the development

process. The rounded grey boxes indicate that the system to be developed may

be either a research system or a commercial system.

Survey

System development projects begin with a survey. The aim of the survey is to provide

a reasonable and reliable estimate of project feasibility. If the project is judged to be feasible,

the survey should also produce a proper basis for the project in terms of well-defined goals

and constraints. If, on the other hand, the project is considered not to be feasible, it should

be stopped at once to minimise waste of resources.

In order to make a reliable estimate of project feasibility, strategic goals must be

determined, system goals and constraints must be defined and resource constraints

 67

identified. Possible strategic goals include, i.a., cost savings, service improvements or

technology exploration. In the case of interactive speech systems, system goals and

constraints concern the elements of interactive speech theory discussed in Chapter 2,

including, i.a., domain, interactive tasks, user group, and type of spoken output. A central

problem is that many of these elements may pose major development difficulties. Proper

feasibility estimation, therefore, should involve close scrutiny of each element needed for the

application in order to prevent unpleasant surprises later. Finally, resource constraints

concern, i.a., the manpower and time available for developing the system, the hardware and

software to be used as well as configuration requirements.

Sources of information that may provide useful input to the survey are identified and

tapped. The sources include brainstorming meetings, literature, experience from the

development of similar systems, input from domain experts and interviews with relevant

stakeholders, such as the procurer and the future users. For instance, the idea of the Danish

Dialogue System arose in a brainstorming meeting in 1991 which made it plausible that (i)

speaker independent continuous speech recognition would become a commercial reality

within the next five years, that (ii) ordering tasks involving large service providers would be

a target for such systems, and that (iii) such tasks of medium complexity had not been

addressed before.

Requirements specifications

Identified goals and constraints are represented in a requirements specification

document. The purpose of this document is to list, eventually, all the agreed requirements

which the envisaged system should meet, including strategic goals, system goals and

constraints, and resource constraints. Figure 3.2 shows the initial requirements specification

for the Danish Dialogue System. Since the system should be accessed over the telephone,

real-time performance was considered mandatory for a usable system. In the context of the

chosen hardware and given the expected limitations of the speech recogniser, the real-time

requirement gave rise to additional constraints on active vocabulary size (at most 100 words

at a time) and user utterance length (3-4 words on average and at most 10 words). Because

of limited project resources, the system vocabulary size was set to about 500 words. We

knew that a vocabulary this size was likely to be insufficient given the chosen domain of

application. In a commercial development context, an infeasibility constraint of this nature

would of course be meaningless. In research projects, on the other hand, such constraints are

among the facts of life. What matters, rather, is to distribute the effects of overall project

resource constraints on issues which do not prevent the research from addressing the real

scientific and technical problems it aims to solve. Vocabulary incompleteness is such an issue

because complementing the vocabulary later does not normally pose any novel scientific or

technical problems. In addition to real-time performance, the main usability requirements

were: sufficient task domain coverage, robustness, natural forms of language and dialogue,

and flexibility of interaction.

The Danish Dialogue System as an example

Strategic goals:

 68

 • To build realistic prototypes of advanced interactive speech systems, focusing on the

integration of speech technology, natural language processing, knowledge representation

and human-machine interaction.

 • To explore speech technology.

 • To create and consolidate know-how.

System goals and constraints:

 Overall performance:

 • Real-time performance is required.

 • The system must be robust and flexible.

 Speech input:

 • Continuous, speaker-independent.

 User utterances:

 • Danish.

 • The vocabulary size should not exceed 500 words.

 • At most 100 active words at a time.

 • The average user utterance length should not exceed 3-4 words.

 • The maximum user utterance length should not exceed 10 words.

 • The system must allow the use of natural forms of language and dialogue.

 Domain model:

 • The system should cover the domains of reservation, change of reservation and

information on departures, fares and travel conditions for Danish domestic flights.

 User model:

 • Walk-up-and-use system.

 System utterances:

 • Danish.

Resource constraints:

 • Available resources are about 30 person years.

 • The system is accessed via the telephone.

 • The system must run on a PC.

Figure 3.2. Initial requirements for the Danish Dialogue System. The

requirements are split into three groups: strategic goals, system goals and

constraints, and resource constraints.

Evaluation criteria

Based on the requirements specifications a set of evaluation criteria is established for

use in evaluating the final system. These criteria mainly refer to the system goals and

constraints. The evaluation criteria state the parameters that should be measured and the

measurement results that should be achieved for the final system to be acceptable. For

instance, if the requirements specification includes a requirement of real-time performance

then real-time performance should be included among the evaluation criteria, and run-time

performance will be among the parameters measured during evaluation of the final system. A

 69

reconstruction of the evaluation criteria for the Danish Dialogue System is shown in Figure

3.3.

• Close-to-real-time performance is required.

• The recogniser can only be expected to perform in close-to-real-time and achieve acceptable

recognition rates if the average user utterance length does not exceed 3-4 words and the

maximum user utterance length does not exceed 10 words.

• The system‟s vocabulary will not exceed 500 words although this size may be insufficient.

Out-of-vocabulary words will be counted.

• The system must sufficiently cover the task domain.

• The system must be robust, i.e. it must be able to cope in a reasonable way with input which

is either not understood or non-cooperative.

• Restrictions on language and dialogue must be principled so that users can use restricted but

intuitive and natural forms of language and dialogue.

• Flexibility must be optimised within the frames of the given constraints and criteria.

Figure 3.3. Evaluation criteria for the Danish Dialogue System. The list of

criteria is a reconstruction and hence to some extent a rationalisation. During the

project, the criteria were never stated very explicitly. This is reflected in the

figure. For instance, „acceptable recognition rates‟ are not explained in more

detail, and „sufficient‟ domain coverage is a somewhat subjective measure.

Open issues

Requirements specifications and evaluation criteria should preferably be finalised in the

survey phase. It is on the basis of the requirements specification that the question of project

feasibility must be determined. Well-defined, specific points of difficulty on which decision

cannot be made at this stage may, however, be left open for consideration later in the

development process as long as these are not crucial to project feasibility. An example could

be the question of whether it will be feasible to allow relatively free mixed initiative meta-

communication. If an alternative, less advanced but still feasible and acceptable solution is

known to exist, the question may be left open for later decision.

Commercial contracts

In commercial development projects, requirements specifications and evaluation

criteria are key elements of the contract which must be satisfied by the system provider. The

contract must be precise and expressed in a language which the procurer understands.

Whether the requirements specifications should be expressed using some formal or semi-

formal technique depends on the background and preferences of the procurer. If the

requirements specifications and evaluation criteria are not met by the final system, the

procurer typically has the right to turn down the system or request that shortcomings be

repaired or penalties paid.

Research systems

Befitting their exploratory purpose, the framework for research systems development

is often loosely defined compared to that of commercial systems. The requirements

 70

specifications and evaluation criteria do not serve contractual purposes. This means that they

can be more easily modified later in the development process because there is no procurer

who has to approve of the changes made. In the Danish dialogue project, for instance, it was

decided, following a series of simulation experiments, to only implement those parts of the

system which addressed the reservation task. The change of reservation task and the

information task were eventually left out because they were not considered feasible under

the specified goals and constraints. Moreover, aspects of key importance to commercial

systems development are sometimes de-emphasised in research projects. For instance, the

evaluation criteria for the Danish Dialogue System as specified in Figure 3.3 would not be

sufficient in a commercial context. They are too vague and do not include measurement to

specified criteria of such factors as transaction success and user satisfaction as is typically

required in commercial projects.

Realistic settings in research projects

As a final point on requirements specification, we want to mention a problem caused

by the fact that many advanced interactive speech systems are being developed as research

prototypes. Whilst commercial systems by default are based on real-life needs, research

systems often have no procurer and no real users who can provide requirements to the

system to be developed. This of course makes life easier in some respects since one can

make do with a sloppy requirements specifications document without being severely

punished by a procurer, and it is much easier to make changes later in the development

process since the document does not have the role of a contractual commitment. On the

other hand, if the research prototype is intended as a quasi-realistic exploration of future

applications, it is highly desirable to be able to measure acceptability on the basis of firm

requirements specifications and evaluation criteria. The best way to overcome the problems

of a missing procurer and real end-users probably is to involve organisations in the

specification process which potentially could be real procurers or end-users. This creates a

semi-realistic environment for establishing a requirements specification and evaluation

criteria, and may later provide a testbed for the implemented system.

The requirements specification for the Danish Dialogue System was created in such a

semi-realistic environment. Since the objective was to develop a realistic, application-

oriented research prototype rather than a real application, we did not have any actual

procurer or users to talk to. However, contact was established with a travel agency in which

we made interviews with travel agents and recordings of human-human reservation and

information dialogues. The aim was to create a system which was realistic in the sense that it

could meet, as far as possible, the needs and desiderata of potential customers and users.

The system should offer economic advantage to potential customers, and the choice of

domain and technology should be reasonable in view of potential demands for interactive

speech applications. One effect of these considerations of application realism was that the

system should be able to run on a PC so that Danish travel agencies could easily afford the

needed hardware. Had we chosen more powerful hardware, the constraints on the system

would have been somewhat less severe.

 71

Design specification

During the survey, focus is on the requirements specification. However, other

important ideas, decisions and constraints often make their appearance at this stage without

properly belonging in the requirements specification document. This happens because of the

survey‟s necessary role of “looking ahead” in order to ensure feasibility. Such ideas,

decisions and constraints are included in the design specification. For instance, many issues

concerning the operational aspects of systems design considered in the survey phase do not

belong to the requirements specifications but are clearly needed in the design specification.

Design specification therefore starts, typically at a low speed, in the survey phase, and

comes into focus in the design and analysis phase following the survey (see Figure 3.1).

The purpose of the design specification is to describe and eventually make operational

how to build a system which will satisfy the requirements specification and meet the

evaluation criteria. The design specification therefore will be clearly related to, and may

simply include, the requirements specification. The design specification must be sufficiently

detailed to serve as a basis for implementation and, in contrast to the requirements

specification, is often expressed in a formal or semi-formal language understood by the

systems developers and serving its operational purpose.

A number of sources provide input to the design specification. The sources include

those used in the survey phase as well as available theory, concepts, tools, methods,

guidelines and reusable software from other projects.

To serve its purpose, the design specification must be constantly updated to include

the most recent additions and revisions. If this is to be done systematically and coherently,

an explicit representation of the changing and accumulating design decisions is needed for

keeping track of the development process. This is good engineering practice but difficult to

do. If it is not done, it becomes hard or even impossible to (i) keep track of the design

decisions that have been made and why they were made, (ii) explain to new developers

joining the team what is going on, and (iii) carry out informed maintenance and re-

engineering once the project has been completed. A proto-tool in support of good

engineering practice in these regards is presented in Section 3.4.

Analysis, design and evaluation

Subsequent development phases will be discussed in more detail in later chapters. The

phase following the survey is often called analysis and design, although analysis and design

also forms part of later phases during which analysis and design alternate with evaluation

(see Figure 3.1). Revisions always require analysis and some form of re-design and may be

needed as late as in the acceptance test phase.

In the analysis and design phase the aim is to develop the design specification of the

system to such a level of formal detail that it can serve as a basis for implementation, as will

be discussed in Section 4.1. The system model may be implemented directly (Chapter 6), or

it may be iterated, refined and adjusted through a simulate-evaluate-and-revise cycle prior

to implementation. The latter approach is often used in advanced speech interaction model

design (Chapter 5). The simulate-evaluate-and-revise approach is structurally similar to the

implement-test-and-revise approach because „simulate‟ includes „run the simulated system‟

and „test‟ includes „run and evaluate the implemented system‟. One among several

 72

differences is that software-related tests, such as blackbox and glassbox tests (Chapter 6),

are performed on the implemented system only, whereas most other evaluation

measurements will be the same (Chapter 8). Transcription and analysis is needed both after

simulation and after implementation (Chapter 7). When the implemented system is

considered complete, a number of acceptance tests are performed before and/or after

installation. These may include controlled user tests, field tests, and a final acceptance test in

which the installed system has to meet the requirements specifications and the agreed

evaluation criteria (Chapter 8).

3.3 SUPPORTING COMPLETENESS AND CONSISTENCY OF

REQUIREMENTS SPECIFICATIONS

No available method ensures completeness and consistency

Unfortunately, there is no method available which may ensure complete and consistent

requirements specifications for innovative systems, such as those developed in most

advanced interactive speech systems projects. When specifying such systems, many difficult

issues have to be considered from early on and mistakes may have severe consequences,

such as making the system infeasible in the framework of the given constraints. Currently,

the best way to create reasonable requirements specifications and evaluation criteria is to

rely on the craft skills of experienced systems developers. Even then, it remains possible that

requirements specification and evaluation criteria will have to be modified later in the light of

unexpected obstacles discovered during the development process.

Usually, overall system functionality requirements are specified quite early during the

survey. These requirements concern, i.a., domain and domain coverage, expected user

groups(s), interactive tasks, type of speech recognition, such as speaker independent and

continuous speech recognition, and language, such as Danish. Resource constraints are

typically defined from the very beginning of the survey, including maximum person power

available, maximum budget, and hardware to be used. However, nothing prevents the list of

requirements from being incomplete or inconsistent. A method which could support the

early creation of complete and consistent requirements specification, providing a solid

background for an estimation of project feasibility, is therefore highly desirable.

Using the elements in Chapter 2 as a basis for a method

The structured set of elements of speech interaction theory as presented in Chapter 2

might serve as a highly preliminary version of such a method. Jointly, the elements may

support completeness of requirements specifications through acting as a checklist of

functional aspects to be considered for inclusion. Consistency may be supported, and

inconsistencies detected, through information on relationships between the individual

elements. In the following we describe and exemplify this manner of use of the speech

interaction theory elements of Chapter 2.

Completeness

When used as a checklist, the set of elements may generate questions and statements

such as the following, semi-formally expressed: (i) “Have you considered if you need

 73

element x and possibly what sub-type of element x?”; and (ii) “If you want element y, you

must also have element z”. This may be illustrated as follows.

(i) As can be seen from Figure 3.2, the initial requirements specifications for the

Danish Dialogue System did not mention any particular goals and constraints concerning

speech output and system utterances except that utterances should be in the Danish. Had we

used the method being described here, we would have added decisions on the form of

speech output to use, whether or not to address output prosody, and which restrictions to

impose on lexicon, grammar, semantics and style of output utterances.

(ii) Due to hardware constraints and given the expected limitations of the speech

recogniser, the real-time requirement gave rise to rather severe constraints on active

vocabulary size in the Danish system. To ensure sufficient domain coverage for the chosen

task, the system would need a larger vocabulary than could be active at any one time. These

points imply that the system would need expectations concerning the next user input to be

communicated to the input speech and language module(s). Moreover, active vocabulary

limitations require that ways are found to make the user remain within the active vocabulary

at any one time. This may be done by having the system ask questions throughout, thus

making domain communication system directed. In other words, expectations and initiative

serve to realise the system within the given vocabulary constraints.

In general, if the requirements specification omits reference to some element, and if

this element is also not mentioned in the design specification, it should be checked if the

element was left out on purpose or ignored.

Some of the elements in Chapter 2 may directly generate system goals and constraints

whereas others do so only indirectly. The former group of elements, such as the tasks to be

handled, the type of output speech to use and the type of input speech to be accepted,

should be considered not only as regards the goals and constraints which they themselves

might impose on the system. They should also be considered with the aim of detecting

possible obstacles or additional constraints which they might impose on development. For

instance, the constraints on active vocabulary size and user utterance length and style (terse)

in the Danish Dialogue System were imposed by other system goals and constraints (real-

time, hardware, speech recogniser, task and domain). Other elements, in particular those in

the control and context layers, do not directly generate system goals and constraints for

inclusion in the requirements specification. Rather, they support and influence the

operationalisation of certain system goals and constraints in ways which make it important

to consider their implications. Among the latter might well be new or revised goals and

constraints. For instance, both a linguistic history and a topic history may be needed to

achieve the goal of handling user meta-communication as stated in the requirements

specification. Although none of these histories are goals in themselves, the need for them

might mean that meta-communication will not be possible as specified.

Consistency

When used for consistency-checking, the set of elements may help demonstrate that

inclusion of a certain element would make the project infeasible given the specified goals and

constraints. The element would either have to be excluded or the goals and constraints

revised or relaxed in some way. In this case, the set of elements may generate statements

 74

such as the following, semi-formally expressed: (iii) “If you want element x you must have

element y not element z”; and (iv) “You cannot have both element x and element y”. Note,

however, that the formal expressions (ii), (iii) and (iv) above assume that speech interaction

theory includes relationships of implication among its elements. Such relationships are still

rare in the theory presented in Chapter 2.

A simple, albeit somewhat non-specific, example of (iii) would be, for most current

advanced interactive speech systems projects: don‟t start by simulating or implementing free

mixed initiative dialogue because you will not succeed in building a workable system! An

example of (iv) would be: suppose that, given the requirements in Figure 3.2, the developers

were to allow the system to ask a completely open question to users at some point, such as

“How may I help you?” This would be inconsistent with the limitations on active vocabulary.

Note that, in this case as in many others, constraint relaxation might be achieved in several

different ways. One solution could be to considerably relax the constraints on vocabulary

size; another, to reduce the domain. The former solution implies that real-time performance

is no longer feasible unless yet other constraints are relaxed.

3.4 REPRESENTING DESIGN SPACE AND DESIGN

REASONING

Difficulties in doing design rationale

As already pointed out (Section 3.2), it is good engineering practice to constantly

update the design specification to include the most recent additions and revisions and

perhaps the rationale for major design decisions as well. However, maybe the term “ideal”

engineering practice should be used instead because, in practice, few design teams do this in

any systematic way. To be sure, they fail to do so at a price. The price is that it becomes

more difficult to keep track of design decisions as they are made than it would otherwise

have been, more difficult than necessary for newcomers joining the team to fully understand

what is going on, and hard to maintain or re-engineer somebody else‟s, or even one‟s own,

system later should that be required.

The reason why so many software developers pay the price probably is that, so far,

they have not found acceptable tools for keeping track of the development process and its

rationale. The reason certainly is not that no such ways have been proposed in the literature

nor have been tried in real life. On the contrary, since 1970, a number of approaches to what

is commonly called design rationale have been proposed and trialled by software developers

around the world. A good many of these are presented in [Moran and Carroll 1996]. Some

of the real reasons why an appropriate tool for keeping track of the design process and

important parts of designer reasoning is still missing, seem to be the following. First, design

decision-making is often remarkably fast and implicit. Secondly, it takes a good deal of

thinking and time to explicitly reconstruct a productive design session. Is it really

worthwhile to produce fully explicit representations of all the reasoning which took place

and which led to design decisions? Is it possible? Is it worthwhile to explicitly represent the

many details that have to be decided upon in, for instance, graphical interface design?

Thirdly, who should do this job which is often quite thankless in the short term? Fourthly, if

someone does it, the fellow developers will have to discuss the results at the next design

 75

meeting at which they will often disagree with them, which leads to “endless” meetings.

Fifthly, who can do it in the first place, considering such facts as that many important design

decisions are often made after hours in the parking lot or elsewhere? Sixthly, many of the

existing approaches to design rationale are full of complex, semi-formal notation. Who

wants to learn this notation to do such an apparently simple job as that of keeping track of

design decision-making? Moreover, even the most complex notations around are quite likely

to be found lacking in expressiveness in practice.

3.4.1 DSD/DR

Still, it makes good sense to keep track of design decision-making and -reasoning

throughout the development and evaluation process. We shall briefly present a tool which

we have used ourselves in developing the interaction model for the Danish Dialogue System.

Among the comparative virtues of this tool is that it is simple, adds some amount of

systematicity, structure and explicitness to design processes, can be easily modified to suit

the purposes of new users, does not involve complex notation, and seems capable of

adequately capturing the important, early design process stages where completeness and

consistency are vital for ensuring a feasible system concept. The tool is currently being

developed as a shared hypertext application. It is called Design Space Development and

Design Rationale (DSD/DR) because it is actually two tools in one [Bernsen 1993a,

Bernsen and Ramsay 1994].

DSD

DSD, the first part of the tool, uses a simple frame structure to keep track of

consensus building during development and evaluation. Requirements and the design

decisions on which these are based are viewed as constraints on the interactive speech

system (or artefact more generally) to be developed. The design process is viewed as a

process of increasingly constraining the design space around the system. As these constraints

interact, they may conflict and their explicit representation provides an occasion to detect

such inconsistencies early on (cf. Section 3.3). Constant updating is handled by representing

the design process as a series of DSD frames representing the emerging constraints on the

system. Each DSD frame thus represents, or provides a snapshot of, the design space

structure and designer commitments at a given point during system design. Figure 3.4 shows

DSD frame No. N which was constructed for the purpose of this book. Some of the actual

DSDs constructed during the Wizard of Oz phase when developing the Danish Dialogue

System can be found in [Bernsen 1993]. DSD No. N includes the information in Figure 3.2

above together with some additional information. As in actual DSD use, the information

which was added since the generation of the previous DSD representation (i.e. DSD N-1), is

shown in italics. Part (A) of a DSD frame represents the most general requirements on the

system to be developed. Part (B) specifies the general requirements in increasing detail. The

fields „Collaborative aspects‟ and „Organisational aspects‟ are empty because the project did

not involve any significant information of these kinds. The „Comments and actions‟ field is

used for representing information on who-does-what, difficulties encountered etc. The

„Documentation‟ field is useful for referring to relevant additional documentation. The

“semi-random” character of the information contained in DSD No. N is actually typical of

 76

early design. In the Danish dialogue project as well as in other development projects that

were investigated as case studies during the development of DSD/DR, we found that

information gets inserted into the DSD frames in no particular, not to speak of logical,

order.

Design Project: The Danish dialogue project

DSD No. N Start date: 28.1.97 Rev. date: 29.1.97 Sign: LD

A. General constraints and criteria

Overall design goal(s)

To build realistic prototypes of advanced interactive speech systems, focusing on

the integration of speech technology, natural language processing, knowledge re-

presentation and human-machine interaction.

To explore speech technology.

To create and consolidate know-how.

General feasibility constraints

Available resources are about 30 person years.

Scientific and technological feasibility constraints

Limited capability of current speech and natural language processing.

Open research questions, e.g. insufficient research in dialogue theory.

Design process type

Research prototype development.

Designer/user preferences

Use of the Dialogue Description Language (DDL).

Realism criteria

The system must run on a PC (i.e. on machines which could be purchased by a

travel agency).

Functionality criteria

The system must be robust and flexible.

Make sure that the artefact can do the tasks done by the human it replaces.

Usability criteria

Unless a naturalness criterion cannot be met for feasibility reasons, it should be

incorporated into the system.

B. Constraints and criteria applied to artefact within design space

Collaborative aspects

Organisational aspects

 77

System aspects

Continuous, speaker-independent speech input.

Real-time performance is required.

Input is in Danish.

The vocabulary size should not exceed 500 words.

At most 100 words active at a time.

Output is in Danish.

The system must allow the use of natural forms of language and dialogue

Interface aspects

The system is accessed via the telephone.

Task aspects

The system should cover the domains of reservation, change of reservation and

information on departures, fares and travel conditions for Danish domestic

flights.

User and user Experience aspects

The average user-utterance length should not exceed 3-4 words.

The maximum user-utterance length should not exceed 10 words.

Walk-up-and-use system.

C. Comments and actions

D. Documentation

E. DSD No. (n) indicates the number of the current DSD specification.

Figure 3.4. DSD representation of some of the major requirements for the

Danish Dialogue System.

DR

The second part of the DSD/DR tool, the DR frames, are used for representing

particularly important pieces of design reasoning. A DR frame represents the reasoning

about a particular design problem encountered during design. It discusses the design

options, constraint trade-offs and solutions considered, and argues why a particular solution

was chosen. An important point is that design reasoning is highly contextual and reflects the

design space at the time. If the context is not made explicit, it can be virtually impossible to

decode the represented design reasoning. In fact, it becomes difficult to represent the design

reasoning in the first place. In DSD/DR, the immediately preceding DSD frame explicitly

represents the context of the design reasoning presented in a certain DR frame. In many

cases, a DR frame will lead to additions to the following DSD frame. DR frames thus act as

links between subsequent DSD frames. Typically, there will be several DR frames acting as

links between two consecutive DSD frames. When combined with DR representations, DSD

makes design space context and constraints explicit in support of reasoning, traceability and

re-use.

 78

Figure 3.5 shows one of the DR frames that were produced in response to the

blackbox test of the Danish Dialogue System. The test revealed a series of design problems

of different severity and demanding different amounts of time and resources for their repair.

We used DR frames to explicitly represent our reasoning about each of these problems and,

when it became clear that resource constraints would prevent us from solving them all, we

used the generated series of DR frames as a basis for setting priorities among the problems.

The DR frame No. 6 shown in Figure 3.5 refers to DSD No. 8 as being the DSD frame that

is being prepared through DR frame No. 6. During early specification of the system, we

produced seven consecutive DSD frames. DSD frame No. 8 is the frame which was

produced following the blackbox test to represent the additional design decisions (or

commitments) made at that stage. The „Commitments‟ listed in DR frame No. 6 derive from

DSD frame No. 7 which formed the context of the design decision making at the time.

Among the many commitments in DSD frame No. 7, those particular commitments were

judged as being contextually relevant to the problem addressed in DR frame No. 6. The

„Justification‟ following the listed commitments is a justification not of the solution but of

there being a problem in the first place. After the problem justification follow the design

options considered and the chosen solution to the problem. The „Comments‟ part of the DR

frame provides additional observations on the problem. Note that the selected option (3) will

be inserted into DSD frame No. 8.

Experiences from using DSD/DR

We have had positive experience with DSD/DR during the design of the Danish

Dialogue System. Some of the problems encountered were: (1) the design space structure

represented by the entries in DSD frames is not self-explanatory. Training is required for

inserting new information in its “right” place. DR frames are easier to master. (2) As

development progresses, and if the development project is a major one, DSD frames become

quite lengthy and complex. Hypertext might alleviate this problem. (3) DSD has an

“imperial” tendency to become the central design and development document. This in itself

is not a problem but one should be aware of the fact. (4) Maintaining a series of DSD frames

takes quite some effort, which is of course the more acceptable the more central the

maintained representation is as a vehicle of communication among the developers. Still, it is

these joint investments of effort which have to be measured against the advantages gained

through DSD use. We believe this trade-off to be positive but still lack evidence from use of

DSD by others than the originators of the approach.

Design Project: The Danish dialogue project

Prepares DSD No. 8 DR No. 6 Date: 24.5.94 Sign: LD

Design problem: No price information

Users cannot get the price of the tickets they have reserved.

Discovered by: LD

Commitments involved:

1. It should be possible for users to fully exploit the system‟s task domain

knowledge when they need it.

2. Avoid superfluous or redundant interactions with users (relative to their

contextual needs).

 79

Justification:

Only some users are interested in getting information on the price. Professional

users loose time on an extra dialogue turn if they are asked whether they want it. On

the other hand, for users wanting the price information this may be very important.

Options:

1. Provide full price breakdown information at the end of a reservation task.

2. Ask users if they want to know the price of their reserved tickets.

3. Always inform users about the total price of their reservation (but not its

breakdown into the prices of individual tickets).

Resolution: Option 3

There is a clash between the two design commitments because of the existence of

different needs in the user population. Option 3 was identified and selected as a

compromise between the two relevant design commitments. Option 3 does not

require extra turn taking but mentions the price briefly.

Comments:

P1 already computes the price. It will be easy also to output the price to the user.

It would be a possibility to allow the user to obtain additional price information (a

breakdown into the prices of individual tickets) via the help function (see DR 12).

Links to other DRs: 12 (help).

Documentation: Notes 24.5.94 Insert in next DSD frame: Option 3.

Time estimate: Less than 1 day.

Modules(s) involved: P1.ddl

Importance of change: Important, in

order to avoid user questions.

Action to be taken:

Do the implementation.

Date of change: 30.5.94 Time spent: 2 hours Sign: HD

Modified files: P1.ddl, messages/*, BEKRÆFT1/ (new phrases)

Date of test of changes: 3.6.94 Sign: LD

Figure 3.5. A DR frame representing a problem detected during the blackbox

test of the implemented interaction model.

3.5 SPEECH FUNCTIONALITY

Speech functionality: the need for systematic guidance

It is a basic observation of this book that use of speech input to, and speech output

from, computer systems is spreading at a growing pace. This means that an increasing

number of developers of systems and interfaces are faced with the question of whether to

use speech input and/or speech output for the applications they are about to build. This is

the issue of speech functionality, i.e. of the circumstances under which speech is, or is not,

as the case may be, appropriate for an application to be developed. The literature offers no

systematic guidance on speech functionality although there is consensus in the field that

systematic guidance is highly desirable [Baber and Noyes 1993]. Rather, system developers

 80

address the functionality of speech based on common sense hypothesising, trial-and-error, or

results from user testing of, or laboratory experimentation with, different but, hopefully,

related systems. Systematic guidance, on the other hand, requires theory but theory alone is

not sufficient. Once developed, the theory must be transformed into practically useful

methods or tools which can be applied by non-theoreticians.

We would like to be able to address the issue of speech functionality on a systematic

basis during early design. Given early requirements specification, we could then decide

whether speech should really be included in the application, in what form(s) and, possibly,

under which specific conditions. It will often be the case, of course, that the requirements

specification itself states that speech is to be used for the application. In such cases, general

knowledge about speech functionality might sometimes indicate that the application is

infeasible given other constraints, such as development budget or time. These constraints

would then have to be modified or the development project would have to be abandoned.

The study, types of claim

The speech functionality problem was investigated in [Bernsen 1996]. The aim was to

examine a large number of claims that have been made about speech functionality to see

whether it was possible to find theoretical means of evaluating those claims. If this turned

out to be the case, the theoretical basis identified might (a) enable evaluation of a potentially

much larger number of claims about speech functionality; and (b) form the basis of a

practical tool that might support reasoning about speech functionality during early

applications design. Results were encouraging and will be presented below. The scope of the

results reported go beyond interactive speech systems and address, in addition, speech

systems which do not perform natural language understanding or generation (cf. Figure 1.1).

In the study mentioned, 120 non-redundant data points each consisting in a single claim

about speech functionality, were systematically collected from [Baber and Noyes 1993]. The

claims were found to be of the following types:

1. Combined speech input/output recommended.

2. Speech output recommended.

3. Speech output positively compared to other modalities.

4. Speech input recommended.

5. Speech input positively compared to other modalities.

6. Conditional claims on the use of speech.

7. Combined speech input/output negatively compared to other modalities.

8. Speech output not recommended.

9. Speech output negatively compared to other modalities.

10. Speech input not recommended.

11. Speech input negatively compared to other modalities.

 81

Representativeness of claims

Conditional claims on the use of speech are claims which state that if some speech

modality is to be used, then it should be used subject to the condition that, for instance,

headphones are used in public spaces to protect privacy. Claims of the following form were

excluded from consideration: claims comparing speech/non-speech multimodal combinations

with other speech/non-speech multimodal combinations. Of the 13 possible types of claim,

given the distinctions underlying the typology above, two were not found among the data.

They were: claims positively comparing combined speech input/output to other modalities,

and recommendations against the use of combined speech input/output. This probably does

not significantly reduce the representativeness of the data set. More generally speaking, it is

our hypothesis that the claims set is representative of standard approaches to the speech

functionality issue in a number of important respects. As an example, consider the following

claim (C):

(C) Speech input is likely to be inadequate for complex spatial manipulation tasks.

The respects are: (i) the sources of claims, such as experimental work, user testing, common

sense hypothesising, or designer experience. For instance, (C) might have been suggested by

a user test. (ii) The generic variables referred to in the claims, such as „speech modality‟,

„generic task‟ or „cognitive property‟ (Figure 3.7). In (C), the instantiated variables are

„speech modality‟ (instantiated as „speech input‟) and „generic task‟ (instantiated as

„complex spatial manipulation tasks‟). (iii) The types of claim, such as recommendation,

negative comparison, or conditional recommendation. Claim (C) is a negative

recommendation. (iv) The epistemic modifiers involved in claims, such as „may be preferable

to‟, „use this modality for‟, „was perceived to be useful‟, or „is dubious compared to‟. The

nature of the epistemic modifier determines the „strength of conviction‟ behind a certain

claim and the consequent requirements on the justification for that claim. In (C), the

epistemic modifier is „is likely to be‟. (v) The (sometimes insufficient) scoping and level of

precision of claims. Claim (C) appears to be adequately scoped. Examples of less precise or

less adequately scoped claims will be provided below.

Modalities

The term „speech‟ or „spoken language‟ designates several different unimodal input or

output modalities, such as „speech input notation‟, „spoken input labels/keywords‟, or

„speech output discourse‟, that is, standard spoken language. A modality is simply a form

(or mode) of representing information as output from, or input to, a computer system [Hovy

and Arens 1990]. A unimodal modality is a modality which is not itself composed of other

modalities and which may form a component of a multimodal interface [Bernsen 1994].

Some unimodal modalities, including the speech modalities, are perfectly capable of being

used alone in exchanging information with computer systems.

Minimum complexity of the problem

It is rather trivial to point out that speech is not suited for every kind of human-

computer information exchange. It is an equally trivial generalisation that, in some cases,

other modalities are preferable to speech if we want to optimise the human-computer

interface from the point of view of information exchange. On the other hand, sometimes

 82

speech actually is suited to the system and interface design task at hand and sometimes

speech is preferable to other modalities as well. The hard question is: in which specific cases

are these generalisations true? This question not only is a hard one to answer in a principled

way; a principled answer might also bring important benefits to systems and interface design

practice by removing some of the uncertainties which presently characterise the choice of

speech modalities for the design of particular artefacts. Figure 3.6 shows why the question

of when to use, and when not to use, speech in interface design is a hard one. This is

because of the underlying complexity of the question, which derives in part from the large

number of domain variables that may be involved (boldfaced in the figure). Figure 3.6 semi-

formally expresses the complexity of the speech functionality problem as derived from the

data.

[combined speech input/output, speech output, or speech input modalities M1 and/or M2

and/or M3 and/or M4 etc.] are

[useful or not useful] for

[generic task GT and/or speech act type SA and/or user group UG and/or interaction mode

IM and/or work environment WE and/or generic system GS and/or performance

parameter PP and/or learning parameter LP and/or cognitive property CP] and/or

[preferable or non-preferable] to [alternative modalities AM1, AM2, AM3, AM4 etc.] and/or

[useful on conditions] C1, C2, C3 and/or C4 etc.

Figure 3.6. The minimum complexity of the problem of accounting for the

functionality of speech in systems and interface design. Domain variables are in

boldface.

Empirical approach impractical

It should be noted that, unless factors could be trivially constrained or eliminated,

Figure 3.6 expresses the minimum complexity of the speech functionality problem. There

may be more relevant domain variables involved than those found in the data. In addition,

Figure 3.6 does not distinguish among the different technologies so familiar to the speech

community, such as isolated words input, connected speech input, continuous speech input,

speaker-dependent speech input, speaker-independent speech input, parametric speech

output, and coded speech output. These distinctions were made so infrequently in the data

that they have been omitted from the expression in Figure 3.6. Yet the complexity expressed

in Figure 3.6 is huge. If, in order to solve the problem of speech functionality, we were to

empirically investigate each and every possible combination of the domain variables in

Figure 3.6, then we would never finish the task in time to be able to provide much needed

support of modality choice in early systems and interface design. At best, we would end up

with a very large, albeit still incomplete, number of low-level generalisations based on

having made all possible mistakes at least once. The generalisations in question would look

more or less like the data points shown in Figure 3.7.

Data point 11. Speech act [instruction] + generic task [follow procedure, e.g. for using a

video recorder or an ATM]: speech output can be useful.

 83

Assumption: The procedures to be followed require limb and visual activity.

Data point 121. Generic multimedia systems [office] + generic task [speech input text

editing + keyboard text entry]: speech input has no advantage in performance parameters

[speed, accuracy, and ease of use].

Figure 3.7. Examples of low-level generalisations on speech functionality for

systems and interface design. Domain variables are in boldface.

How to read the standardised data points.

The original claims on which the study was based were often quite complex

individually, and jointly rather heterogeneous, which is why they were transformed into the

common format illustrated in Figure 3.7. Data point 11 in Figure 3.7 should be read as

follows: speech output can be useful for providing instructions to users during their

performance of procedural tasks requiring limb and visual activity. The original claim in

[Baber 1993a] says: “An increasingly popular use of speech output is in providing

instructions for users of sophisticated technology, such as video cassette recorders or

ATMs. It has proved a popular application in toys, and can provide information on how to

use a product”. Note that claim (11) in Figure 3.7 is only valid provided that at least one

unstated assumption is being added. Lacking a theoretical framework, the claims about

speech functionality made in the literature cannot be expected to be fully explicit nor to

incorporate all the assumptions necessary.

Data point 121 in Figure 3.7 should be read: speech input has no advantage in speed,

accuracy, and ease of use when used for text editing in keyboard-based office text-entry

systems. The original claim in [Noyes 1993] says: “One solution to overcome the limitations

inherent in the recogniser technology has been the suggestion of a multi-modal system for

office applications. For example, all editing and formatting commands should be given

verbally, while text is entered via the keyboard. ... but the benefits to the users are not

immediately obvious. When considering the indices of speed, accuracy, ease of use, there

appears to be little advantage in introducing speech to the system”.

Modality theory and the basic approach

If, as argued above, the speech functionality problem cannot be solved empirically, the

question becomes: which theory might be able to evaluate 120 claims on speech

functionality which are representative of the claims made in the literature? We have used an

existing theory of output and input modalities, called Modality Theory, for the purpose

[Bernsen 1994, Bernsen 1997]. The basic idea of the approach to speech functionality is the

following. Suppose that the requirements specifications or design specifications for a

specific systems and interface design task SID(t1) include information to the effect that,

e.g., the user needs hands and eyes free operation. Suppose, in addition, that we already

know that some modalities of information representation M1-Mn allow hands and eyes free

operation. Together, these two pieces of information imply that the modalities M1-Mn can

be suggested as potentially appropriate modalities for the system to be designed. The fact

that, for instance, modality M1 allows hands and eyes free operation is called a modality

property of M1. Knowledge of modality properties thus allows the systems developer to

 84

carry out a mapping from known requirements specification or design specification

information onto candidate modalities.

The modality properties and their use

From one perspective, Modality Theory can be viewed as a large, hierarchically

organised set of modality properties. Some modality properties are properties of the

unimodal speech modalities of which there are six: input spoken discourse, input spoken

labels/keywords, input spoken notation, output spoken discourse, output spoken

labels/keywords, output spoken notation. Most of the modality properties, however, are

properties of other unimodal modalities. Some of these other modalities are acoustic

modalities just like speech; others are graphical modalities; and yet others are haptic (touch)

modalities. In principle, any modality property may be relevant to the problem of speech

functionality, given the fact that claims about speech functionality often involve comparison

with non-speech modalities.

So the task of using the modality properties which form part of Modality Theory, for

evaluating the 120 claims, consists in searching the theory for properties of modalities which

might serve to justify the claims under investigation. The result of the search was 18 such

properties, shown in Figure 3.8, each of which would serve to justify at least one claim,

sometimes in conjunction with other modality properties. In some cases, although no

modality property has been found which could fully justify a certain claim, that property

could nevertheless support the claim to a greater or lesser extent. In other cases, neither

justification nor support could be found in modality theory for a certain claim which would

therefore be marked as one for which no justification had been found. Not surprisingly,

claims from any of those three categories might sometimes be in partial or full conflict with

modality theory. In such cases, correction was introduced to the claim in question based on

reference to a specific modality property. The notion of (full) justification used in the data

analysis amounts to the claim that, given a set of modality properties and a specific claim on

speech functionality, a designer is practically justified in making that claim on speech

functionality based on that set of modality properties. In other words, armed with the

modality properties, the designer would in principle be able to make the claim even without

the benefit of the particular source of the claim.

Modality Modality property

MP1 Linguistic
input/output

Linguistic input/output modalities have interpretational scope.
They are therefore unsuited for specifying detailed information
on spatial manipulation.

MP2 Linguistic
input/output

Linguistic input/output modalities, being unsuited for specifying
detailed information on spatial manipulation, lack an adequate
vocabulary for describing the manipulations.

MP3 Arbitrary
input/output

Arbitrary input/output modalities impose a learning overhead
which increases with the number of arbitrary items to be learned.

MP4 Acoustic
input/output

Acoustic input/output modalities are omnidirectional.

MP5 Acoustic
input/output

Acoustic input/output modalities do not require limb (including
haptic) or visual activity.

MP6 Acoustic
output

Acoustic output modalities can be used to achieve saliency in
low-acoustic environments.

MP7 Static Static graphic modalities allow the simultaneous representation

 85

graphics of large amounts of information for free visual inspection.

MP8 Dynamic
output

Dynamic output modalities, being temporal (serial and
transient), do not offer the cognitive advantages (wrt. attention
and memory) of freedom of perceptual inspection.

MP9 Dynamic
acoustic output

Dynamic acoustic output modalities can be made interactively
static.

MP10 Speech
input/output

Speech input/output modalities, being temporal (serial and
transient) and non-spatial, should be presented sequentially
rather than in parallel.

MP11 Speech
input/output

Speech input/output modalities in native or known languages
have very high saliency.

MP12 Speech
output

Speech output modalities may simplify graphic displays for ease
of visual inspection.

MP13 Synthetic
speech output

Synthetic speech output modalities, being less intelligible than
natural speech output, increase cognitive processing load.

MP14 Non-
spontaneous
speech input

Non-spontaneous speech input modalities (isolated words,
connected words) are unnatural and add cognitive processing
load.

MP15 Discourse
output

Discourse output modalities have strong rhetorical potential.

MP16 Discourse
input/output

Discourse input/output modalities are situation-dependent.

MP17 Sponta-
neous spoken
labels/keywords
and discourse
input/output

Spontaneous spoken labels/keywords and discourse input/ output
modalities are natural for humans in the sense that they are
learnt from early on (by most people). (Note that spontaneous
keywords must be distinguished from designer-designed
keywords which are not necessarily natural to the actual users.)

MP18 Notational
input/output

Notational input/output modalities impose a learning overhead
which increases with the number of items to be learned.

Figure 3.8. The 18 modality properties (MPs) used in justifying, supporting or

correcting the claims.

Comments on the modality properties

Without going into unnecessary detail, a few words of explanation on Figure 3.8

follow. In MP1, „interpretational scope‟ refers to a basic limitation in the expressiveness of

linguistic modalities compared to analogue modalities [Bernsen 1995]. For instance, one can

say (linguistic modality) “she went down the stairs” without providing the listener with any

further specification whatsoever of the stairs down which she went. The expression „the

stairs‟, just like the expressions „she‟, „went‟ and „down‟, has interpretational scope and

allows an infinite number of possible interpretations of the specifics of what the quoted

words refer to. However, one cannot draw (analogue modality) the fact that she went down

the stairs without providing a specific interpretation of the referents of the expressions „she‟,

„went‟, „down‟ and „the stairs‟. Furthermore, if one tries to linguistically express the vast

amount of specific information that is being represented in the drawing, one is faced with an

almost impossible task. It is for this reason that linguistic modalities are badly suited to

represent spatial detail.

In MP3, „arbitrary‟ modalities are representations whose meaning has been decided on

ad hoc, such as the ad hoc introduction of particular sounds in acoustic alarms. In MPs 7

and 8, „freedom of visual/perceptual inspection‟ means that the user has all the time desired

to decode particular representations. This is true of, for instance, static graphic

representations. However, as stated in MP9, even dynamic acoustic representations can be

 86

made interactively static by replaying them. In MPs 15 and 16, „discourse‟ means the basic

form of free speech exchange which is situation-dependent and rhetorical. From the point of

view of the user, discourse output is preferable to „spoken labels/keywords‟ output in the

sense that, being free-form and unconstrained in length, discourse can remove the

ambiguities which we often encounter in labels or keywords, be they spoken, graphic or

haptic. Similarly, discourse input is preferable to (designer-determined) spoken

labels/keywords input in the sense that users do not have to remember the particular

keywords they must use in order to make their speech application execute. Discourse is also

preferable to spoken „notation‟ (MP18) in the sense that notation, being an add-on to natural

language rather than a part of it, imposes an additional learning overhead which may not be

appropriate in all applications. Spoken input through a fixed (or designer-determined) set of

keywords imposes a learning overhead similar to that of spoken input notation.

It should be noted that the modality properties MP1-MP18 are simply those that were

required to justify as many of the claims as possible. This set of modality properties does not

have any form of theoretical closure, and modality theory could have provided more, or

other, properties had the data been different. There is no doubt, therefore, that a full

investigation of speech functionality would have to draw upon additional modality

properties.

Illustrations of the different evaluations of claims

In what follows, we show illustrations of the four different kinds of evaluation of the

claims: justification, support, no justification, and correction.

Figure 3.9 shows a “straight” justification from a single modality property, which does

not need auxiliary assumptions (contrast Figure 3.7, data point 11). The claim addresses

comparison between speech output and static text with respect to the domain variable

„cognitive property‟. The cautious epistemic modifier „may be preferable to‟ is quite

common in the data.

Data point 100. Speech output may be preferable to static text for cognitive property [setting

a mood]. Justified by MP15: “Discourse output modalities have strong rhetorical potential”.

Figure 3.9. A straightforward justification of a comparative claim based on one

modality property. Domain variables are in boldface.

Figure 3.10 shows a typical example of support of a claim which is complex in terms

of the number of domain variables involved. The claim compares speech input with typed

language input. The epistemic modifier „is likely to‟ is a rather strong one. MP17, therefore,

cannot fully justify claim 119. Even though the users are non-expert typists, data entry tasks

differ widely along dimensions such as size of the data set and source of the data to be

entered. Similarly, non-expert typists have different typing skills. It is not evident that the

fact that speech is natural (in some speech modalities) generalises across all these differences

to justify the claim that speech input will always be faster than typed language data entry. A

general finding with respect to the cases for which Modality Theory “merely” provided

support was that these cases dealt with rather complex relationships among the domain

variables. It is simply difficult or impossible to produce full theoretical justifications of

 87

complex relationships. As long as the theories we use in justifying modality choice,

whatever their nature, have limited complexity, there will always exist claims which are too

complex to be justified by those theories. In such cases, empirical investigation is the only

solution to a speech functionality problem.

Data point 119. Generic task [data-entry] + user group [non-experts]: speech input is likely

to be performance parameter [faster] than haptic [keyboard] modality. Supported by MP17:

“Spontaneous spoken labels/keywords and discourse input/output modalities are natural for

humans in the sense that they are learnt from early on (by most people).”

Figure 3.10. A claim which is supported but not justified by Modality Theory.

Domain variables are in boldface.

Mostly, the cases of no justification are cases of unclear, questionable, possibly or

probably false claims. For instance, the claim that “speech input is fast” cannot be evaluated

because it is too general and non-specific. It would appear that speed of input modalities is

an essentially comparative notion. In three cases, it was found that Modality Theory should

have been able to provide full justifications but could not because the theory still has not

been fully developed for input modalities.

Perhaps the most interesting case of correction occurs with respect to claim 24

(Figure 3.11). In this complex argument, the assumption first states that „acoustic non-

speech‟ can be positively characterised as arbitrary acoustics, i.e. acoustics which bear

arbitrary relationships to their ad hoc assigned meanings. The correction then points out that

the reason why arbitrary acoustics output are inferior to speech output is not that humans

cannot discriminate between different types of arbitrary acoustic representations.

Appreciation of music is probably dependent upon the ability to discriminate between large

numbers of individually different sounds, each of which does not carry any particular

meaning. Rather, the inferiority of arbitrary acoustics is due to the learning overhead which

is needed for humans to learn the meaning of many different arbitrary acoustic

representations (MP3). Finally, MP17 argues why claim 24 is true after all. This is not

because arbitrary acoustics cannot be made arbitrarily expressive of the meaning of different

alarms but because speech output is “expressive for free” to humans. This example provides

a good illustration of why we need a more firm and articulate theoretical background on

which to think and reason about the properties of speech and other modalities.

Data point 24. Many individual speech acts [warnings]: speech output is preferable to acoustic

non-speech because of its expressiveness and cognitive property [human discrimination

capacities].

Assumption: The acoustic non-speech referred to is the arbitrary acoustic modality.

Correction: Humans would appear able to discriminate between hundreds of sounds. Rather,

S-O is preferable to acoustic non-speech if the latter is an arbitrary modality.

Corrected by MP3: “Arbitrary input/output modalities impose a learning overhead which

increases with the number of arbitrary items to be learned.”

Justified by MP17: Spontaneous spoken labels/keywords and discourse input/output modalities

are natural for humans in the sense that they are learnt from early on (by most people).

 88

Figure 3.11. A corrected claim about speech output. Domain variables are in

boldface. S-O means speech output.

Overall results

The overall results of the evaluation exercise were that out of the 120 data points, 91

were justified by reference to one or more of the modality properties listed in Figure 3.8; 15

data points were supported by modality properties; and no justification was found in 14

cases. Among the cases of no justification, 11 did not deserve justification. Corrections by

reference to modality properties were made in 9 cases. The fact that 3 in 4 claims on speech

functionality could be justified through reference to a small number of modality properties,

suggests the following hypothesis: the making, during early design, of reliable claims about

the suitability or unsuitability of one or more speech modalities for aspects of the system and

interface design task at hand, can often be done based on understanding of the information

representation properties of a limited set of input/output modalities. In addition to

understanding the relevant modality properties, designers should of course understand their

design task, which includes understanding of how the relevant domain variables are

instantiated in the design space defined by the design task. If the present data is

representative, 3 in 4 design recommendations concerning speech functionality do not

require empirical experimentation, user testing, common sense hypothesising or designer

trial-and-error. If the above hypothesis is correct, modality theory helps address a problem

for the solution of which no other viable approach is in sight.

Comments on the results

In interpreting the results described above, it should be borne in mind that design

recommendations on speech functionality, whether based on Modality Theory or on

empirical methods and intuition, are not decisions to actually use speech in the design of a

particular application. The latter decisions are “holistic” or highly contextual, i.e. they must

take into account all the peculiarities of the design space as specified in the requirements and

design specifications, and often have to trade them off against one another. It is hard to

believe that these decisions and trade-offs can be made the subject of explicit generalisations

which uniquely determine the selection of particular modalities in context. Rather, the design

recommendations for which Modality Theory, on the one hand, and empirical methods and

intuition on the other, can and do provide justifications, are recommendations to consider to

use speech, or not to use speech, or to consider to use speech rather than some alternative

modality, or not to do so, or to consider using speech on certain stated conditions - given

certain properties of the design space under consideration as characterised by the

requirements and design specifications. Such design recommendations are important in early

design and development because they serve to constrain the design space with respect to the

available candidate modalities for the design task. It follows that the recommendations may

in principle be overridden by other design considerations, such as, to take a simple example,

the absence of speech synthesisers in the machines to be used for an application for which

synthetic speech would otherwise have been a good choice. In other words, predicting

speech applicability, or predicting modality applicability in general, is always a „ceteris

 89

paribus‟ matter: if everything else equally favours the competing modalities, then use

modality Mx because of its modality property MPy.

Conclusion

The conclusion is that Modality Theory represents a principled and stable approach

whose justificatory power might well be made available to systems and interface designers

who have to make modality choices during early design of speech-related systems and

interfaces. Empirical studies will still be needed of important, high-complexity speech

interaction problems. If this conclusion is true, the next question becomes that of how to

actually use available knowledge of modality properties in practical systems and interface

design. Systems and interface designers are not likely to find the modality properties

presented in Figure 3.8 sufficiently helpful for this purpose. What these properties lack, as

they stand, to be of help in design practice, seems first and foremost to be concretisation and

illustration of their import with respect to practical design decision making. Underneath any

generalisation lies a wealth of concrete instances, or practical cases, which by way of

illustration can help suggest how to understand and apply the generalisation. To mention an

extremely simple example, MP4 states that acoustic input/output modalities are

omnidirectional. MP4 justifies Claim 9 that speech output can be displayed to several people

simultaneously. A link between MP4 and Claim 9 might draw attention to the fact which

might otherwise be overlooked, that the latter follows from the former.

The follow-up question becomes: how to provide sufficient, and easily accessible,

concretisation and illustration of the modality properties? One possible solution is to use

hypertext links between modality properties, a case base, such as the 120 data points

discussed above, the domain variables, and their instantiations in the cases. For instance, to

view the explanatory scope of a certain modality property, one clicks on the property and

obtains a series of cases which that property has justified, supported or corrected. Or to

view a representative list of instantiations of a domain variable, one clicks on the variable

and obtains its instantiations in the case base. How to do this cannot be shown in a static

graphic medium, such as the present book, but has been illustrated in [Bernsen 1996].

 90

4 INTERACTION MODEL ANALYSIS AND

DESIGN

4.1 INTRODUCTION

Iterative development of the design specification

Interaction model analysis and design is a core issue in the development of advanced

interactive speech systems (cf. Section 5.4). It starts at a low speed in the survey phase, is

the focal point in the analysis and design phase, and continues during subsequent phases

alternating with evaluation (Figure 3.1). Revisions always require analysis, and some form of

re-design may be needed as late as in the acceptance test phase. In the analysis and design

phase the aim is to develop the interaction model to such a level of formal detail that it can

serve as a basis for implementation. The design specification initiated during the survey

(Section 3.2) serves as a basis for establishing an interaction model for the system to be

developed. The design specification is iteratively extended in the analysis and design phase

because many new questions typically arise during interaction model design. These questions

must be addressed, new design decisions made and conflicts arising from design decision

making resolved, often through trade-offs among conflicting constraints. Results in terms of

new design goals, constraints and modifications are added to the design specification and the

development of the interaction model is continued on this evolving basis.

Development of the first interaction model

As shown in Figure 3.1, interaction model development may proceed along two

different routes. Given a first version of the interaction model, one may either proceed

straight to implementation, following the implement-test-and-revise strategy, or one may

choose to simulate the interaction model before implementation. We discuss simulation in

Chapter 5 and implementation in Chapter 6. However, both of these strategies assume the

existence of what might be called a first interaction model. It is tempting to think that the

first interaction model must be much more specific and formal to serve the implement-test-

and-revise strategy than it has to be if simulation is to precede implementation. This is true

to the extent that the simulation strategy is often chosen when it is too difficult to build a

sufficiently specific model straight away. Nevertheless, one may save significant resources

through designing an interaction model which is as detailed as possible prior to simulation as

well.

The factors to consider in developing the first interaction model are all or most of the

elements of interactive speech theory discussed in Chapter 2, no matter if the purpose is

simulation-prior-to-implementation or straight implementation. Tools and methods in

support of first interaction model development are almost non-existent. Today‟s first

interaction model development for advanced interactive speech systems is based primarily on

common sense, the individual designer‟s experience and intuition, and trial and error, rather

than on established interaction development guidelines. If the designers are not very careful

 91

in addition to being lucky, many problems of interaction may still remain to be discovered

during simulation, implementation and later tests of the system. Best practice tools or

methods for interaction model development are therefore needed. A sound and

comprehensive set of interaction design guidelines might serve as an efficient and systematic

development and evaluation tool during early analysis and design. This could significantly

reduce development time by reducing the efforts needed for lengthy simulation experiments,

modifications of implemented models, controlled user testing and field trial cycles, thereby

reducing overall development cost. We shall present one such tool in this chapter.

Co-operativity guidelines

During the development of the Danish Dialogue System we developed a set of

guidelines for the design of co-operative spoken human-machine interaction. An initial set of

guidelines was produced on the basis of a corpus of simulated human-machine dialogues

from the Wizard of Oz experiments to be described in Chapter 5. These guidelines were then

compared to a body of maxims for co-operative human-human conversation, leading to

refinement of the guidelines. The resulting set of guidelines was then tested as a tool for the

diagnostic evaluation of spoken interaction in the controlled user test of the implemented

Danish Dialogue System. We present the test and its results in Chapter 8. In this Chapter,

the guidelines are presented as a whole in Section 4.2. Individual guidelines are exemplified

in Section 4.3. Their development is described in Section 4.4.

4.2 GUIDELINES FOR CO-OPERATIVE INTERACTION

DESIGN

The call for guidelines

The call for guidelines in support of interaction model design is not new. [Baber

1993b] reviewed the need for interactive speech systems design guidelines, considering

examples such as Grice‟s well-established conversational maxims of human-human spoken

conversation [Grice 1975] and Schneidermann‟s „8 golden rules‟ for the general design of

human-computer interaction [Schneidermann 1987]. Baber concluded that it is not obvious

how to use the Gricean maxims for developing interactive speech systems design guidelines

and that general rules, such as those of Schneidermann, lack the clarity and specificity

needed for supporting interactive speech systems design.

Co-operativity is a key to successful interaction design

Current interactive speech systems design is subject to many constraints on the

interaction between user and system. These constraints partly derive from the technology,

partly from engineering skill limitations reflecting the immaturity of the field, and partly from

insufficient theoretical foundations. As argued in Chapter 2, interaction design is complex

and not fully understood. Yet it is clearly possible to design fully usable or habitable

advanced interactive speech systems for certain classes of task.

A key to successful interaction design, we claim, is to ensure adequate co-operativity

on the part of the system during interaction. Habitable user-system interaction requires that

not only the user but also the system‟s interaction behaviour be co-operative. This is a

 92

crucial interaction design goal in order to facilitate smooth interaction in domain

communication, meta-communication and other types of communication. Miscommunication

always leads to additional user-system exchanges and causes bumpy interaction. Co-

operative communication facilitates smooth interaction and prevents unnecessary user-

initiated clarification and repair meta-communication, as well as other kinds of unexpected

user behaviour with which the system cannot cope. This is important because, with current

technologies, the possibilities of on-line handling of clarification and repair meta-

communication are seriously limited. It is sometimes assumed that, as long as the system has

powerful meta-communication abilities, it matters less how it behaves during domain

communication. This is false already because the generation of bumpy interaction is always

inefficient and induces user dissatisfaction. What is worse, however, is that really powerful

meta-communication abilities are not feasible today. User needs for clarification meta-

communication that arise from the way the system addresses the domain, can easily surpass

its meta-communication skills. For instance, if the system uses a patently ambiguous term it

is unlikely that it will be able to respond sensibly to the user who asks what the system

means by that term. And if the user unknowingly selects a non-intended meaning of an

ambiguous term, the interaction may be well underway towards failure without the system

being able to do much about it.

Meta-communication and levels of communication as aspects of co-operativity

What we would like to argue, therefore, is that high-quality, on-line repair and

clarification meta-communication skills only constitute one aspect of what it means to have a

co-operative system. Such skills are of course needed and important. In particular the speech

recognition capabilities of interactive speech systems are still fragile. Meta-communication

functionality is needed to overcome the effects of system misrecognitions. Users will also

sometimes need to have the system‟s latest utterance repeated, for instance because they did

not pay enough attention to what the system just said. Beyond these two unavoidable types

of user-initiated repair meta-communication, however, the system should not cause the need

for other kinds of clarification and repair meta-communication. As we shall see, it is

particularly important to avoid all or most forms of user-initiated clarification meta-

communication. Users are likely to cause the need for additional meta-communication

functionality, but that is a different matter which may sometimes pose hard problems to

interaction model developers, as we shall see in Chapter 8. The levels of interaction concept

(Chapter 2) is another aspect of system co-operativity. It is useful for preventing transaction

failure when user input is particularly difficult to recognise or understand. However, system

co-operativity requires more than meta-communication and graceful degradation.

The guidelines as an operationalisation of co-operativity

Speaking generally, the system should always behave in a way which optimises the

likelihood that the co-operative user gets the task done. At any stage during interaction, the

co-operative user should know what to do and how to do it, without having been misled or

left without guidance by a non-co-operative system. Co-operative interaction design

addresses all forms of system communication, and it might well be asked if there is anything

else to good interaction design apart from the design of a co-operative system. Perhaps there

is, and politeness design might be a case in point but we shall not address this issue in what

 93

follows. The practical problem therefore becomes: how to design co-operative system

behaviour? To our knowledge, this question has not been addressed in any systematic way.

Answering the question appears to generate a potentially useful set of guidelines for co-

operative spoken interaction design. The guidelines are shown in Figure 4.1.

Interaction

Aspect

G/S G

no.

Generic or Specific Guideline

Aspect 1:

Informa-

tiveness

GG1 *Make your contribution as informative as is required (for

the current purposes of the exchange).

 SG1 Be fully explicit in communicating to users the

commitments they have made.

 SG2 Provide feedback on each piece of information provided by

the user.

 GG2 *Do not make your contribution more informative than is

required.

Aspect 2: GG3 *Do not say what you believe to be false.

Truth and

evidence

GG4 *Do not say that for which you lack adequate evidence.

Aspect 3:

Relevance

GG5 *Be relevant, i.e. be appropriate to the immediate needs at

each stage of the transaction.

Aspect 4: GG6 *Avoid obscurity of expression.

Manner GG7 *Avoid ambiguity.

 SG3 Provide same formulation of the same question (or

address) to users everywhere in the system‟s interaction

turns.

 GG8 *Be brief (avoid unnecessary prolixity).

 GG9 *Be orderly.

Aspect 5:

Partner

asymmetry

GG10 Inform the users of important non-normal characteristics

which they should take into account in order to behave

cooperatively in spoken interaction. Ensure the feasibility

of what is required of them.

 SG4 Provide clear and comprehensible communication of what

the system can and cannot do.

 SG5 Provide clear and sufficient instructions to users on how to

interact with the system.

Aspect 6: GG11 Take partners‟ relevant background knowledge into

account.

Background

knowledge

SG6 Take into account possible (and possibly erroneous) user

inferences by analogy from related task domains.

 94

 SG7 Separate whenever possible between the needs of novice

and expert users (user-adaptive interaction).

 GG12 Take into account legitimate partner expectations as to

your own background knowledge.

 SG8 Provide sufficient task domain knowledge and inference.

Aspect 7: GG13 Enable repair or clarification meta-communication in case

of communication failure.

Repair and SG9 Initiate repair meta-communication if system

understanding has failed.

clarification SG10 Initiate clarification meta-communication in case of

inconsistent user input.

 SG11 Initiate clarification meta-communication in case of

ambiguous user input.

Figure 4.1. Guidelines for co-operative system interaction. GG means generic

guideline, SG means specific guideline. Generic guidelines are expressed at the

level of the Gricean maxims (marked *), and are grouped into aspect of

interaction. Each specific guideline is subsumed by a generic guideline.

The guidelines in Figure 4.1 represent a first approximation to an operational

definition of system co-operativity in task-oriented, shared-goal interaction. Their purpose is

that of achieving the shared goal as directly and smoothly as possible. It is exactly when a

guideline is violated that miscommunication is likely to occur, which again may seriously

damage the user‟s task performance.

Interaction aspects, generic and specific guidelines

The guidelines cover seven different aspects of interaction as shown in Figure 4.1. The

distinction between guideline and aspect is important because an aspect serves to highlight

the property of interaction addressed by a particular guideline, thus identifying dimensions of

co-operativity over and above the level of the co-operative guidelines themselves.

We distinguish between generic and specific guidelines. A generic guideline is general

and typically states: “Do (make, be, avoid, provide etc.) X”. A generic guideline may

subsume one or more specific guidelines related to the generic guideline in a kind-of

relationship. Specific guidelines specialise the generic guideline to certain classes of

phenomena. Although subsumed by generic guidelines, the specific guidelines are important

in interaction design because they serve to elaborate what the interaction model developer

should be looking for when designing co-operative system behaviour.

Guidelines may overlap and conflict

It should be noted that guidelines may support one another as well as conflict when

applied during actual interaction design. When guidelines conflict, the designers have to

trade off different design options against one another, with each option having a different

weighting of the guidelines. When designing a system introduction, for instance, developers

may find that GG2 (don‟t say too much) conflicts with GG1 (say enough), SG4 (tell what

the system can and cannot do) and SG5 (instruct on how to interact with the system). If the

 95

introduction is long and complex, and even if all the points made are valid and important,

users tend to get bored and inattentive. On the other hand, if the introduction is brief or even

non-existent, important information may have been left out, increasing the likelihood of

miscommunication during task performance.

4.3 GUIDELINES ILLUSTRATED AND EXPLAINED

In this section we look at each guideline in turn, providing a justification of the

guideline followed by commented examples of its application. The presentation is ordered by

aspect of interaction, generic guidelines expressing that aspect, and specific guidelines

subsumed by each generic guideline. Each guideline is expressed in abbreviated command

form followed by its “canonical” expression in Figure 4.1. Based on observation of the

effects of guideline violation, justifications refer to the nature of the damage that may be

done to user-system interaction if a guideline is violated. The examples consist in fragments

of user-system interaction and are shown in the left-hand columns of the tables below.

Comments are provided in the right-hand columns. Comments on guideline violations

include suggestions for repair of the problem illustrated by the violations. In the examples, S

means system and U means user. ••• indicates that part of the transcribed interaction has

been omitted. Text in square brackets in the left-hand column provides context for the

interaction fragment. After each comment in the right-hand column a reference in square

brackets refers to the dialogue from which the example commented on was drawn. All

examples derive from user dialogues with the Danish Dialogue System during various stages

of its development, from Wizard of Oz (WOZ) simulations (indicated by WOZxSyDz, i.e.

WOZ iteration x, subject y, dialogue z) to the user test of the implemented system (indicated

by user test, followed by a unique dialogue identifier).

INTERACTION ASPECT 1: INFORMATIVENESS.

The first group of two generic and two specific guidelines address the amount of

information that should be provided in an interaction turn.

GG1: Say enough
Make your contribution as informative as is required (for the current purposes
of the exchange).

If the system‟s contribution is not sufficiently informative, this will typically lead to

misunderstanding which may only be detected much later during interaction or, at best, lead

to immediate request for clarification by the user. Requests for clarification tend to be

difficult for the system to handle. GG1 is illustrated in Figure 4.2.

S: Are you particularly interested

in discount?

U: Yes.

•••

S: At which time?

Violation: The system withholds im-

portant (non-requested) information.

The user is not being told that there is a

blue departure at 7:20. The system

should have said that there is no red

departure but that there is a blue

departure at the chosen hour. [User

test, T32a]

 96

U: It must be on Saturday at 7:20.

S: There is no departure at 7:20.

The closest other red departure

is at 10:50.

S: There is no departure at 21:00.

The closest other red departures

are at 19:45 and 22:40. Do you

want one of these departures?

U: Yes.

S: Which?

U: Repeat.

S: There is no departure at 21:00.

Which one?

Violation: The system withholds re-

quested information. It only repeats

part of its previous response excluding

the list of possible departures. The

easiest solution is to let the system

repeat its entire previous utterance

since it is impossible to know in

advance which part a user will be most

interested in having repeated. [User

test, G33a]

S: Do you want more?

U: Yes, I have two people who are

going to Aalborg on Monday

January 23 in the morning.

Violation: The system question is too

open and non-specific. It invites the

user to take the initiative and say all

sorts of things. The question should be

rephrased into: „Do you want to make

another reservation?‟, since this is

essentially what was intended and what

the system can handle. [User test,

T31a1]

S: At which time?

U: Afternoon.

S: In the afternoon on Sunday

January 29 there is a departure

from Sønderborg to Copenhagen

at 17:00. Do you want this

departure?

Full departure information as re-

quested: The system provides a full list

of existing departures (in this case only

one) within the time interval indicated

by the user. [User test, G13b]

Figure 4.2. Examples of GG1: say enough.

The two specific guidelines subsumed by GG1 elaborate on how to say enough in an

interaction turn, given the context.

SG1 (GG1): State commitments explicitly
Be fully explicit in communicating to users the commitments they have made.

In spoken human-machine interaction design as well as in spoken human-human

conversation, it is good practice to summarise the commitments made during the dialogue to

make sure that the key information exchanged has been correctly understood. This is

sometimes called „summarising feedback‟. „Commitment‟ means that the user has made a

commitment to do, buy etc. something. Examples are ticket reservation, hotel room booking

and agreeing on a meeting date and hour. In information tasks, as distinct from ordering (or

reservation) tasks, there are no such user commitments and hence no possibility of applying

SG1. In the absence of summarising feedback, the user does not get a final opportunity to

 97

detect misunderstandings that occurred earlier in the interaction. When the flight ticket for

the wrong day arrives, it may be too late to do anything about it. SG1 is illustrated in Figure

4.3.

[The user has made a change to a ticket

which was booked earlier.

Another person is going to

travel instead.]

S: Do you want to make other

changes to this reservation?

U: No I don‟t.

S: Do you want more?

U: Ah no ... I mean is it okay then?

S: The reservation with reference

number 420 has been changed

into a ticket for Aksel Hansen

with ID-number 23.

U: Yes that‟s fine.

S: Do you want more?

Violation: The interaction had been

designed such that no summarising

feedback was provided on the

commitments made by the user. A

summary of the commitments made

during the interaction allows the user to

easily detect if everything has been

correctly understood. In the example,

the wizard improvises a confirmation

when directly asked for it. [WOZ6,

S12D2]

S: You have now booked one ticket

for ID-number 2 Jens

Kristiansen from Aalborg to

Copenhagen on Monday January

16th at 7:20 returning on

Monday January 16th at 17:45.

Your reference number is 52.

The total price is 1410 kroner.

Commitment to buy a ticket: When,

towards the end of a reservation

dialogue, the system has all the infor-

mation needed to book a flight ticket, it

communicates explicitly to the user the

commitments s/he has made. [User test,

G14a]

Figure 4.3. Examples of SG1: state commitments explicitly.

SG2 (GG1): Provide immediate feedback
Provide feedback on each piece of information provided by the user.

In interactive speech systems design it is good practice to provide some kind of

immediate feedback on each of those pieces of information provided by the user which are

intended to contribute to the achievement of the goal of the dialogue, such as making a flight

ticket reservation. Among other things, speech recognisers are still fragile and this is one

reason why it is more likely that misunderstandings will occur in human-machine interaction

than in human-human interaction. The sooner misunderstandings can be corrected, the

better. Immediate feedback provides users with an opportunity to detect misunderstandings

immediately. A problem with immediate feedback is that it tends to make the interaction

somewhat “heavier” than corresponding human-human exchanges. This is why various

forms of “lightweight” feedback have been introduced as shown in the examples below,

preserving full explicit feedback for the more difficult cases in which something has already

 98

gone wrong or there is a high risk of understanding failure. Full, immediate explicit feedback

is an example of graceful degradation. SG2 is illustrated in Figure 4.4.

S: Do you want a return ticket?

U: No, we will book that one later.

[Pause] It’s okay. They are not

going back.

S: Red discount may be obtained

on certain weekday departures

and green discount may be

obtained in weekends. In case of

red discount the home journey

may only start after two days at

the earliest. Are you particularly

interested in discount?

Violation: Boldface shows overlapping

user speech. There is no immediate

system feedback on the user‟s answer to

the question whether s/he wants a

return ticket. This makes it difficult to

detect misunderstandings at once

unless one knows the system and/or the

domain well. Discount is not offered on

one-way tickets. However, if the user

does not know this (which in the

current case s/he apparently does not),

the misunderstanding will only show

later in the interaction when the system

asks for a return date. To solve the

problem, the system should provide

immediate feedback. [User test, T21a]

S: Where does the journey start?

U: The journey starts in Aalborg.

S: From Aalborg. Where does the

journey end?

U: In Copenhagen.

S: In Copenhagen. Do you want a

return ticket?

Echo feedback: The system echoes the

key contents of the user‟s input. This

allows the user to detect a mis-

understanding immediately. No extra

turns are needed if the input was

correctly understood because the system

does not ask the user for explicit

confirmation. [User test, T32a]

S: At which time?

U: Afternoon.

S: In the afternoon on Sunday

January 29th there is a departure

from Sønderborg to Copenhagen

at 17:00. Do you want this

departure?

Implicit feedback: The system pro-

vides implicit feedback by including in

its answer which date and time of the

day it is talking about. [User test,

G13b]

S: One person. Please state the ID

number of this person.

Explicit feedback: The system pro-

vides explicit feedback by asking the

user to confirm whether the

 99

U: Change.

S: One person. Is that correct?

information it has is correct. [User test,

G11b]

Figure 4.4. Examples of SG2: provide immediate feedback.

GG2: Don’t say too much
Do not make your contribution more informative than is required.

The user may become inattentive or try to take the initiative if too much information is

being provided in a single system turn. Also, the user may become confused about the actual

interaction focus and what is the point of relevance, initiating, for instance, clarification

meta-communication as a result. However, guideline GG2 must be fairly heavily violated to

produce an interaction problem that may endanger the success of the interaction. In most

cases, GG2 problems will be revealed through users‟ subsequent comments and opinions on

the system. GG2 is illustrated in Figure 4.5.

U: I want information on discount

for children.

S: Accompanied children between

2 and 11 years of age may obtain

discount on return journeys: red

discount at 323 kroner or green

discount at 400 kroner. Children

between 12 and 19 years of age

may obtain green discount at

550 kroner. Red and green

discount can only be obtained on

certain departures. Children less

than two years old do not need a

separate ticket if accompanied

by an adult. Do you want

information on other discount

possibilities?

U: Hmm .. I want to know more on

children. What about children

travelling alone?

Violation: A user in WOZ5 com-

plained that the system talked far too

much, that she got bored during inter-

action and that she had forgotten what

she wanted when she was finally al-

lowed to speak. This complaint pro-

bably does not refer to any particular

point in the quoted system turn but

rather to its overall design. In particu-

lar, the system talked too much when

providing information on travel

conditions. The quoted system answer

perhaps is not exceptionally long in

itself. However, if most system turns

are this long and if the user does not

really get the information s/he wants

because navigation in system directed

information tasks tends to be cumber-

some, then users may easily feel that

the system talks far too much. In such

cases, the entire dialogue structure

should be examined to remove super-

fluous material. [WOZ5, S3D5]

Figure 4.5. An example of GG2: don‟t say too much.

 100

INTERACTION ASPECT 2: TRUTH AND EVIDENCE

The aspect of truth and evidence is addressed by two generic guidelines which state

that if one believes something to be false, or if one does not have sufficient evidence that

something is in fact true, then one should not make others believe that it is true. These

guidelines are evidently quite fundamental to co-operative task-oriented spoken interaction

in which the whole point of using the system is that it acts as a complete domain expert

within its stated domain of competence. Guidelines GG3 and GG4 differ from the rest of the

guidelines in that they refer to mental states, such as those of believing something or having

evidence for something. All other guidelines appear to be more behavioural in nature, stating

what the system should do or avoid doing. Some might question whether present-day

computers have anything akin to mental states. Whatever the answer to this philosophical

question, however, it is crucial to design the system‟s interaction, and the system more

generally, such that it does not produce false beliefs in its users.

GG3: Don’t lie
Do not say what you believe to be false.

It is obviously important that the user can trust what the system says. Users have good

reason to become annoyed if the system provides them with false information on, e.g.,

departure times, prices or meeting venues. Still, this may happen despite all effort to the

contrary by the developers, for instance because of bugs in the database or wizard errors, as

the examples demonstrate. GG3 is illustrated in Figure 4.6.

S: At which time?

U: Morning.

S: The green morning departures

are fully booked.

Violation: According to the flight file

the first departure on this particular

day is 9:15. This hour is not defined

as „morning‟ but as „before noon‟ by

the database (the term „morgen‟ in the

Danish denoting a more restricted

time interval than the English

„morning‟). The corresponding flight

is not fully booked. Therefore, the

system‟s message should have been

that there are no morning departures.

Apparently there is a bug in the

database which should be found and

corrected. [User test, G13b]

S: Id-number 89, Carl Frederiksen

has two reservations. One on

Friday September 11 from Aal-

borg to Copenhagen and one on

Violation: The system‟s information

on dates clearly cannot be true as

pointed out by the user. The error was

made by a wizard. Careful domain

model design is needed to avoid such

 101

Saturday September 10 from

Aalborg to Copenhagen. Is it

one of these?

U: Ahm ...something is wrong

because Saturday September 10

must be a Thursday if September

11 is a Friday. Hmm ... Friday

September 11 at 7:20.

problems. [WOZ6, S6D4]

Figure 4.6. Examples of GG3: don‟t lie.

GG4: Check what you say
Do not say that for which you lack adequate evidence.

It is not sufficient to believe that something probably is right. For the system, this

means that it must make sure before giving the information to the user. Otherwise, the

implication may be very much the same as for GG3, namely, discontented users. GG4 is

illustrated in Figure 4.7.

Violation: We did not observe any violations of GG4 during WOZ and in the

user test. An example could have been the following. A user asks for two tickets.

The system checks and finds that there are just two free seats left on the desired

flight. It then confirms that everything is OK and that the reservation has been

made. However, if confirmation is given to the customer before the database has

actually made and confirmed the reservations, another customer calling the

system at approximately the same time might have managed to book the same

two seats. Contrary to the system‟s confirmation, the former customer gets no

tickets. In fact, the travel agency in which we made our corpus recordings had

had this problem because they did not have on-line access to the database.

Figure 4.7. An example of GG4: check what you say.

INTERACTION ASPECT 3: RELEVANCE.

Irrelevant system utterances are such which do not address the current topic of the

interaction. Just as system developers are likely to be vigilant in ensuring database

correctness (cf. GG3 and GG4), interaction designers can be expected to generally avoid

designing irrelevant system utterances. When relevance problems occur, they are often

produced by factors other than the interaction design itself.

GG5: Be relevant
Be relevant, i.e. be appropriate to the immediate needs at each stage of the
transaction.

Lack of relevance in the system‟s utterances will typically lead to clarification

dialogue. The user will want to ask what the interaction is about at all or what the system

meant by what it just said. System irrelevance may be caused by misrecognition. In such

cases it may be hard to avoid violation of the guideline. The system‟s reply may be perfectly

 102

relevant given its interpretation of the user‟s utterance but totally irrelevant given what the

user actually said. GG5 is illustrated in Figure 4.8.

S: At which date will the journey

start?

U: The journey starts on January

23.

S: Today is not the 23rd of

January.

Violation: A system misrecognition

(grammar failure) triggers an error

message which is rather irrelevant to

the user, who did not mention today.

In the present case the system clearly

should be able to correctly recognise

what was said. So the grammar needs

modification. Recognition failure is

more difficult. Threshold values

(score values) for evaluating the

probability of correct recognition

might be helpful. These would allow

the system to initiate repair if the

score is too low rather than producing

a response which in all likelihood is

based on misunderstanding. [User

test, G22a]

Figure 4.8. An example of GG5: be relevant.

INTERACTION ASPECT 4: MANNER.

The aspect of manner concerns the way in which intended meaning is being expressed.

Whereas it is rather unlikely for developers to forget to design databases and interaction

according to the guidelines of truth, evidence and relevance discussed above, it is much

easier to design infelicitous expressions which violate the guidelines of manner. However,

the misleading effects on users, if this happens, can be disastrous.

GG6: Avoid obscurity
Avoid obscurity of expression.

Obscurity naturally leads to doubt and need for clarification in the user. As emphasised

above, the system is unlikely to be able to understand and respond appropriately to most

clarification sub-dialogues initiated by the user. GG6 is illustrated in Figure 4.9.

S: At which time?

U: He wants to depart at 10:45.

S: There is no departure at 10:45,

the closest other departure is at

17:00. Do you want this

departure?

Violation: The system provides

misleading information since the

departure at 17:00 is the only

departure that day. The user is left in

doubt as to whether there might be an

earlier departure. S/he therefore

proposes an earlier departure no less

than three times during the

subsequent interaction (not shown)

 103

but is still only offered the departure

at 17:00 hrs. The system should have

said that the departure at 17:00 is the

only departure on that day. [User test,

T53a]

S: At which time?

U: Before noon.

S: In the morning on Friday

January 27th there is a departure

from Copenhagen to Karup at

9:10 and 11:50 sold out. Do you

want this departure?

Violation: The system‟s answer is

difficult to understand because of its

incorrect grammar. The intended

meaning is that only the 9:10

departure has free seats whereas the

departure at 11:50 is already fully

booked. The output phrase should be

rewritten in a grammatically correct

and non-obscure form. [User test,

G11b]

Figure 4.9. Examples of GG6: avoid obscurity.

GG7: Avoid ambiguity
Avoid ambiguity.

Ambiguity creates a need for clarification if detected by the user. If undetected, as

often happens, the effects of ambiguity can be even worse. If the user unknowingly selects a

non-intended meaning of a word or phrase uttered by the system, all sorts of things can go

wrong leading to repair meta-communication or even transaction failure. GG7 is illustrated

in Figure 4.10.

S: Hello, this is the DanLuft reser-

vation service for flights

between Copenhagen and

Aalborg. Please answer the

following questions briefly and

one at a time. You may answer

“interrupt” whenever you want.

Do you want to have

information, make a reservation

or change a reservation?

•••

S: Do you want more?

U: No thanks. I interrupt.

Violation: The keyword “interrupt”

was intended to act as a command

which would suspend domain

communication and allow meta-

communication to start. However, the

intended meaning of the keyword was

never explained to users. Users

interpreted the keyword as shown in

the example, i.e. as a signal that one

wants to break off the interaction. To

break off is probably the most frequent

meaning of the word “interrupt” in Da-

nish. The keyword “interrupt” should

either be explained or, preferably,

replaced by a contextually non-

ambiguous command. [WOZ6, S11D2]

S: Where does the journey start?

U: It starts in Hellerup.

Violation: Hellerup is not the name of

an airport. It is a suburb of Copenhagen

and is not in the system‟s vocabulary.

The user rightly considers that the

journey starts at home, that is in

Hellerup, rather than at the airport. A

 104

more precise and unambiguous system

question would be to explicitly ask for

the departure airport. [User test, T52a]

Figure 4.10. Examples of GG7: avoid ambiguity.

The specific guideline subsumed by GG7 expresses a strategy for avoiding ambiguity

in a relatively limited class of situations.

SG3 (GG7): Ensure uniformity
Provide same formulation of the same question (or address) to users everywhere
in the system’s interaction turns.

Given similar contexts, different formulations of, for instance, the same question will

not necessarily be interpreted in the same way by users. Even a uniform formulation of, e.g.,

the same question may be interpreted differently if there are no domain restrictions.

However, in limited domains, such as those of interactive speech systems, use of uniform

formulations in similar contexts tends to remove all ambiguity. An added advantage is that

the use of uniform formulations helps reduce users‟ vocabulary because users tend to model

the phrases used by the system. Note that SG3 is most emphatically not appropriate during

graceful degradation. If the user does not understand what the system says or the user‟s

response is not understood by the system, the last thing the system should do is to

mechanically repeat itself. SG3 is illustrated in Figure 4.11.

S: At which time does the flight

you want leave?

U: I don‟t know.

S: At which time?

U: On Friday evening.

Violation: In the early WOZ iterations

there were many examples of different

formulations of the same system

question or answer. In this example,

the first question may be interpreted as

a request for a precise hour of departure

which the user apparently does not

know. The second question, however, is

interpreted more broadly and gives the

user the opportunity to provide a time

interval. [WOZ3, S0D4]

S: At which time?

Same formulation wrt. hour of

departure: The system uses the same

formulation when it asks for the hour

of departure no matter whether the to-

pic is the out journey or the return

journey. [User test, T24a]

Figure 4.11. Examples of SG3: ensure uniformity.

 105

GG8: Be brief
Be brief (avoid unnecessary prolixity).

The user may become bored and inattentive or may try to take over the initiative if the

system talks too much. This guideline must be fairly heavily violated to cause a real

interaction problem. Rather, the problem will be revealed through users‟ comments and

opinions on the system. GG8 is illustrated in Figure 4.12.

S: Which time of the day are we

talking about?

U: We are talking about 17:45.

Violation: The lengthy formulation of

the question is unnecessary. Moreover,

the user is being made to model the

superfluous part of the question. This

results in an unnecessarily long user

answer. Compare the following

example. [WOZ5, S2D2]

S: At which time?

U: 7:20.

Brief question on hour of departure:

The system question is stated very

briefly and so is the user‟s answer.

[User test, G14a]

Figure 4.12. Examples of GG8: be brief.

GG9: Be orderly
Be orderly.

The system should address the task-relevant topics of interaction in an order which is

as close as possible to the order expected by the user. If the user expects some topic to

come up early during interaction, that topic‟s non-occurrence at its expected “place” may

cause a user-initiated clarification sub-dialogue which the system cannot cope with. Studying

the structure of human-human conversation in the domain for which the system is being

designed may provide useful clues to orderly interaction design. GG9 is illustrated in Figure

4.13.

S: On which date will the return

journey start?

U: Preferably Sunday.

S: At which time do you want a

departure?

U: I would like a departure late in

the afternoon. Is there ah ... any

kind of discount possibility?

Violation: In the WOZ3 iteration we

found several problems of the kind illu-

strated in the example. Having

expected the topic of discount to come

up for some time, users began to

inquire about discount when

approaching the end of the interaction.

From WOZ6 onwards, users were

asked early on whether they are

interested in discount fares, thus

blocking impatient questions about

discount possibilities. [WOZ3, S0D6]

See the dialogue in Figure 2.3.

Orderly dialogue structure: The

interaction structure for flight reserva-

tion was carefully designed to be as na-

turally ordered as possible. Among

 106

other things, this was done by studying

the structure of human-human

conversation concerning the same task.

Figure 4.13. Examples of GG9: be orderly.

INTERACTION ASPECT 5: PARTNER ASYMMETRY.

Interaction partner asymmetry means that there exists important differences between

the interlocutors which are likely to influence the course and eventual success of the

interaction. When learning to speak, we implicitly learn what is a “normal” or “standard”

partner in spoken interaction. Unless otherwise told, we assume that our partner(s) in

interaction is “normal” or “standard”. If it turns out that this is not the case, we are trained

to adjust our manner of speaking to the partner‟s abilities, such as when speaking to

children, the weak of hearing or interlocutors who find themselves in noisy environments.

The computer is in many respects a non-standard partner in spoken interaction and strongly

needs to make its users aware of this fact on the penalty of generating all sorts of

miscommunication which it cannot possibly handle.

GG10: Highlight asymmetries
Inform interaction partners of important non-normal characteristics which they
should take into account in order to behave co-operatively during interaction.
Ensure the feasibility of what is required of them.

GG10 is an important and slightly complex guideline. In addition to guidelines stating

how the system itself should behave to act co-operatively during interaction, such as the

ones discussed above, guidelines are needed according to which the system should transfer

part of the responsibility for co-operation to the user. Failure to do so will demonstrate that

the system is not a co-operative speech partner. The guideline is that the non-normal

interaction partner should inform its partners of the particular non-normal characteristics

which they should take into account in order to act co-operatively. Consider an example

from human-human conversation. To be co-operative, the human interlocutor who is in a

noisy environment should inform the partners in conversation that this is the case. Having

done that, it will be up to the partners to demonstrate their co-operativity by suitable

modifications of their conversational behaviour. In human-human conversation, this is

normally accomplished without significant difficulty. Designers of spoken human-machine

interaction can rely on the same flexibility in their intended human users, provided that the

system actually does inform its users about its important non-normal characteristics, as

stated in the first part of GG10. However, the interaction designers may easily ignore the

crucial precondition stated in the second part of GG10. It is that what they demand of the

system‟s users should actually be feasible for them to do. In other words, it is not sufficient

for co-operative interaction design that the system tells the users that, to be understood by

the system, they have to do X. The reason is that doing X may not be cognitively feasible for

the users. Due to problems of cognitive overload or other factors, they may simply be unable

to do what the system requires them to do during interaction. And if they are thus unable,

then it will be difficult for the users to get their task done through interaction with the

system. Therefore, the user co-operativity asked for by the system should be feasible for its

 107

users. If it is not, difficult or impossible cases of miscommunication may proliferate. GG10 is

illustrated in Figure 4.14.

U: Yes, please.

I would like

to have

9:40.

S: 22:40. At

which date

will the

return

journey

start?

U: No, 9:40.

Violation: In its introduction, the system has asked its

users to use the keyword „change‟ if they want to take the

initiative in order to make a correction to the system‟s un-

derstanding of some previous utterance of theirs. During

the actual interaction, however, the user is too preoccupied

with the ticket reservation problem at hand to remember

to use the designer-designed keyword „change‟. It is

simply unnatural for the user to use a specific keyword in

situations such as the one illustrated. More natural mixed-

initiative meta-communication should be allowed. [User

test, T22a]

S: At which

time?

U: They must

arrive at

9:30 at the

latest.

Violation: In its introduction, the system has asked its

users to answer its questions briefly and one at a time. In

this example, the user is in fact being brief and only an-

swers the question asked by the system. However, instead

of providing a straight answer, the user provides an

indirect answer. In human-human conversation, indirect

answers such as the one illustrated are perfectly correct

answers. An indirect response simply indicates that the

interlocutor does not possess the information necessary to

provide a direct answer. In response to the indirect user

answer shown, a human travel agent would list the

relevant departures. An interactive speech system,

however, having limited inferential capabilities, will be

unable to cope with most indirect responses. It is the task

of the interaction model designer to either prevent indirect

responses, such as the one illustrated, from happening, or

enable the system to understand indirect responses of this

type. [User test, T34a]

S: At which

time?

U: Which

possibilities

are there?

Violation: In its introduction, the system has asked its

users to answer its questions and only take the initiative by

using one of the two keywords „change‟ and „repeat‟.

Nevertheless, the user in this example asks a question and

thus takes the initiative. What the example shows is that

reservation dialogue, in its very nature, so to speak, is

informed reservation dialogue. It is natural for users who

are going to make a reservation or, more generally, order

something, that they do not always possess the full

information needed to decide what to do. In such cases,

they ask for the information. Since the system poses as a

perfect domain expert, this is legitimate. What users

overlook, however, and despite what was said in the

system‟s introduction, is that the system does not have the

skills to process their questions. Again, the interaction

designers have failed to take into account that users

should only be asked to do what is feasible for them. [User

test, T12a]

 108

S: On which

date will the

journey

start?

U: The journey

starts on

Friday

January 20

at 8:15.

Violation: In its introduction, the system has asked users

to answer its questions briefly and one at a time. However,

in the shown example the user answers two questions at a

time. What this suggests is that users sometimes naturally

store information in “packages” consisting of several

pieces of information. In such cases, they are unlikely to

consistently split these packages into single pieces of

information despite having been told to do so by the

system. This must be taken into account when designing

the system‟s input understanding capabilities. [User test,

T31a1]

Figure 4.14. Examples of GG10: highlight asymmetries.

The specific guidelines subsumed by GG10 concern communication of what the

system can and cannot do and instructions on how to interact with the system.

SG4 (GG10): State your capabilities
Provide clear and comprehensible communication of what the system can and
cannot do.

It should be made clear to users what the system knows about, what it does not know

about and what are its limitations as a partner in spoken interaction. Users should not waste

time on interaction which eventually will show that the system does not possess the

knowledge they look for. Nor should they be misled into attributing to the system more

advanced comprehension skills than it actually possesses. As discussed in Section 2.7,

making these things sufficiently clear to users can be difficult indeed. SG4 is of particular

importance in walk-up-and-use systems where users cannot be expected to have access to

independent, e.g. written, information about the system. SG4 is illustrated in Figure 4.15.

S: Customer number 2.

Is that correct?

U: No id-numbers 1 and 4.

S: Customer number 4.

U: Wrong, the customer

number is 2.

S: How many people will

travel?

Violation: Boldface shows overlapping user

speech. The user tries to make a change. How-

ever, the system does not listen during its own

turns. Users were not informed on this as they

should have been. [User test, T31a2]

S: At 19:50.

U: Yes.

S: You have now booked ...

Violation: Boldface shows overlapping user

speech. The example shows a phatic expression

which overlaps with the system‟s turn. This is a

common way for humans to express that the

conversation is being followed with interest

during the interlocutor‟s turn. Pauses, in

particular, may be filled this way. In such cases

it does not matter that the system does not listen

during its own turns. However, users were not

informed on this as they should have been.

 109

[User test, T41a]

S: Hello, this is the DanLuft

reservation service for

domestic flights. Do you

know how to use this

system?

U: No.

S: The system can reserve

tickets for Danish

domestic flights.

Communication of what the system can do:

The system informs the user from the very

beginning on which task it can solve. [User test,

T11a]

Figure 4.15. Examples of SG4: state your capabilities.

SG5 (GG10): State how to interact
Provide clear and sufficient instructions to users on how to interact with the
system.

Like SG4, SG5 addresses both the system‟s task capabilities and its communication

capabilities. If the system is unable to handle some task in a standard way or is only able to

handle the task in one of several standard ways, this should be communicated to users to

prevent interaction failure. And if the system needs particularly reduced forms of user input,

this should be stated or otherwise clearly communicated. SG5 is of particular importance in

walk-up-and-use systems where users cannot be expected to have access to independent,

e.g. written, information about the system. SG5 is illustrated in Figure 4.16.

S: At which time?

U: At 18:10.

S: There is no departure at 18:10.

The closest other departures are

at 18:00 and 22:00. Do you want

one of these departures?

U: No.

S: At which time?

U: 15:45 from Esbjerg.

Violation: The user is supposed to

book a round-trip ticket and, as is

common, perceives the task as one of

booking a return ticket. Round-trip

tickets, however, can only be handled

by the system as two separate single

reservations. When asked about the

home departure hour for the second

time, the user tries and fails to input a

departure airport for the home journey

that is different from the arrival airport

for the out journey. The system does

not provide information on how to

handle round-trips as it should have

done. [User test, G54a1-2]

S: The system can reserve tickets

for Danish domestic flights. You

use it by answering the system‟s

questions. In addition you may

use the two special commands

„repeat‟ and „change‟ to have

the most recent information

Instructions on how to interact: In its

introduction, the system informs its

users on how to interact with it. How-

ever, it turned out that what was

required of users was often not feasible

for them (cf. the examples under

GG10). The use of keywords for repair

 110

repeated or changed. The system

will only understand you when

you answer its questions briefly

and one at a time.

and clarification meta-communication

is not natural. Moreover, information is

often naturally packaged, such as date

and time together, which means that it

may be difficult to answer the system‟s

questions one at a time. [User test,

T11a]

Figure 4.16. Examples of SG5: state how to interact.

INTERACTION ASPECT 6: BACKGROUND KNOWLEDGE.

This aspect addresses the fact that the system and its developers need to recognise

relevant differences among users and user groups in terms of background knowledge. These

differences not only concern the novice/expert distinction among users but also other types

of background knowledge differences, and may even include recognition of widespread

erroneous background assumptions among users. The system must also take into account

the expectations users may have with respect to the system‟s background knowledge. Based

on this recognition, the system either has built prior to interaction, or adaptively builds

during interaction, a model of the user which serves to guide system co-operativity.

GG11: Be aware of users’ background knowledge
Take users’ relevant background knowledge into account.

The system needs to adjust to users‟ background knowledge and inferences based

thereupon. Otherwise, the users may fail to understand the system and initiate clarification

meta-communication. GG11 is illustrated in Figure 4.17. We do not currently have any

example of a violation of GG11 that is not also a violation of one of its subsumed specific

guidelines.

S: Red discount may be obtained

on certain weekday departures

and green discount may be

obtained in weekends. In case of

red discount the home journey

may only start after two days at

the earliest.

Information on discount types: In

particular novice users cannot be ex-

pected to have any background know-

ledge on discount types. The system

therefore provides information on

these to users who have said earlier

that they do not know the system.

[User test, G12b]

Figure 4.17. An example of GG11: be aware of users‟ background knowledge.

The specific guidelines subsumed by GG11 concern inferences by analogy and the

distinction between novices and experts.

 111

SG6 (GG11): Be aware of user inferences
Take into account possible (and possibly erroneous) user inferences by analogy
from related task domains.

If the system does not take into account possible user inferences by analogy, this may

invite users to ask clarification questions or leave them, probably discontentedly so, with

unanswered questions. SG6 is illustrated in Figure 4.18.

S: Do you want more?

U: Did I get a discount?

Violation: The user wants discount

and does not know that this is

unavailable on one-way journeys. The

system should take into account users‟

background knowledge by mentioning

that, if the user has chosen one-way

tickets, discount cannot be obtained.

[User test, T13a]

Figure 4.18. An example of SG6: be aware of user inferences.

SG7 (GG11): Adapt to novices and experts
Separate whenever possible between the needs of novice and expert users (user-
adaptive interaction).

There are major differences between the needs of novice and expert users of the

system, one such difference being that the expert users already possess the information

needed to understand system functionality. If the system favours expert users, it is likely to

fail as a walk-up-and-use system. If it favours novice users, it is likely to be perceived as

cumbersome and redundant by expert users. SG7 is illustrated in Figure 4.19.

S: Hello, this is the DanLuft reser-

vation service for domestic

flights.

Do you know this system?

U: No.

S: The system can reserve tickets

for Danish domestic flights. You

use it by answering the system‟s

questions. In addition you may

use the two special commands

„repeat‟ and „change‟ to have

the most recent information

repeated or changed. The system

will only understand you when

you answer its questions briefly

and one at a time.

S: Please state your customer

number.

Optional system introduction: The

example shows the system intro-

duction which users will get if they

answer „no‟ to the first system ques-

tion. If they answer „yes‟ the system

will immediately ask for a customer

number. [User test, T11a]

Figure 4.19. An example of SG7: adapt to novices and experts.

 112

GG12: Be aware of user expectations
Take into account legitimate user expectations as to your own background
knowledge.

When the system can be assumed to be a perfect expert within its declared domain of

expertise, it must possess the amount and types of background knowledge which a user

legitimately may expect it to have. If this is not the case, users may become confused or

annoyed with what they rightly regard as a deficient system. GG12 is illustrated in Figure

4.20. This illustration might have been used for SG8 as well.

S: At which time?

U: 20:10.

S: The departure at 20:10 is fully

booked. The closest other depar-

tures are at 19:00 and at 22:05.

Do you want one of these de-

partures?

Violation: At first sight nothing is

wrong here. However, when you call a

travel agency and the flight you want

is fully booked, you are usually

offered to be put on a waiting list. The

user pointed this out in a telephone

interview after her interaction with

the system. She rightly missed this

option during interaction and might

as well have started asking questions

about it during her interaction with

the system. The waiting list

functionality should be included

among the system‟s capabilities.

[WOZ7, S16D3]

Figure 4.20. An example of GG12: be aware of user expectations.

The specific guideline subsumed by GG12 concerns the system‟s task domain

knowledge and inference capabilities.

SG8 (GG12): Cover the domain
Provide sufficient task domain knowledge and inference.

An interactive speech system is often if not always supposed to be a perfect expert

within its declared domain of expertise. This includes task domain coverage and relevant

inferences. The system must be able to provide the appropriate domain information when

and as required by its users. The system must also be able to make appropriate inferences to

avoid lengthy and inefficient turn taking which only serves to clarify something which the

system could have inferred on its own. SG8 is illustrated in Figure 4.21.

S: At which time [out

journey]?

U: A quarter past seven. ...

S: At which time [home

journey, same day]?

U: A quarter to six.

S: The home journey must

Violation: The problem concerns the hour of

departure for the home journey. The system

checks the temporal relationship with the out

journey. The home departure time „a quarter

to six‟ is being understood as AM by default.

However, it is not ambiguous in the present

context and should have been understood as

17:45. The system should provide a general

solution to the class of problems exemplified

by: if out and home journey are on the same

 113

not be earlier than the out

journey.

day and the home departure time is „a quarter

to six‟ then understand the answer as „17:45‟.

[User test, T14a]

S: The tickets will be mailed

in a couple of days.

U: Change.

S: The tickets should be sent;

is this correct.

U: No.

S: Should the tickets be sent

or will they be picked up

at the airport?

Violation: There are only two possibilities

concerning ticket delivery: tickets may either

be mailed or picked up at the airport.

Although the user has stated that the tickets

should not be mailed, the system does not

make the obvious inference but asks again

whether tickets should be sent or will be

picked up at the airport. The system should

not ask superfluous questions but deduce what

the user wants when this is obvious. If only

two user answers are possible, then

understand rejection of one of them as

confirmation of the other. [User test, G44a]

S: On which date will the

return journey start?

U: Same day.

S: Thursday January 26

Date inference: The user has asked for a

journey starting on January 26. The system

correctly infers that when the user then

answers „same day‟ to the question of return

journey, this means January 26. [User test,

G34a]

S: At which time?

U: Before noon.

S: Before noon on

Wednesday February 1

there is a red departure

from Aalborg to

Copenhagen at 10:50. Do

you want this departure?

Departure information: The system provides

appropriate information on departures in the

given context (the user has asked for discount

and a departure time before noon). [User test,

G12b]

Figure 4.21. Examples of SG8: cover the domain.

INTERACTION ASPECT 7: REPAIR AND CLARIFICATION.

This aspect addresses the need for meta-communication design. Meta-communication

is typically initiated for purposes of clarification and repair. We do that in human-human

spoken conversation when we say, e.g., “Please repeat - I didn‟t hear what you just said”

(repair); “Sorry, I said „recognise speech‟, not „wreck a nice beach‟” (repair), “Is „speech

recognition‟ the same as „speech understanding‟?” (clarification); or “What do you mean by

„red departure‟?” (clarification). Meta-communication is likely to be needed in all interactive

speech systems but should be reduced to a minimum to optimise interaction efficiency.

 114

GG13: Enable meta-communication
Enable repair or clarification meta-communication in case of communication
failure.

Users as well as systems need to initiate clarification or repair meta-communication

from time to time. The need may have many different causes, such as system violation of a

co-operativity guideline, user inattention, or system misunderstanding. GG13 covers user

initiated repair and clarification meta-communication as well as system initiated meta-

communication. As said before, user initiated clarification meta-communication is generally

very difficult to handle and should be prevented as far as possible. This is probably true not

only for system directed interaction as in the Danish Dialogue System. GG13 is illustrated in

Figure 4.22.

S: ID number 1, Jens Hansen.

Where does the journey start?

U: Change.

S: ID number 1, Jens Hansen. Is

that correct?

U: No, ID number 4.

User initiated repair: The system

has misunderstood the user‟s input as

regards the ID number of the

traveller. The user correctly initiates

repair to change the misunderstood

information. [User test, T11b].

S: There is no departure at 21:00,

the closest other red departures

are at 19:45 and 22:40. Do you

want one of these departures?

U: Yes.

S: Which?

U: Repeat.

User initiated repair: The user

probably forgot which departure times

were mentioned and asks the system

to repeat them. [User test, G33a].

S: Friday evening from

Copenhagen to Aalborg there

are the following departures: at

17:45, at 19:30 and at 22:15.

U: Are any of them green

departures?

User initiated clarification: The user

wants a discount ticket. Since the

system does not provide any informa-

tion on discount along with the listed

departure hours, the user asks for

clarification. [WOZ3, S1D2]

Figure 4.22. Examples of GG13: enable meta-communication.

The specific guidelines subsumed by GG13 address system initiated repair and

clarification meta-communication in cases of missing understanding, inconsistent input and

ambiguous input.

 115

SG9 (GG13): Enable system repair
Initiate repair meta-communication if system understanding has failed.

If user input cannot be interpreted as meaningful in context, the system needs the

ability to ask for repetition or to otherwise indicate that it did not understand what was said.

SG9 is illustrated in Figure 4.23.

S: At which time?

U: It must be as cheap as possible.

S: Sorry. At which time?

U: Cheap.

S: Sorry, I did not understand.

System-initiated repair: The word

„cheap‟ is not in the system‟s vocabula-

ry and neither of the two user

utterances in the example are

recognised as meaningful in the

context. The system therefore correctly

initiates repair, informing the user that

the input was not understood. [User

test, T13a].

Figure 4.23. An example of SG9: enable system repair.

SG10 (GG13): Enable inconsistency clarification
Initiate clarification meta-communication in case of inconsistent user input.

If the user‟s input is inconsistent, clarification becomes necessary. The system should

not try to second-guess the user‟s priorities because if the guess is wrong, the user will have

to initiate meta-communication instead, possibly in the form of clarification. SG10 is

illustrated in Figure 4.24.

S: Are you particularly interested

in discount?

U: Yes.

S: On which date will the journey

start?

U: Monday.

S: Monday January 16. At which

time?

U: At 7:20.

S: There is no departure at 7:20.

The closest other red departure

is at 10:50.

Violation: The user inconsistently

wants both the 7.20 departure and dis-

count. There is, in fact, a departure at

7:20 but it does not offer discount. The

system implicitly assigns priority to

discount over departure time without

sufficient reason. Instead, the system

should ask for the user‟s priorities, say-

ing, for instance: “7:20 is not a

discount departure. Red discount can be

obtained on the departures at x, y and

z. Which departure do you want?”

[User test, G14a].

Figure 4.24. An example of SG10: enable inconsistency clarification.

SG11 (GG13): Enable ambiguity clarification
Initiate clarification meta-communication in case of ambiguous user input.

If the user‟s input is ambiguous, clarification becomes necessary. The system should

not try to second-guess what the user actually means because if the guess is wrong, the user

 116

will have to initiate meta-communication instead, possibly in the form of clarification. SG11

is illustrated in Figure 4.25.

U: Around 7 o‟clock.

S: 19 o‟clock. At which date

will the return journey

start?

U: Change.

Violation: All departure times which may be

understood as being before noon (AM), such

as 7 o'clock, are automatically understood as

such. If there is no flight at the time, the

dialogue manager automatically adds 12

hours to the departure time. If there is a

flight at this time, input will be interpreted

as being PM yielding, in the example, 19

o'clock. This rule does not work in practice.

Instead, the system should ask the user for

clarification in case of ambiguous temporal

input which cannot be resolved by context.

[User test, G32a].

Figure 4.25. An example of SG11: enable ambiguity clarification.

Concluding remarks

In order to discover interaction problems at an early stage, developers need to know

what to look for in the emerging interaction model. The guidelines for co-operative spoken

interaction design are used by manually evaluating if each system utterance in isolation as

well as in context violates any of the generic or specific guidelines. If it does, it is a potential

source for communication failure which should be removed. Using the guidelines as design

guidelines thus means to apply them to analytical „walk-throughs‟ through the emerging

interaction model for the interactive speech system that is being designed. This requires

training and skill. An interactive speech system designer who simply receives the guidelines

as represented in Figure 4.1, may not quite know what to do with them in practice. We

believe that a representation of the guidelines which includes their justification as well as an

extensive set of example violations, as illustrated above, might be of help.

4.4 DEVELOPMENT AND JUSTIFICATION OF THE

GUIDELINES

The guidelines for co-operative spoken human-machine interaction have been

validated in three ways. Firstly, they were developed on the basis of the dialogue corpus

produced by the Wizard of Oz (WOZ) experiments described in Chapter 5. Secondly, the

guidelines were compared with Grice‟s maxims of co-operative human-human conversation

[Grice 1975]. Thirdly, the guidelines were tested against the dialogue corpus from the user

test of the implemented Danish Dialogue System. This section describes the development

and validation process which resulted in the consolidated set of guidelines presented above.

 117

4.4.1 ESTABLISHING THE GUIDELINES

Development of the first 14 guidelines

The interaction model for our flight ticket reservation system was developed by the

WOZ experimental prototyping method. This produced a corpus of 125 transcribed

dialogues. A major concern during WOZ was to detect problems of user-system interaction

in the transcribed dialogues. Towards the end of the WOZ process the actual and potential

problems of interaction identified in the WOZ corpus were analysed, classified and

represented as violations, made by the system, of guidelines for co-operative interaction.

Each problem was considered a case in which the system in addressing the user had violated

a guideline for co-operative interaction. The guidelines were made explicit based on the

problems analysis. To illustrate the WOZ corpus analysis, we present an example of an

identified problem type (a) and the co-operative guideline (in DSD terms: „design

commitment‟, cf. Section 3.4) which has been violated (b). A justification of the guideline is

provided (c), followed by examples of how it was found to be violated (d). Under (d) we

note whether a particular example was discovered empirically (i.e. from actual problems of

interaction) or analytically (i.e. through design analysis revealing a potential problem).

Finally, a solution to each problem is proposed and sometimes discussed (e). The template

(a-e) was applied to each problem that had been identified in the WOZ corpus [Bernsen,

1993b].

(a) Problem: Non-separation between novice users who need introductory information

about what the system can and cannot do and intermediate and expert users who do not

need such information and for whom listening to it would only delay task performance.

(b) Violation of design commitment: Separate whenever possible between the needs of

novice and expert users (user-adaptive interaction).

(c) Justification: There are major differences between the needs of novice and expert

users, one such difference being that expert users already possess the information needed to

understand system functionality.

(d) Examples: Introduction (WOZ7): A new question was added: “Do you know this

system?” First-time users may obtain additional information about the functionality of the

system and about how to communicate with it. Other users may proceed directly with their

task. This problem was discovered from user problems. Users complained that the system

talked too much. Consideration of this complaint led to the described design improvement.

(e) Solution: In WOZ7 it was made optional for users to listen to the introduction to

the system.

Note that in this case the solution was reasonably straightforward. In many other

cases, solutions were only found through more or less difficult reasoning of the kind

amenable to DR representation (see Section 3.4). One example is the question of when the

system should raise the issue of discount. In WOZ6, the wizard would say: “Are you

particularly [stressed by the wizard] interested in making use of special fares?”. The word

„particularly‟ was introduced in order to avoid that users who did not want to make use of

special fares, would answer „yes‟. Experience with user responses during earlier iterations

had shown that this might otherwise happen. The change caused an improvement but the

 118

problem did not go away. In the discussion we came across the possibility that users would

interpret the system‟s question (with or without „particularly‟) as the question whether they

have an interest in travelling as cheaply as possible, which perhaps most people have.

Several alternative design options were discussed, including:

Option a. Special fares are offered only after all the information relevant to reservation

has been entered into the system‟s database. This will not do, however, as users who turn

out to be interested in special fares may have to go through most of the reservation dialogue

once again.

Option b. At an early stage in the dialogue the system asks if the user‟s choice of time

of travel depends on the possibility of obtaining special fares.

This problem was discovered from user problems.

Solution: Option b was preferred.

The described procedure led to the identification of 14 guidelines for co-operative

human-machine interaction based on analysis of 120 examples of user-system interaction

problems (Figure 4.26). The guidelines were at this point called „principles‟, which is why

they are numbered P1 to P14 in the figure. Figure 4.26 includes a justification of each

guideline, which serves the additional purpose of clarifying its meaning and scope. Although

not explicitly stated in each justification, we took it to be straightforward that violations of

any of the guidelines may lead users to initiate meta-communication or other non-desirable

interaction behaviour, because this is the strategy naturally adopted in human-human

conversation in such cases. To facilitate comparison with maxims of co-operative human-

human conversation (Section 4.4.2) , each occurrence of the term „system‟ in the stated

guidelines may be replaced by „speaker‟, and each occurrence of the term „user‟ may be

replaced by „interlocutor‟ or any other favoured term, such as „dialogue partner‟ or

„recipient‟.

Guidelines Justification

P1. Provide clear and

comprehensible

communication of what

the system can and

cannot do.

Risk of communication failure in case of lacking

knowledge about what the system can and cannot do.

Violation of this principle leads users to have

exaggerated expectations about the system‟s abilities,

which again may lead to frustration during use of the

system.

P2. Provide sufficient

task domain knowledge

and inference.

Risk of communication failure in case of lacking task

domain information. Full task domain knowledge and

inference within specified limits is necessary in order

to satisfy all relevant user needs in context. Otherwise,

users will become frustrated when using the system.

P3. Provide same

formulation of the same

question (or address) to

users everywhere in the

system‟s interaction

turns.

Need for unambiguous system response (consistency

in system task performance). The principle is meant to

reduce the possibility of communication error caused

by users‟ understanding a new formulation of a

question as constituting a different question from one

encountered earlier.

P4. Take users‟ relevant Need for adjustment of system responses to users‟

 119

background knowledge

into account.

relevant background knowledge and inferences based

thereupon. This is to prevent that the user does not

understand the system‟s utterances or makes

unpredicted remarks, such as questions of

clarification, which the system cannot understand or

answer.

P5. Avoid „semantical

noise‟ in addressing

users.

Need for unambiguous system response. This design

commitment is meant to reduce the possibilities of

evoking wrong associations in users, which in their

turn may cause the users to adopt wrong courses of

action or ask questions which the system cannot

understand.

P6. It should be possible

for users to fully exploit

the system‟s task domain

knowledge when they

need it.

Risk of communication failure in case of inaccessible

(or not easily accessible) task domain information. In

such cases, users may pose questions which the system

is unable to understand or answer.

P7. Take into account

possible (and possibly

erroneous) user

inferences by analogy

from related task

domains.

Need for adjustment to users‟ background knowledge

and inferences by analogy based thereupon. Users may

otherwise fail to understand the system.

 120

P8. Provide clear and

sufficient instructions to

users on how to interact

with the system.

Risk of communication failure in case of unclear or

insufficient instructions to users on how to interact

with the system. Users may become confused about

the functionality of the system.

P9. Separate whenever

possible between the

needs of novice and

expert users (user-

adaptive interaction).

There are major differences between the needs of

novice and expert users, one such difference being

that expert users already possess the information

needed to understand system functionality.

P10. Avoid superfluous

or redundant interactions

with users (relative to

their contextual needs).

Users tend to get irritated and inattentive from

unnecessary system turns.

P11. Be fully explicit in

communicating to users

the commitments they

have made.

Users need feedback from the system on the

commitments made in order to ensure correctness.

P12. Reduce system talk

as much as possible

during individual

interaction turns.

Users get bored and inattentive from too much

uninterrupted system talk.

P13. Provide feedback

on each piece of

information provided by

the user.

Immediate feedback on user commitments serves to

remove users‟ uncertainty as to what the system has

understood and done in response to their utterances.

P14. Provide ability to

initiate repair if system

understanding has

failed.

When system understanding fails, the system should

initiate repair meta-communication and not leave the

initiative with the user.

Figure 4.26. The early co-operative spoken interaction design guidelines (left-

hand column) and their justifications (right-hand column).

4.4.2 COMPARISON WITH GRICE’S MAXIMS

Having developed the guidelines shown in Figure 4.26, we became aware of the link

between our work and Grice‟s Co-operative Principle and maxims. Grice‟s Co-operative

Principle (CP) is a general principle which says that, to act co-operatively in conversation,

one should make one‟s “conversational contribution such as is required, at the stage at

which it occurs, by the accepted purpose or direction of the talk exchange in which one is

engaged” [Grice 1975]. Grice proposes that the CP can be explicated in terms of four

groups of simple maxims which are not claimed to be jointly exhaustive. The maxims are

marked with an asterisk in Figure 4.1. All the maxims are generic guidelines.

 121

Relevance of the comparison

There is little point in discussing the relationship between our early guidelines of co-

operative spoken interaction design and Grice‟s maxims of co-operative human-human

conversation, unless it can be demonstrated that Grice‟s maxims actually serve a purpose

which is more or less identical to that served by the guidelines. If this is the case, it does not

matter if the maxims might have been designed with other purposes in mind. In fact, this

may be why Grice did not identify all the aspects of co-operative interaction to be discussed

below. We shall speak interchangeably about „conversation‟ and „interaction‟ as these terms

denote the same phenomenon for present purposes.

Our guidelines were developed to avoid or prevent miscommunication and user needs

for initiating clarification and repair meta-communication through, e.g., asking questions of

the system during task-oriented spoken interaction. Grice assumes that any particular

conversation serves, to some extent, a common purpose or set of purposes which may be

more or less definite and either fixed from the start or have evolved during the conversation.

In such conversations, he claims, adherence to the maxims is rational because it ensures that

the interlocutors pursue the shared goal(s) most efficiently. Spoken task-oriented

interaction, such as that served by the Danish Dialogue System, is a prototypical case of

shared-goal conversation: throughout the interaction, user and system share one common

and specific goal, namely that of completing the flight ticket reservation task.

Correspondingly, the aim of interaction design is to maximise efficiency of information

exchange. Thus, Grice‟s CP clearly purports to be relevant to the design of task-oriented

interaction.

Grice, however, did not develop the maxims for the purpose of preventing

communication failure in shared-goal interaction. Rather, his interest was in the inferences

which interlocutor B is able to make when interlocutor A deliberately violates one of the

maxims, assuming that B will be aware that the violation was indeed deliberate. So, for

instance, if A says something irrelevant in context, intending that B recognises that it was

irrelevant and said on purpose, then B might be able to infer some interesting conclusions,

such as that A wishes to avoid a certain subject. Humans do such things quite often in

conversation. Grice calls such deliberate interlocutor‟s messages „conversational

implicatures‟ [Grice 1975, 1978]. Both the notion and the theoretical issues associated with

conversational implicature were absent in our work and appears absent from all other efforts

in spoken interaction design that we are familiar with. Rather, spoken interaction design

focuses on making the machine state, as literally as possible, and hence without invoking

conversational implicature, what needs to be stated in context. Grice was not interested in

the miscommunication and needs for meta-communication that may arise the moment an

interlocutor non-deliberately fails to adhere to the CP and the maxims. However, the fact

that miscommunication may arise at this point would seem perfectly compatible with Grice‟s

theory: in such cases, one interlocutor (the user) fails to grasp any conversational

implicature because there isn‟t any, and fails to understand the other interlocutor‟s

communicative intention more or less. The CP cum maxims, he says, imply that at each stage

of conversation some possible conversational moves would be excluded as conversationally

unsuitable. If such moves are nevertheless made non-deliberately, miscommunication is

likely to arise. If and when discovered, meta-communication is the natural co-operative

 122

mechanism which serves to bring the dialogue back on track. For a more detailed account of

Grice‟s CP and its discussion in linguistics and cognitive science, see [Bernsen et al. 1996].

We conclude that the CP and the maxims, as a necessary side-effect of improving

understanding and enhancing communication, and thereby ensuring as smooth an interaction

as possible, serve the purpose of preventing unwanted spoken interaction behaviour as well

as the need for clarification and repair meta-communication. Conversely, one way of

reducing miscommunication and the need for its clarification and repair is to rely on

guidelines that enhance communication. Our guidelines are of this type.

Thus, the main difference between Grice‟s work and ours is that the maxims were

developed to account for co-operativity in human-human conversation, whereas our

guidelines were developed to account for co-operativity in spoken human-machine

interaction. Given this commonality of purpose, it becomes of interest to compare guidelines

and maxims.

Maxims and guidelines compared

In the following we show that the guidelines include the maxims as a sub-set and thus

provide a corpus-based confirmation of the validity of the maxims for spoken human-

machine interaction. Moreover, the guidelines manifest aspects of co-operative task-oriented

interaction which were not addressed by Grice. The maxims concerned are GG1, GG2 and

GG5 to GG9 in Figure 4.1. The guidelines are P1 to P14 in Figure 4.2.

We first demonstrate that a sub-set of the guidelines are roughly equivalent to the

maxims. The following guidelines have counterparts among the maxims:

P5. Avoid „semantical noise‟ in addressing users.

P5 is a generalised version of GG6 (non-obscurity) and GG7 (non-ambiguity). Its

infelicitous expression was due to the fact that we wanted to cover observed ambiguity and

related phenomena in one guideline but failed to find an appropriate technical term for the

purpose. P5 may, without any consequence other than improved clarity, be replaced by GG6

and GG7. For examples, see Figures 4.9 and 4.10.

P6. It should be possible for users to fully exploit the system‟s task domain knowledge when

they need it.

P6 has a formulation which lacks any direct correspondence among the maxims. P6

can be considered an application of GG1 (informativeness) and GG9 (orderliness), as

follows. If the system adheres to GG1 and GG9, there is a maximum likelihood that users

obtain the task domain knowledge they need from the system when they need it. The system

should say enough and address the task-relevant topics of interaction in an order which is as

close as possible to the order expected by users. Eventually saying enough is not sufficient

for co-operativity. If the user expects some topic to come up early in the interaction, that

topic‟s non-occurrence at its expected “place” may cause a clarification sub-dialogue which

the system cannot understand. For examples, see Figures 4.2 and 4.13. P6 may be replaced

by GG1 and GG9 without significant loss. This assumes that GG9, when applied to the

ticket reservation task, would yield the implication that orderliness is defined by the user‟s

expectations.

 123

P10. Avoid superfluous or redundant interactions with users (relative to their contextual

needs).

P10 is virtually equivalent to GG2 (do not overdo informativeness) and GG5

(relevance). Grice observed the overlap between GG2 and GG5 [Grice 1975]. P10 may,

without any consequence other than improved clarity, be replaced by GG2 and GG5. For

examples, see Figures 4.5 and 4.8.

P12. Reduce system talk as much as possible during individual dialogue turns.

P12 is near-equivalent to GG8 (brevity). For examples, see Figure 4.12.

Summarising, the generic guidelines P5, P6, P10 and P12 may be replaced by maxims

GG1, GG2 and GG5-GG9. These maxims are capable of performing the same task in

guiding interaction design. In fact, as argued, the maxims are able to do the better job

because they, i.e. GG6 and GG7, and GG1 and GG9, respectively, spell out the intended

contents of two of the guidelines. This provides corpus-based confirmation of maxims GG1,

GG2 and GG5-GG9, i.e. of their stating basic guidelines of co-operative, task-oriented

spoken human-machine interaction. However, for interaction design purposes, the maxims

may be supplemented with task-specific or domain-specific guidelines. The specific

guidelines have no counterparts among the maxims. Yet these guidelines appear useful to

interactive speech systems design. What we need in order to discover interaction problems

at an early stage, is to know what to look for in the emerging interaction model. The specific

guidelines extend the generic guidelines by further specifying their import.

P3 (now SG3). Provide same formulation of the same question (or address) to users

everywhere in the system‟s dialogue turns.

P3 represents an additional precaution against the occurrence of ambiguity in machine

speech. It can be seen as a special-purpose application of GG7 (non-ambiguity), which is not

needed in human-human conversation. For examples, see Figure 4.11.

P11 (now SG1). Be fully explicit in communicating to users the commitments they have

made.

P13 (now SG2). Provide feedback on each piece of information provided by the user.

These two guidelines are closely related. The novel co-operativity issue they introduce

is that of requiring the co-operative system to produce a specific contribution to the

interaction, which explicitly expresses an interpretation of the user‟s previous

contribution(s). P11 requires the system to do this, provided that the user has made a

contribution of a certain type, such as a commitment to book a flight. Feedback (P13), on

the other hand, should be provided in response to each individual piece of user information.

Corresponding to the use of feedback in our system, one standard use of explicit feedback in

human-human conversation is when one interlocutor makes important commitments vis-à-

vis another interlocutor, such as an important concession during formal negotiation.

However, it is far from clear under which conditions it may be maintained that, in human-

human conversation, the co-operative interlocutor is expected to provide explicit feedback

on information provided by other interlocutors. We propose that these guidelines be

subsumed by GG1 (informativeness). For examples, see Figures 4.3 and 4.4.

 124

Grice's maxims of truth and evidence (GG3, GG4) have no counterparts among our

guidelines but may simply be included among these. The reason is that one does not design

an interactive speech system which provides false or unfounded information to customers. In

other words, the maxims of truth and evidence are so self-evidently important to the design

of interactive speech systems that they are unlikely to emerge in scale during interaction

design problem-solving. This notwithstanding, one of the worst breakdowns during the

WOZ experiments actually occurred when the wizard accidentally came up with an

inconsistent day of the week/date pair (see Figure 4.6). During system implementation, one

constantly worries about truth and evidence. It cannot be allowed, for instance, that the

system confirms information which has not been checked with the database and which might

be false or impossible. Still, errors happen as shown in Figure 4.6. Grice [1975] observed the

fundamental nature of the maxims of truth and evidence in general and GG3 in particular.

Similarly, Searle [1992] pointed out that the requirement of truthfulness is an internal

constitutive rule of the notion of a statement. It therefore seems to have a different status

from the rest of the maxims. GG4 is illustrated in Figure 4.7.

4.4.3 NON-GRICEAN GUIDELINES

Section 4.4.2 looked at those among the original guidelines in Figure 4.26 which could

be either reduced to, replaced by, or subsumed by the Gricean maxims. The guidelines

discussed in this section appear irreducible to maxims and thus serve to augment the scope

of a theory of co-operativity in spoken interaction.

INTERACTION PARTNER ASYMMETRY

The responsibility for co-operative human-machine interaction does not only lie with

the system. The system may also impose co-operativity on the user and it is the task of the

interaction designers to make sure that this happens when necessary. Interaction partner

asymmetry occurs, roughly, when one or more of the partners is not in a normal condition or

situation. For instance, a partner may have a hearing deficiency or be located in a particularly

noisy environment. In such cases, co-operativity depends on the taking into account of that

participant‟s special characteristics. As these examples show, interaction partner asymmetry

needs not have anything to do with differences in background knowledge (see below). For

obvious reasons, interaction partner asymmetry is important in interactive speech systems

design. The machine is not a normal partner in interaction and users have to be aware of this

if communication failure is to be avoided. The following two guidelines address interaction

partner asymmetry:

P1 (now SG4). Provide clear and comprehensible communication of what the system can

and cannot do.

P8 (now SG5). Provide clear and sufficient instructions to users on how to interact with the

system.

Being limited in its task capabilities and intended for walk-up-and-use application, our

interactive speech system needs to protect itself from unmanageable user contributions by

providing users with an up-front mental model of what it can and cannot do (cf. Figure

 125

4.15). If this mental model is too complex, users will not acquire it; and if the model is too

simplistic, its remaining details must be provided elsewhere during interaction. For instance,

the Danish Dialogue System will explain its inability to handle special discounts for groups

of more than ten people only if the user states a number of travellers that exceeds ten.

Whereas an equally massive asymmetry never obtains in human-human conversation, related

asymmetries do occur when there are marked differences in task capabilities among human

partners in conversation. P1 adds an important element to the analysis of co-operativity in

spoken interaction by aiming at improvements in user co-operativity. This shows that, at

least in human-machine interaction, co-operativity is a formally more complex phenomenon

than anticipated by Grice. In addition to guidelines stating how a system should behave,

guidelines are needed according to which the system should consider transferring part of the

responsibility for co-operation to the user. More specifically, the non-normal partner in

spoken interaction should inform the partners of the particular non-normal characteristics

which they should take into account in order to act co-operatively. P8 has a role similar to

that of P1 (cf. Figure 4.16).

The guidelines examined in this section introduce a new aspect of co-operativity in

spoken interaction, namely partner asymmetry and the system‟s consequent obligation to

inform the user(s) of its relevant non-normal characteristics as a partner in spoken

interaction. Due to the latter element, the guidelines cannot be subsumed by any other

guideline or maxim. We propose that P1 and P8 are both specific guidelines subsumed by a

new generic guideline:

GG10. Inform the dialogue partners of important non-normal characteristics which they

should take into account in order to behave co-operatively in interaction.

The term „non-normal characteristics‟ refers to communication deficiencies in the

system and aspects of the environment which impede the system‟s ability to communicate.

The feasibility condition on GG10 (see Figure 4.1) was added as a result of testing the

guidelines on the user test corpus from the Danish Dialogue System. The feasibility

condition will be discussed in Section 4.4.4. For examples, see Figure 4.14.

BACKGROUND KNOWLEDGE

P4 (now GG11). Take users‟ relevant background knowledge into account.

P4 appears to be a genuine addition to Gricean co-operativity theory, at least as far as

human-machine interaction is concerned. It is expressed at the level of generality of Grice‟s

theory. The guideline explicitly introduces two notions central to a system‟s co-operativity

in interaction. The first notion is that of interlocutors‟ background knowledge, including

skill-based knowledge of the natural language in which the dialogue is being conducted,

domain knowledge etc. The second is the notion of possible differences in background

knowledge between different user groups and individual users. P4 appears to be

presupposed by maxims GG1, GG2 and GG5-GG9 in the sense that it is not possible to

adhere to any of these maxims without adhering to P4. Moreover, in order to adhere to P4,

it is necessary for the system to recognise relevant differences among users and user groups

in terms of background knowledge.

 126

P4 cannot be reduced to GG1 (informativeness) because, first, GG1 does not refer to

the notions of background knowledge and differences in background knowledge among

users. Second, a system may adhere perfectly to „exchange purpose‟ (cf. GG1) while

ignoring important issues to do with the user‟s background knowledge (cf. Figure 4.17).

Design analysis showed that such cases may arise when, for instance, a user happens to

know about a departure which was not offered by the system because the flight was already

fully booked, or when a user wants discount on a certain departure but is not offered that

departure because it does not allow discount. Third, as argued above, P4 is presupposed by

maxims GG1, GG2 and GG5-GG9. Grice, however, does not claim that GG1 is

presupposed by those maxims whereas he does argue that GG3 (truth) and GG4 (evidence)

are presupposed by them [Grice 1975]. For similar reasons, GG5 (relevance) [Sperber and

Wilson 1987], cannot replace P4. Informativeness and relevance, therefore, are not only

functions of the purpose(s) of the exchange of information but also of the knowledge of the

user.

P7 (now SG6). Take into account possible (and possibly erroneous) user inferences by

analogy from related task domains.

P7 is a specific guideline subsumed by GG11 (user background knowledge). It was

developed from examples of user misunderstandings of the system due to reasoning by

analogy. For instance, the fact that it is possible to make reservations of stand-by tickets on

international flights may lead users to conclude (erroneously) that this is also possible on

domestic flights (see also Figure 4.18).

P9 (now SG7). Separate whenever possible between the needs of novice and expert users

(user-adaptive interaction).

P9 is another specific guideline subsumed by GG11. Users may belong to different

populations or groups with correspondingly different needs of information in co-operative

interaction. For instance, a user who has successfully used the interactive speech system on

several occasions no longer needs to be introduced to the system but is capable of launching

on the ticket reservation task right away. A novice user, however, will need to listen to the

system‟s introduction to itself (cf. Figure 4.19).

P2 (now SG8). Provide sufficient task domain knowledge and inference.

P2 may appear trivial as supportive of the design of usable information service

systems. However, designers of such systems are continuously confronted with questions

about what the system should know and what is just within, or barely outside, the system‟s

intended or expected domain of expertise. The system should behave as a perfect expert vis-

à-vis its users within its declared domain of expertise, otherwise it is at fault (cf. Figure

4.21). Since P2 deals with the system‟s knowledge it cannot be subsumed by P4. We

therefore propose to introduce a new generic guideline which mirrors P4:

GG12. Take into account legitimate partner expectations as to your own background

knowledge.

P2, then, is a specific guideline subsumed by GG12. GG12 is illustrated in Figure 4.20.

 127

META-COMMUNICATION

Even if an interactive speech system is able to conduct a perfectly co-operative

interaction, it will need to initiate repair and clarification meta-communication whenever it

has failed to understand the user, for instance because of speech recognition or language

understanding failure:

P14 (now SG9). Provide ability to initiate repair if system understanding has failed.

P14 states what the co-operative system should do in case of failure to understand

utterances made by the user. Our system adheres to P14 in that it communicates its failure to

understand what the user just said (cf. Figure 4.23). The system currently lacks the ability to

express, or otherwise act on, the degree of certainty it has that it correctly understood the

user. P14 cannot be subsumed by GG1 (informativeness) which ignores communication

failure. P14 is a specific guideline of human-machine interaction which may be subsumed by:

GG13. Enable repair or clarification meta-communication in case of communication

failure.

GG13 covers the enabling of user initiated meta-communication as well as system

initiated meta-communication. GG13 is illustrated in Figure 4.22.

SG10 and SG11 were not included in the initial set of guidelines in Figure 4.26. They

were discovered as a result of testing the guidelines on the user test corpus from the Danish

Dialogue System. They are discussed in Section 4.4.4. For examples, see Figures 4.24 and

4.25.

Summary and comparison with human-human conversation

Comparison between our guidelines and Grice‟s maxims has shown that there are

more generic guidelines of co-operativity in human-machine interaction than those identified

by Grice. Three groups of guidelines reveal aspects of co-operative interaction left

unaddressed by the maxims. This produces a total of seven interaction aspects, each of

which is addressed by one or more generic guidelines (see Figure 4.1). It may be asked why

Grice was not aware of the three generic aspects of interaction: partner asymmetry,

background knowledge and meta-communication. It seems obvious that it cannot be because

these aspects are absent from human-human conversation. More plausibly, interaction

partner asymmetry is absent from prototypical cases of human-human conversation;

background knowledge is so pervasive as to be easily ignored; and Grice explicitly was not

concerned with interaction failure pure and simple.

The Gricean maxims are broadly recognised as applying to shared-goal, spoken

human-human conversation and in this section have been empirically validated for task-

oriented, spoken human-machine interaction. Similarly, the generic and specific guidelines

have been empirically validated for task-oriented, system directed, spoken human-machine

interaction. As to the specific guidelines, it does not appear warranted to claim their

applicability beyond human-machine conversation. The question to be briefly addressed

below concerns the scope of the non-Gricean generic guidelines. Is their scope similar to

that of Grice‟s maxims?

 128

We have as yet no empirical basis for claiming that the generic guidelines GG10,

GG11, GG12 and GG13 share the scope of the maxims. Theoretically, however, it may be

argued that they do. GG10 (asymmetry) appears equally valid for human-human

conversation. If a partner in shared-goal spoken interaction has important non-normal

characteristics of which the interlocutor may be unaware, and the non-observation of which

is detrimental to the achievement of the goal, then the interlocutor must be informed about

them. Otherwise, interaction co-operativity will be decreased until the interlocutor discovers

those characteristics. GG10 is irrelevant to symmetrical human-human conversation.

However, when an asymmetry is present, the guideline assumes a fundamental role.

Suppose, for instance, that ambient noise prevents you from clearly following your

interlocutor‟s spoken contributions. If you deliberately omit to inform the interlocutor that

this is the case, the implication (or conversational implicature) is that you do not really care

to accomplish the goal of the conversation.

Ignoring a user‟s relevant background knowledge (GG11) clearly detracts from the

system‟s co-operativity in interaction. The same is true when a system ignores legitimate

user expectations as to the system‟s background knowledge (GG12). In both cases, the

implication is that something else than the shared goal is at stake. Furthermore, as argued

earlier, GG11 is presupposed by the Gricean maxims. This implies that GG11 shares the

scope of the maxims. GG13 (repair and clarification) appears to share this scope as well.

In conclusion, when performing shared-goal conversation, people, just like machines,

should communicate their communication deficiencies, take background knowledge into

account and initiate repair and clarification meta-communication when needed. Failure to do

so detracts, sometimes seriously, from the rationality of the shared-goal conversation.

On one condition, the maxims and generic guidelines are in fact symmetrically

applicable to interactive speech systems and their human users. The condition is that users

should assign priority to what the machine says according to GG10 (asymmetry) and

otherwise make their spoken contributions conform to the maxims and generic guidelines.

As applied to our interactive speech system, GG10 essentially informs users that the system

is severely constrained in its language understanding capabilities, background knowledge,

inferential abilities and acceptance of user initiative. If these limitations are respected, the

system will enable otherwise co-operative users to complete their task.

4.4.4 TESTING THE GUIDELINES

Additions needed to the guidelines

Having consolidated the guidelines of co-operative system interaction through

comparison with Gricean theory, we were keen to analyse how the guidelines worked in the

user test of the implemented Danish Dialogue System (see also Chapter 8). It should be

noted that the guidelines had not been systematically used as guidelines in designing the

implemented system. The user test thus cannot be considered a test of the guidelines in the

crucial sense of indicating to which extent successful design of co-operative system

behaviour may result from using the guidelines for design. Rather, the user test acted as a

test of the scope of the guidelines. It provided an indication of whether the present set of

guidelines converge on a complete set. If analysis of user-system interaction in the user test

 129

would produce a significant number of novel guidelines, then the present set of guidelines

are still far from complete. On the other hand, if the analysis failed to produce more

guidelines, then this would at least suggest that convergence on completeness is well under

way.

The user test corpus consisting of 57 transcribed dialogues was analysed to identify

dialogue interaction problems. It turned out that almost all of the 119 individual interaction

design problems identified could be ascribed to violations of the co-operative guidelines

established during WOZ and refined through comparison with Grice‟s maxims. The user test

thus confirmed the broad coverage of the guidelines with respect to co-operative spoken

user-system interaction.

Only three additions had to be made to the guidelines. Two specific guidelines of

meta-communication were added, i.e. SG10 and SG11 in Figure 4.1. Since meta-

communication had not been simulated during WOZ and the WOZ corpus therefore

contained few examples of meta-communication, this came as no surprise.

More interestingly, we had to add a modification to GG10, namely that it should be

feasible for users to do what they are asked to do. For instance, the Danish Dialogue System

asks users to use the keywords „change‟ and „repeat‟ for meta-communication purposes and

to answer the system‟s questions briefly and one at a time. A significant number of violations

of the system‟s instructions nevertheless occurred in the user test. These violations (cf.

Figure 4.14) were initially categorised as user errors. However, upon closer analysis they

were re-categorised as interaction design errors. Although the system has clearly stated that

it has non-normal characteristics due to which users should modify their natural interaction

behaviour, this is not cognitively possible for many users. In an extreme example: had we

asked users to always use exactly four contextually relevant words in their responses to the

system‟s questions, this would clearly have been a cognitively impossible demand on users.

Similarly, what the system‟s introduction asks users to do turns out to be unrealistic given

the interaction behaviour that is natural to most people.

4.4.5 STATUS OF THE GUIDELINES

Credibility of the guidelines

We believe that the comparison between our original guidelines (Figure 4.26) and

Gricean theory has strengthened the credibility of the current guidelines set (Figure 4.1).

Additional support came from the user test because only two new specific guidelines had to

be included, guidelines which, moreover, addressed issues that were not prominent in the

original WOZ corpus. The user test also led to an addition to a generic guideline. Jointly,

these results suggest that the guidelines of co-operative system interaction represent a step

towards a more or less complete and practically applicable set of design guidelines for co-

operative spoken interaction.

However, it cannot be excluded at this stage that the guidelines are somehow tied to

the task domain and complexity of interaction characterising our particular interactive

speech system. Analysis of interaction design problems in systems, whether simulated or

implemented, that address different task domains or have lower or higher complexity of

interaction than our system, may reveal additional specific or even generic guidelines.

 130

We are currently investigating the generality and transferability of the guidelines.

Generality is being tested by applying them to (i) systems that are different from the Danish

Dialogue System and which (ii) cover different task domains. Moreover (iii), the guidelines

are being applied as a design guide prior to implementation rather than to the diagnostic

evaluation of an implemented system. Finally (iv), they are being applied in less controlled

circumstances compared to those that obtain in a controlled user test. Transferability is

being tested by investigating (a) what it takes for a novice interactive speech systems

developer to learn to master the guidelines; and (b) how the required learning steps may be

supported and “packaged” for transfer to other developers so that they can easily learn how

to use the guidelines. Preliminary results are presented in [Bernsen et al. 1997]. Although

the work is not yet finished, it has been demonstrated that the guidelines can be used as a

design guide during early design in much the same way as it is used for diagnostic evaluation

of implemented systems. We therefore believe that the guidelines, even in their present form,

can be used to support the design of a first interaction model no matter whether this model

is intended for simulation-prior-to-implementation or straight implementation.

 131

5 WIZARD OF OZ SIMULATION

5.1 INTRODUCTION

WOZ in the design process

When the first interaction model has been designed (cf. Section 4.1), interactive

speech systems development may either go through a phase of Wizard of Oz (WOZ)

simulations as will be described in this chapter, or go straight to implementation (Chapter 6)

following the implement-test-and-revise approach (Figure 3.1). Today‟s research on

interaction model design for advanced interactive speech systems often includes the WOZ

experimental prototyping method. In WOZ, a human (the wizard) simulates whole or part of

the interaction model of the system to be developed, carrying out spoken interactions with

users who are made to believe that they interact with a real system. WOZ is a relatively

costly development method because (1) the wizard needs a significant amount of training

and support; (2) involving experimental subjects, WOZ experiments require careful planning

and preparation and take time to run; and (3) experimental results have to be transcribed and

analysed, which takes time and requires skill to benefit further systems development. On the

other hand, by producing data on the interaction between a (fully or partially) simulated

system and its users, WOZ provides the basis for early tests of the system and its feasibility,

as well as of the coverage and adequacy of requirements prior to implementation. The use of

WOZ has so far been justified through the comparatively higher cost of having to revise an

already implemented interactive speech system whose interaction model turned out to be

seriously flawed, or of having to discard a system which users will not use. As recognition

and parsing techniques continue to improve and the body of standard software grows,

implement-test-and-revise methods are likely to gain ground in the design of advanced

interactive speech systems.

For simple dialogues and in most industrial settings, WOZ is normally replaced by the

implement-test-and-revise approach based on emerging development platforms. Whether or

not WOZ is preferable to implement-test-and-revise depends on several factors, such as the

novelty of the development objectives relative to the skills, methods and tools available to

the developers, the complexity of the interaction model to be designed, the task domain, and

the risk and cost of implementation failure. Low complexity speaks in favour of directly

implementing the interaction model without interposing a simulation phase, especially if the

developers have built similar systems before. High complexity, on the other hand, may

advocate iterative simulations.

Uses of WOZ

Over the years, WOZ has been used for many purposes other than interaction model

design and development. However, one goal seems to be shared by all WOZ simulations.

This is the goal of studying the behaviour of humans when communicating with a computer.

Many WOZ experiments include a comparative aspect, such as comparison between human-

human and human-computer interaction. WOZ has been used to investigate if people‟s

 132

communication with computers differs from their communication with fellow humans.

Hauptmann and Rudnicky [1988] compared users‟ behaviour during interaction with an

email system. Some users typed into the system, others had a speech interface to a simulated

system, and yet others spoke to a human operator. [Richards and Underwood 1984, Morel

1989, Amalberti et al. 1993] made WOZ experiments in the domain of travel information

and compared users‟ behaviour when talking to a simulated system and to a person. There is

evidence that people‟s communication with computers differs from their communication

with humans. It appears that as long as the computer demonstrates appropriate functionality,

people are prepared to simplify their input behaviour and accept simplified system output.

Research on this issue is discussed and reviewed in [Amalberti et al. 1993]. Lexical

variability in spontaneous dialogue [Brennan 1996], and the influence of system politeness

on user responses [Richards and Underwood 1984, Zoltan-Ford 1991] have been

investigated, providing suggestions for how systems should speak to users in order to

influence their language in ways which may improve system recognition and understanding.

Comparative studies of the influence of scenario design, user backgrounds and voice

distortion will be discussed in Section 5.6.2.

WOZ experiments for interactive speech systems development aim at collecting

information on user behaviour in order to evaluate the system‟s interaction model and the

feasibility of developing an acceptable system. Examples of use of WOZ for the

development of interactive speech systems are found in [Guyomard and Siroux 1988]

(yellow pages), [Ponamalé et al. 1990] (airline ticket booking), [Boyce and Gorin 1996]

(confirmation and reprompt strategies in a telephone service system), [Basson et al. 1996]

(user satisfaction with speech systems for handling telephone services that have not been

automated before, and with speech systems replacing touch-tone systems). WOZ has also

proved useful in exploratory design of multimodal systems. Examples are [Hauptmann 1989]

(manipulation of graphic images on a video screen), [Vossen 1991] (conversion of CAD

drawings into a form suitable for CNC machines), [Maulsby et al. 1993] (instructible

intelligent agent), [Life et al. 1996] (interface design and language collection for a

multimodal service kiosk for train travel information and reservation) and [Bertenstam et al.

1995] (speech and text data collection for a multimodal system providing information on

boat traffic in the Stockholm archipelago).

This chapter

In this chapter, we examine WOZ primarily as a practical technique for interactive

speech systems development. In addition, we illustrate how WOZ may be simultaneously

used to empirically investigate particular phenomena of interest. WOZ is presented in more

detail in Section 5.2. Section 5.3 describes how to plan and set up a WOZ simulation. WOZ-

related issues in the development of a first interaction model are discussed in Section 5.4.

Section 5.5 describes the use of WOZ in iterative interaction model development. Finally,

Section 5.6 presents three cases in which WOZ was used to investigate phenomena of

interest to interactive speech systems developers.

 133

5.2 WIZARD OF OZ FOR INTERACTION MODEL

DEVELOPMENT

What is WOZ suited for

WOZ is well-suited for the iterative development and evaluation of interactive

interfaces when the input modality (or modalities) can be only partially decoded by

computers but is easily understood by humans, and/or when the output modality (or

modalities) can be easily produced by humans but is only produced with difficulty by the

computer. In such cases, human performance is superior to that of the computer and a

human is able to simulate the computer‟s intended behaviour with some degree of accuracy.

Moreover, these are exactly the cases which need investigation if we want to make the

computer emulate a partner in natural human-human face-to-face communication. Spoken

language input and output belong to this category. Design goals and constraints can be

iteratively adjusted through a series of WOZ simulations until acceptable trade-offs have

been found, if possible.

WOZ compared to other prototyping techniques

WOZ differs from other prototyping techniques in that it does not rely on reductions

of the system and/or the task domain into presumed „essential‟ or „representative‟ features

whose identification is often questionable. This means that, ideally, the end result of the

WOZ simulate-evaluate-and-revise cycle will be a design which can be implemented on the

assumption that the cycle has helped the designers to identify nearly all potential problems

with the future system. However, as indicated above, WOZ is not equally suited to support

all interactive speech systems design processes. Current WOZ techniques are not sufficient

to produce an interaction model that is sufficiently formalised for straightforward

implementation. Moreover, WOZ is less than ideal in other respects, as we shall see. We

propose to more specifically delimit the design process types for which WOZ should be

considered, as follows.

Which design processes is WOZ good for

Firstly, the interactive system behaviour to be simulated should be behaviour which

humans are good at performing. Otherwise, humans cannot appropriately perform the

required simulation. There exists a broad class of cognitively demanding tasks which humans

are naturally good at, such as natural language understanding and generation, gesture

recognition or visual scene understanding.

Secondly, current computer systems should be clearly inferior to humans for the tasks.

Otherwise, WOZ is not needed.

Thirdly, as systems with close-to-human interactive skills are still difficult to build, it is

necessary to focus on the design of systems having relatively narrow and well-defined

application domains as far as their cognitively demanding task aspects are concerned.

Otherwise, even a WOZ supported development project will fail.

Fourthly, as WOZ is no „quick and dirty‟ prototyping method but somewhat

demanding in resources, the system to be built should be high-risk in the sense that the cost-

 134

times-risk of having to re-build the artefact more or less from scratch after prototype failure

is sufficiently high. Otherwise, WOZ does not warrant the investment in a more costly but

strongly risk-minimising prototyping technique. For less high-risk interactive tasks there are

likely to exist rapid prototyping methods which are preferable to WOZ in cost-benefit terms.

Finally, cognitively demanding interaction often, if not always, relies on natural and

spontaneous, skill-based user input behaviour such as gesture or spoken discourse. The

technology will normally enforce restrictions on the system‟s capacity for understanding

spontaneous user input. In such cases, realistic system development should be undertaken

only if there is some way of ensuring that the user input which the system can understand is

not restricted in unnatural or unprincipled ways. If such restrictions on „correct‟ user input

are imposed, input production will be practically impossible for the users who are unable to

modify their skill-based behaviour at will according to the system‟s instructions (cf. Section

4.4.4). For instance, whereas users may quickly learn to practice short input sentences,

unnaturally restricted grammar can make a system practically useless. WOZ offers

mechanisms which support the detection of unnatural or unprincipled restrictions on user

input.

Despite the comparative virtues of WOZ listed above, there is a downside to the fact

that the human simulating the future system is massively superior to the system as a

communication partner. It is that the human will have difficulty simulating important aspects

of the performance of the future system. For instance, it is difficult or impossible for the

wizard to precisely simulate the limited speech recognition of the future system as well as its

limited vocabulary, grammar, semantics and discourse processing. Although it is possible to

some extent to support the wizard in behaving less skilled than s/he actually is, this means

that WOZ does not allow exact predictions on how spoken interaction with the implemented

system will work.

5.3 PLANNING WIZARD OF OZ SIMULATIONS

This section describes how to set up a WOZ experiment in general. It discusses in

detail the system side and the user side of the set-up, and how to make data collection of the

communication on both sides.

5.3.1 GENERAL SET-UP OF A WOZ EXPERIMENT

WOZ set-up and minimum requirements

Figure 5.1 shows the elements that are potentially included in a WOZ set-up. Some of

these elements are mandatory whilst others are optional. The mandatory elements are: a

person (the wizard) simulating the interaction model of the system, a subject acting as user,

and a subject-wizard interface which conceals the fact that the subject is interacting with a

human rather than with a real system. Usually, a simulation support tool representing the

interaction model to be simulated, and one or more data collection tools are also considered

mandatory. If these are absent, the wizard will have to know the interaction model by heart

and data collection can be done by observation only so that no track record will be left after

the experiment. All other elements in Figure 5.1 are optional but may provide useful support

during simulation. Elements are discussed in detail in Sections 5.3.2 and 5.3.3.

 135

In practice, details of the set-up of a WOZ experiment may vary considerably. The

elements used in the WOZ set-up for the Danish Dialogue System are shown in Figure 5.3.

Other examples are presented in [Hauptmann 1989, Francony et al. 1992].

Subject Scenarios

and other

instructions

Wizard interface

Data

collection

tools

Assistant Wizard(s)

System components

Automatic simulation
support tools

Manual simulat ion
support tools

Filter

User in terface

Figure 5.1. General set-up of a WOZ simulation. The main communication line

is along the solid arrows. Dotted arrows indicate logging. The dashed arrows on

the right-hand side of the figure mean „used by‟. On the left-hand side, dashed

arrows show the assistant operating the data collection tools and communicating

with the wizard and the wizard interface.

The experimenter

An important element which has not been mentioned yet is the experimenter. The

experimenter is not part of the simulation as such but is nevertheless involved in all

simulations. It is the experimenter‟s job to take care of all practical matters related to the

simulation experiments, including all contacts with the subjects. The experimenter and the

assistant may be one and the same person. However, the experimenter and the wizard should

be different persons. Otherwise, users may recognise the wizard‟s voice during simulation if

no voice distortion is being used.

5.3.2 THE SYSTEM (WIZARD) SIDE OF WOZ

Introduction

During simulation, the system side consists of wizard(s) and wizard support. We shall

in the remainder of this chapter use the singular in referring to the wizard, with the implicit

understanding that several wizards might be involved, each simulating a particular part of the

system. The wizard simulates the interaction model of the system or those parts of it which

have not been implemented yet. In a full simulation of the interaction model of an interactive

speech system, simulation covers input understanding and output planning and generation,

including appropriate response times which are important in the evaluation of the usability of

such systems.

 136

THE WIZARD

The wizard‟s task and problems

The wizard‟s task is hard primarily because of the high demands on working memory

that result from the number and difficulty of the activities which the wizard has to

simultaneously perform during interaction. Counter-measures include careful training of the

wizard and ample support. Response time measurements are useful for judging whether the

wizard needs more training or support. Wizard training starts before the simulations begin,

continues during simulation and pertains to application domain knowledge, the intended

system‟s skills, and how to use the support tools. The wizard must be able to operate these

components quickly and reliably.

The wizard‟s main problems typically are of two kinds. One main problem is that the

wizard has superior knowledge and skills compared to the intended system (cf. Section 5.2).

The wizard must, for instance, consistently simulate limited language comprehension skills in

terms of vocabulary, semantics, grammatical complexity, or flawed or non-standard user

input, and/or limited language generation skills in terms of rhythm and intonation. The

wizard must simulate misrecognition or no recognition if the user input exceeds the

envisioned capabilities of the system. This is very difficult to do. Reduced skills are much

harder to simulate in close-to-real-time than is reduced knowledge, partly because skills are

automated and partly because efficient external support is more difficult or even impossible

to provide. Skill superiority tends to make the wizard understand input which the final

system cannot understand as well as generate responses beyond the capacity of the final

system. Reduced knowledge is easier to simulate. Much can be achieved through practice

and through explicit external representation of what the system is intended to know.

Another main problem is due to the fact that, in some areas, the wizard has inferior

knowledge and skills compared to the intended system. Humans are inferior to computers

with respect to computation and database look-ups. Implemented system components that

can do these parts of the work would strongly support the wizard. Other ways of supporting

the wizard include, for instance, pre-computed values to be used during a session with users.

This can be done if the user scenarios are fairly precise and known to the wizard. Finally, an

assistant can do part of the work which would otherwise have to be done by the wizard, as

described below.

SUPPORTING THE WIZARD

The system end of the interface (the wizard interface) at least includes an interface

device that is connected to a user interface device, typically a computer or a telephone,

which conceals the fact that the system is being simulated.

The interaction model to be simulated must of course also exist in some form. As a

minimum, the interaction model must exist in the head of the wizard but usually it is

explicitly represented to facilitate the wizard‟s job and support an adequate and consistent

simulation in accordance with the design requirements. In the latter case, it is considered

part of the simulation support. Since the interaction model is the focal point in WOZ

experiments, the question of how to establish such a model will be discussed in a separate

section (Section 5.4). Other simulation support is discussed in the following.

 137

Filters are hardware/software tools inserted on the communication channel connecting

wizard and subject to enable manipulation of input and/or output quality during simulation.

The aim is to help the wizard perform to the system‟s expected level of performance.

Examples of filters are vocoders for distorting spoken output or input, speech synthesisers,

filtering of typed input according to whether it belongs to the system‟s lexicon or not, and,

in the case of typed output, response facilities which conceal the wizard‟s typing rate and

correct misspelled words.

The purpose of system output filters typically is to support the subjects‟ belief in

communicating with a real system [Fraser and Gilbert 1991a and 1991b]. Several authors

have emphasised the importance of using voice distortion during simulation in order to

maintain the subjects‟ illusion of communicating with a computer [Amalberti et al. 1993,

Fraser and Gilbert 1991a and 1991b, Guyomard and Siroux 1988, Luzzati and Néel 1989,

Richards and Underwood 1984]. In particular, due to the influence from science fiction

movies, users in the recent past may have expected a „machine-like‟ voice from the

computer. In those movies, computers are usually equipped with a somewhat metallic and

monotonous voice which is markedly different from a human voice. As voice response

systems are gaining ground, however, people are getting used to computers which use a

human voice. In Denmark, for instance, voice response systems equipped with pre-recorded

human speech are now common. When users expect human voice quality or when the

wizard succeeds in using a monotonous voice and controlled intonation, additional voice

distortion during simulation would appear to have little effect (Section 5.6.2). If the final

system will include a synthesiser, it may be useful to include it in the WOZ experiments. The

synthesiser will help emphasising that it is a computer that speaks, at the same time

providing data on how well users understand the synthesised voice.

Input quality affects recognition and may vary widely. The omnipresent and time-

variant noise on the telephone line, for instance, affects the quality of the speech that the

system must recognise. To support simulation of the final system‟s expected input

misrecognition rates, input may be distorted [Guyomard and Siroux 1988] or, better still, a

real input recogniser may be included as a system component (see below). To support the

wizard at the skill-based level, principled decisions should be made, to the extent possible,

on how to handle, for instance, non-standard accents, dialects, indistinct voices, pauses,

input/output overlaps and interruptions, turn-taking cues etc. Simulation of the

corresponding error-recovery mechanisms should be trained.

System components are completed and implemented system modules. An increasing

number of such components, such as databases, speech recognisers, or speech synthesisers,

may be incorporated over time during system development. The components act as support

tools because they allow the wizard to concentrate on a smaller part of the interaction

model. In addition, they may help reduce response times. However, they also require the

wizard to act as intermediary and sometimes as operator. For instance, if a database and a

speech synthesis component are present, the wizard will have to listen to the user‟s input and

decide if the database must be consulted. If this is the case, the wizard must create a query

to the database in an appropriate language, incorporate the database output in the answer to

the user, and express the answer in the format required for input to the speech synthesiser.

Several co-operating wizards may be needed if several system components are involved

 138

[Salber and Coutaz 1993a, 1993b]. A simulation which includes one or more implemented

system modules is sometimes called a bionic wizard system.

Simulation support tools may be manual or automatic and may be defined negatively

as wizard support which is non-human and does not fall into the categories of filters and

system components. An example of a support tool which automates part of the simulation

are pre-recorded phrases which can be easily selected and replayed on the wizard‟s

command. This supports reduced language generation skills and consistent output

generation. An example of manual simulation support is a hand-written record of the

information exchanged so far during the interaction. Other support tools are, for instance,

tools which show the dialogue structure on paper or on the computer screen, or which

actively support navigation in the interaction model. When automatic simulation support

tools are involved, the wizard usually has a screen with a set of windows, one for each

functionality, such as one window showing information provided by the user and another

showing the wizard‟s dialogue decisions so far. Several such tools were briefly reviewed in

Section 1.3.3. The precise nature and extent of the simulation support tools that will be

useful in an experiment depends on the missing system components. In particular in later

development phases, implemented system components may partially replace simulation and

allow the use of more automatic simulation tools which are interfaced to the existing

components. For instance, in the controlled user test of the Danish Dialogue System only the

recogniser was simulated, all other system interaction being performed by implemented

components. The simulation environment included three automatic tools: one tool would

expand the wizard‟s abbreviations of, e.g., airport names; a second tool would correct the

wizard‟s typos; and a third tool was a simulated recogniser which would take as input the

utterance keyed in by the wizard and produce a string which could have been recognised by

the real recogniser, that is, out-of-vocabulary words and grammar would either not be

recognised or misrecognised. For more details on the user test see Chapter 8.

An assistant is a person who assists the wizard on the system simulation side and does

not communicate with the subjects. It is strongly recommended to off-load the wizard in this

way. The assistant may share part of the simulation support tools with the wizard. For

instance, the assistant may take notes during the wizard‟s interaction with subjects. These

notes are passed to the wizard for use during later stages of the interaction (Section 5.6.1).

The assistant may also act as the wizard‟s interface to system components [Francony et al.

1992], and help operate other parts of the equipment including the data collection tools (see

below). To minimise response times and reduce error, the assistant needs training.

5.3.3 THE USER SIDE

Controlled and uncontrolled WOZ

The user side consists of subjects who may be selected according to certain criteria

and who are usually instructed on their roles in various ways. When subjects are selected

and instructed, the WOZ experiment corresponds to a controlled user test of the simulated

system. In some cases, WOZ experiments rather correspond to field tests of an as yet not

fully existing system. In a field test, subjects are real users acting in their proper task

environments and performing the tasks when they need to do them. In such cases, subjects

are neither selected nor instructed by the system developers. Field tests conducted as WOZ

 139

experiments are reported in [Francony et al. 1992] (test of a tool for corpus collection) and

[Basson et al. 1996] (test of various telephone service systems for banking and otherwise).

In the following, we focus on the approach corresponding to a controlled user test.

THE SUBJECTS

Since users tend to act differently depending on whether they communicate with

humans or with machines, it is important that they believe that the simulated system is a real

system. To conceal the fact that the system is being simulated, the user end interface device

(typically a telephone or a computer) should be the same as the one to be used in the final

system. In addition, subjects should preferably act in their habitual or intended environments

in order to make the setting as realistic as possible and remove the stress factor imposed by a

laboratory environment.

The number of subjects to be used in a WOZ simulation is subject to debate and

depends on the purpose of the simulation. Simulations that are mainly aimed at training the

wizard may involve relatively few subjects. However, to collect a reliable set of data on

user-system behaviour, several subjects are needed. In fact, the more subjects, the more

reliable the data will be but, typically, resources tend to impose strong limitations on the

number of subjects to involve and the number of dialogues to be collected because the

process of running the experiments and handling and evaluating the corpus is time

consuming. Nielsen [1993] estimates that use of 13 subjects will yield a 90% chance that the

true values, i.e. those which will be measured in the final system, will be no more than 15%

different from the mean values measured in the experiment. From a cost/benefit perspective

Nielsen [1993] suggests using 15 subjects whether or not several iterations are needed.

Several smaller tests may be preferable to a single larger test. Fraser and Gilbert [1991b]

point out that “in principle, the cycle of simulation and specification should be repeated

many times, but in practice, two or three phases are likely to be sufficient”. Reducing the

need for WOZ iterations to this minimum requires careful (i) planning of experiments, (ii)

analysis of the collected data, and (iii) re-design of the interaction model.

Early WOZ experiments serve the purpose of training the wizard and delimiting the

domain. These experiments are often rather informal, involving, for instance, colleagues or

students rather than intended end-users, and taking place in ad hoc settings rather than in

realistic work environments. In the later experiments which are aimed at producing reliable

data on the system being developed, subjects should be selected such that their backgrounds

and skills correspond to those of the expected end-users, in order that their behaviour during

simulation will approximate that of end-users. Background and skills are not only a question

of being novice or expert in the domain. Subjects‟ educational and professional background

also seems to influence the way in which they communicate with the system (see [Nielsen

1993] and Section 5.6.2).

If the main objective of the WOZ simulations is the investigation of specific

phenomena, such as language use or users‟ reactions to certain kinds of system prompts,

more subjects and a broad representation of backgrounds and skills may be desirable.

 140

INSTRUCTING THE SUBJECTS

As it is desirable that subjects believe that they are interacting with a real system, they

should not be told the truth in advance. Neither should they be told a direct lie for ethical

reasons [Nielsen 1993 Section 6.4]. Rather, they should be given vague information which

may be interpreted as if the system is a real one. Unless the experiments are of a kind in

which no instructions are provided and subjects do not know that they are acting as such,

care should be taken to ensure that subjects know exactly what they are expected to do and

are able to perform their tasks in as natural a way as possible. This can be done through a

variety of means. Users may be informed orally, for instance on the phone, and/or they may

receive written instructions. The written instructions may include, for instance, information

on the experiment and the subject‟s role and tasks, general information on the system‟s

capabilities and how to communicate with it, information on how to use the system through

an example of an actual dialogue with the system, and scenarios which subjects are expected

to perform.

A scenario represents a task which the subject has to perform through interaction with

the system. Scenarios are important tools in interactive speech systems development and

evaluation. Nevertheless, the literature on interactive speech systems has little to say about

scenario design and on the many problems to be aware of. The purpose of using scenarios is

to develop and test the interaction model in realistic situations of use of the system under

construction while at the same time being able to control more precisely what is being tested

(see below), and to introduce some amount of systematicity in the testing process. There is,

however, no known method for designing scenarios which are representative of all possible

situations of use of the artefact which is being designed [Klausen and Bernsen 1993]. So a

basic problem in scenario design is to capture, in a limited set of scenarios, as much as

possible of the space of possible situations of use.

It is useful to distinguish between development scenarios and evaluation and test

scenarios [Campbell 1992]. Development scenarios are intended to more or less

systematically cover the intended system functionality and are normally designed by the

system designers. User-designed scenarios will typically not be appropriate for the purpose

of system development. They will fail to address all aspects of system functionality and it

may be difficult or impossible to figure out what it is that the user attempts to achieve.

However, the risk in using only designer-designed scenarios is that designers may ignore

important task aspects and other constraints, ending up with an implemented system which

works well only in a fictitious world. Evaluation and test scenarios often cover only

selected aspects of system functionality because a user test aims at covering typical cases

rather than all possible cases. For instance, possible but unlikely cases of communication

failure will often be left out, but it must be carefully considered precisely what to test and

why. It is recommended that scenarios for evaluation and testing of the system be developed

jointly by designers and end-users to ensure sufficient realism.

A central problem in scenario design is that users tend to model the scenarios

whenever possible, treating the scenario as a text which has to be reproduced in detail when

interacting with the system. This is a problem because a vocabulary defined on the basis of

interactions in which users model the phrases used in the scenarios, may not be sufficiently

representative of realistic language use. On the other hand, it is not always a solution to

 141

provide open scenarios in which subjects have to define most of the details themselves and

thus are forced to use their own phases. The reason is that a controlled test cannot be

carried out when it is not known precisely what is being tested. Thus scenarios clearly have

to describe, to some necessary extent, the tasks to be performed by the subjects while at the

same time avoiding that the subjects directly model the phrases used in the scenarios. A

possible solution to this problem will be further discussed and illustrated in Section 5.6.2.

5.3.4 DATA COLLECTION

WOZ produces a wealth of important data on interaction including information on the

system‟s task domain coverage, users‟ sub-language vocabulary, utterance length,

grammatical complexity of input, input utterance (un)grammaticality, number of turns per

scenario, users' task ordering preferences and problem-solving strategies, dialogue act types,

system output/user input correspondences with respect to vocabulary, grammar, and style,

scenario design problems, interaction design problems, user errors, non-linguistic user

behaviour etc.

To capture this data, interaction at the user interface and activity at the wizard

interface is normally logged and recorded for later analysis. Results of the analyses are used

to improve the simulated system as a basis for subsequent iterations or implementation. The

input/output modalities involved in user-system interaction guide and constrain the choice of

hardware for data logging. If spoken language is the only input/output modality involved, a

tape recorder will often be sufficient for logging the interaction. Depending on the purpose

of the experiment, it may be useful or even necessary to use a camera to record the subject‟s

physical behaviour during spoken interaction, including facial expression, gesture and

movement. If system components and/or automatic support tools are being used in an

experiment, a log of system internal communication will be needed as well to generate a

complete trace of the interaction flow.

In general, as WOZ simulations tend to generate large amounts of data, there is a

strong need for improved facilities for data filtering, indexing, transcription, viewing and

analysis. We shall return to this issue in Chapter 7.

5.3.5 POST-EXPERIMENTAL CONTACTS

When subjects have interacted with the system, contact with them is not necessarily

over. Important input on system functionality and user satisfaction may be obtained through

questionnaires and interviews.

Questionnaires may be distributed along with other material given to subjects, such as

scenarios. When designing questionnaires, care should be taken to phrase and present the

questions in a neutral way in order not to guide subjects in one direction or another. A

section on „any other comments or observations‟ should be included in the questionnaire.

The filling in of a questionnaire should not require too much effort because subjects may

then either not do it or do it superficially. On the other hand, it must be ensured that, if

answered properly, the questions will provide useful input for subsequent work on the

interaction model. This is not necessarily easy to do, and questionnaires can be hard to

interpret (see Section 8.5). Questionnaires have become a scientific subject in themselves.

Useful references are [Anastasi 1988, Miller 1984].

 142

Face-to-face or telephone interviews should be carried out immediately after subjects‟

interaction with the system. It should be decided in advance which questions to ask as a

minimum. Asking the same questions in all interviews enables comparison of the subjects‟

responses. Compared to questionnaires, interviews often provide additional information on

user-system interaction. Subjects may be willing to orally tell about experiences with the

system which are either too lengthy to write down or which they simply do not want to put

in print. They may also tell things which just come to mind in a non-committal interview but

which they were prevented from thinking of in the more formal questionnaire context. The

interview tends to capture subjects‟ immediate impression of the system whereas the

questionnaire tends to capture their reflections upon having used the system. A useful

reference on interviewing is [Ericsson and Simon 1985].

5.4 DEVELOPING THE FIRST INTERACTION MODEL

Before the first WOZ experiment can start, a first interaction model must be

established and represented in a way which makes it easy to interpret for the wizard. It is

useful during its design to consider all the elements of interactive speech theory from

Chapter 2. I may be helpful as well to make use of the guidelines for co-operative spoken

human-machine interaction discussed in Chapter 4. The aim in what follows is to highlight

the wizard‟s problems and discuss solutions to these. Many issues that arise during WOZ

cannot be planned in advance. Still, much can be done to prepare a detailed and realistic

interaction model for the first WOZ iteration, thereby accelerating system development. To

structure the presentation, each element of interactive speech theory is discussed with regard

to its relevance for the design of a WOZ interaction model with no implemented

components. If implemented components are used in the WOZ set-up, the elements handled

by these components can be disregarded and an interface for the wizard to the components

should be considered instead. The implemented components still form part of the interaction

model and must fit the simulated elements.

The design of the first interaction model focuses on what we have called system

performance including co-operativity, initiative and influence on user behaviour. Each

element to be included in the model should support system performance and help optimise

system functionality within the constraints imposed by the requirements specification.

Speech input recognition including acoustics, grammar and prosody comes for free in

simulated interaction because humans are excellent speech recognisers, superior in most

respects to the system being designed. This means that detailed decisions are needed on

which input the system will be able to recognise, followed by training of the wizard. It is

difficult to remember when to reject something as not being recognised when one actually

did recognise it perfectly well. Moreover, it is impossible to simulate precisely the errors

which the implemented system will commit. Still, misrecognition should be simulated at

some stage during WOZ in order to learn about users‟ reactions when this happens and

collect generally reliable data on user-system interaction. The restrictions imposed on the

wizard‟s recognition should be few and simple in order to be manageable. Examples of

simple rules are: “do not recognise more than the first ten words in a user utterance, more or

less; if the utterance is longer than that then skip the rest”; “do not understand any person

names”; and “do not understand negations”. The wizard may to some extent acquire the skill

 143

of failing to understand words that are clearly outside the system‟s intended vocabulary.

Many and/or complex rules dictating limitations to the wizard‟s recognition of input

grammar or prosody would appear unmanageable. The precise rules to follow often cannot

be planned in advance but must be determined or adjusted on the basis of the simulations

themselves. Input filtering may be used to provoke wizard misrecognitions. If this is

properly done, the wizard may avoid having to follow explicit rules.

User utterances. The wizard‟s understanding of user utterances, including lexicon,

grammar, semantics and style, also comes for free in most cases during simulation and is

tightly interwoven with recognition. Precautions similar to those mentioned for speech input

should be taken.

Attentional structure. Focus belongs to the attentional structure. The focus set

determines which sub-tasks the system is able to communicate about at a given time. If the

system‟s focus set will be limited relative to its entire capacity for domain communication,

the wizard should try to simulate the current focus limitations (corresponding to the

system‟s expectations), possibly helped by the assistant.

Intentional structure. Restrictions on the wizard‟s input understanding may be

imposed by the intentional structure. If the user‟s domain communication addresses other

tasks than those known to the system, then such user utterances should not be understood.

The structure of each planned system task, i.e. the sub-tasks of which it consists and their

order, if any, must be considered prior to simulation. This will enable the wizard to know

which information is required to perform a certain task. In the case of system directed

interaction the task structure will be fixed. If the user tries to address another sub-task than

those which are in focus, the wizard should not understand the user. The user and the

system may communicate in terms of domain communication, meta-communication and

other types of communication. Provided that the wizard follows rules of limited

understanding, such as those exemplified in the preceding paragraphs, the WOZ experiments

are guaranteed to produce a certain amount of knowledge about user-system meta-

communication. It must also be decided which forms of user-initiated meta-communication

the wizard should understand, such as asking for correction or repetition. The wizard‟s

meta-communication behaviour must be carefully planned and revised in the light of

experience. It must be determined to which extent other types of system communication are

needed, such as opening and closing of the interaction. The interaction level strategy which

defines the constraints on user communication that are in operation at a certain stage during

interaction, may be used for graceful degradation of the interaction. In that case, it must be

considered to which extent the strategy will be feasible and how it should be simulated by

the wizard.

Linguistic structure. Restrictions on the wizard‟s understanding and generation of

linguistic structure elements may contribute to a more system-like behaviour. If, for

example, the system will be using system directed dialogue, then user questions or other

possible speech acts in which the user takes the initiative in the interaction, should not be

accepted. A problem about this strategy, however, is that as long as the system itself will not

be able to identify speech acts, it is difficult to judge the relevance of the strategy. Or, if it is

known that the final system cannot accept more than one or two pieces of information at a

time, then the wizard should reject part of user turns containing more than one or two pieces

 144

of information. Depending on their type, references may be difficult to handle in an

implementation because of missing techniques. It should be considered which kinds of

references the wizard should be able to understand. For instance, it may be decided that

references to parts of the interaction other than the immediately preceding utterance should

not be understood by the wizard. Discourse segmentation will hardly be simulated in a WOZ

experiment.

Interaction history. To some extent, most systems need to keep track of the history of

the interaction. Linguistic history, topic history and performance history mostly come for

free in a simulation because they form part of the wizard‟s natural capabilities. However,

consideration of their implemented versions might impose restrictions on the wizard‟s

performance. For instance, it may be decided that the user‟s performance should not lead to

modification of the wizard‟s interaction behaviour. Most interactive speech systems will

need a task record. Wizards, like other humans, are prone to forget precisely which

information has been exchanged during the interaction so far. The task record therefore

should be maintained during simulation, for instance by the assistant who writes down the

information provided by the user.

Domain model. The domain model of the system includes data and rules. The data

comprises the domain facts needed by the system. Domain facts might be, for instance, a list

of names and addresses, a table of departure times, or a list of fares. One should be aware

that database look-up may be slow when performed manually. The wizard must therefore

have easy access to the domain facts and must have a notion of the extent to which the

planned system will be able to do inferencing. The wizard must be able to check or retrieve

facts when needed, for instance by checking if a certain name is in the database or inferring a

date from a relative time expression. The wizard may or may not know something about the

domain in advance. Knowing too much may be a problem because the wizard will then have

to simulate less knowledge than is actually present. Knowing little or nothing may also be a

problem because the domain then has to be learnt. In both cases training is needed. The

exact amount of domain inferencing needed for the application will probably have to be

determined through WOZ and cannot easily be planned in advance.

User model. One of the key functions of WOZ is to provide solid information on how

people actually behave when interacting with an interactive speech system that is constrained

in multiple ways. So in many respects, the user model relevant to the system under design,

including the actual user goals, beliefs, expectations, preferences and cognitive processing

problems will only emerge from the simulations themselves. Still, the developers are

potential users themselves and they are advised to put considerable effort into acting as real

users when building the first interaction model. Moreover, it is useful to consider from the

start the extent to which the simulation should provide a different treatment of different user

groups. If differential treatment will possibly be provided, the wizard should simulate ways

of doing that.

System utterances, including lexicon, grammar, semantics and style, are much easier to

generate for a human than by machine. It is therefore important to consider from early on

which output the system should be able to generate, taking into account what the system will

be able to understand as users will often model the system‟s language. An interactive speech

system is typically programmed to express itself rather uniformly in contexts which are

 145

identical to one another. Humans, on the other hand, tend to constantly vary their language

even in identical contexts. Again, the wizard must be prepared to modify his or her natural

behaviour in spoken interaction. Fortunately, the wizard‟s output behaviour can be

supported by external means, such as sets of pre-defined phrases for consistent use in similar

situations whenever they occur during interaction. The wizard‟s style of expression is

another important factor which can be decided upon in advance. A terse style is

recommended.

Speech output. Given the regimentation of the wizard‟s utterances just described,

speech output comes partially for free in a simulation. Text-to-speech or replaying

techniques may be very helpful. If these are not being used, the wizard must be able to exert

voice control, avoiding phenomena such as stumbling over words, false starts, non-speech

sounds, undue hesitations etc. This requires training. It must also be decided how the

wizards voice should sound, i.e. whether it should sound human or more or less “synthetic”.

If the latter is chosen, this again requires training of the wizard or use of voice distortion

equipment. Wizards can become quite good at speaking evenly and monotonously.

Interaction model representation

Two major issues in interaction model representation are the following. First, as

already mentioned, the model should be easy for the wizard to interpret and should allow

fast navigation. Graphs are useful for these purposes. Figure 5.2 shows part of an interaction

model represented as a graph. The representation provides structure to the interaction and

allows a fair amount of flexibility of navigation at the same time. Moreover, the model is of

manageable size (compare Figure 5.9). Secondly, systems development can proceed more

rapidly if the WOZ interaction model is represented in a form which is amenable to

implementation. If an automatic WOZ simulation environment is available, it may be possible

to represent the interaction model using the graph part of a graphical programming

language.

 146

Sfeed
Feedback(value)

• TO VARD E.

Sreq1
Request(value)

• WHAT IS YOU R CU STOMER NU MBER?

• HOW MAN Y PEOPLE ARE TRAVELING?

• STATE THE ID-NU MBER OF THE NTH PERSO N?

• WHER E DO ES THE J OU RNEY START?

• WHER E DO ES THE J OU RNEY END?

• IS IT A RETU RN J OU RNEY?

• WHICH DAY ARE THEY LEAVIN G/RETU RNING?

• AT W HIC H TIM E OF THE DAY?

Uans1
Answer(value)

• ON FRIDAY

Uans2
Answer(select)

• YES/NO, 7:30

• NO, LATER

Sstat

State(value)+

• THE NEAR EST AIR PORT TO VARD E IS ESBJ ERG.

• THER E ARE FLIG HTS AT 7:30 AND 8:40.

• RETUR N J OU RNEY ON 15TH JANU ARY.

Ssum

Sreq2
Request(select)

• WOU LD YOU LIKE ESBJ ERG?

• WOU LD YOU LIKE ON E OF THESE?

• IS THIS CO RREC T?

Treserve (ticket)

Treserve (ticket)

Figure 5.2. Simple interaction model of domain communication. The central

path is repeated via Sreq1, Uans1, and Sfeed, until all items of the reservation task

have been determined. In Sreq1 the system phrases for all items are indicated in

order to support the wizard. Most other system nodes and all user nodes include

examples only. The examples of phrases in Sstat and Sreq2 correspond so that the

first two phrase pairs are used after a vague Uans1 or after Serror (not shown),

whereas the last phrase pair is used after Uchange (not shown). Note how the split

of Sstat and Sreq2 together with the arrows to Uans2 allows the user to either

respond immediately when the values have been stated or after the system's

request.

5.5 ITERATING THE INTERACTION MODEL

When the WOZ set-up has been completed and tested to make sure that it works, and

a first interaction model designed, the first experiments can start. The wizard and the

assistant (if any) must have made themselves familiar with the set-up and the equipment

used. The wizard interface and the simulation environment should be adjusted if they turn

out to cause problems. Typically, the first iteration is carried out with internal subjects, i.e.

the designers themselves and perhaps a few colleagues. Although the data resulting from the

first iteration will hardly be sufficiently reliable to serve as a basis for implementation, the

first series of experiments will provide rough estimates of system and user performance, help

train the wizard, and allow new constraints to be added to the specification and unforeseen

problems to be solved.

 147

Each WOZ iteration is costly. This is particularly true of the “core” iterations which

involve external subjects and which typically involve more subjects than the training

iteration(s). The number of core iterations should therefore be reduced as much as possible

through careful planning and analysis. It cannot be decided in advance how many iterations

are needed to obtain a satisfactory specification of user-system interaction. Fraser and

Gilbert [1991b] recommend 3-4 iterations.

As each iteration produces large amounts of data, it is necessary to selectively focus

on data parameters which will be subjected to closer analysis. When used for interactive

speech systems development, WOZ typically serves as a basis for collecting a sub-language

from data on users‟ vocabulary and use of grammar. Other relevant data parameters follow

from the requirements specification, evaluation criteria and design specification. After

parameter selection, the actual data is obtained through transcribing the simulated

interactions, annotating the transcriptions, and collecting the results for analysis and

quantification. Analysis and quantification serve to measure the extent to which design goals

have been achieved and constraints satisfied, and the extent to which the evolving system

performs according to specifications. Anyone who has been through this process in practice

will have realised the need for time-saving, special-purpose automatic annotation and

analysis tools (see Chapter 7).

Part of the data available in a WOZ corpus is quantifiable data, such as information

on subjects‟ vocabulary in the task domain (full word types, word stem types, non-words);

utterance length (average-per-turn, maximum); (word) type/token ratio; number of turns per

task scenario (average, maximum); percentages of questions and statements; grammatical

complexity (number and type of grammatical constructs); ungrammatical phenomena

(number and type); hesitations and false starts; and number and type of discourse

phenomena (anaphora, ellipsis etc.). Data on wizard performance may be important as well,

for instance when measuring against training target levels, such as number of deliberate

recognition errors or number and types of errors due to „over-skilled‟ performance. A

central purpose in collecting quantified data is to discover developmental patterns in the

data across a series of iterations. For one thing, such patterns will show the extent to which

specified feasibility constraints on the system are gradually being met across several WOZ

iterations. Secondly, developmental patterns can be used to quantify the effects of

interaction design changes, from major changes in task domain coverage to subtle changes in

the semantics of system utterances, showing whether a certain change actually removed

some discovered problem or not. In the design of systems undertaking cognitively

demanding tasks, such as interactive speech systems, quantitative development patterns are

particularly important because the system must be able to interpret natural and spontaneous

user behaviour. In many cases, such as anaphora resolution, we still lack part of the

theoretical understanding that may make this possible in the general case, and in a larger

number of cases we lack the tools and algorithms necessary to implementation. This means

that the capabilities to manipulate developing patterns in user behaviour and to accurately

measure the effects of interaction design manipulations are essential to successful design.

WOZ also produces qualitative data, for instance from the user questionnaires. The

questionnaires are analysed to identify particular problems, general complaints, subjects‟

overall impression of the system, subjects‟ qualitative evaluation of selected aspects of the

system etc. Qualitative data will also be produced by the user interviews recommended

 148

above. Having been provided orally, this data will have to pass through the interviewer‟s

interpretation before they are put on paper. The qualitative system aspects addressed in

questionnaires, such as system naturalness or flexibility, can be operationally quantified

through having subjects score these aspects on some arbitrary scale. When this has been

done, subjects‟ scorings from several subsequent WOZ iterations can be compared to

identify developmental patterns as discussed above.

In addition to quantitative and qualitative information there is often a need for

extracting and analysing structural information, such as variations in the expression of

identical messages, users‟ task or sub-task ordering preferences and stereotypes, or their

problem-solving strategies. This information may be used to improve, for instance, the

system‟s task model, its input vocabulary and grammar, or its output utterances.

Detection of the problems users have in interacting with the system constitutes an

important goal of data analysis. Each problem may suggest that one or more of the co-

operativity guidelines presented in Chapter 4 has been violated and that there is a need to

change the interaction design. Such problems may be revealed from analysis of the

transcribed corpus and from other sources as well, such as the questionnaires. A practical

method for quantifying interaction problems is described in Chapter 8.

The process of data analysis and evaluation forms the basis for decisions on whether

and how to change the simulated system, or revise the system specification, and for

estimating if another WOZ iteration is needed or not. The decision to end the WOZ

simulation phase must be based on evaluation of how well the system performs and meets

the goals and constraints specified in the requirements specification, evaluation criteria and

design specification. All feasibility constraints should be satisfied at this point. For instance,

the sub-language should be more or less known and known to be processable by the system;

the transaction success rate should be comparable to what is specified in the evaluation

criteria; other important development patterns in the data should converge on satisfying the

evaluation criteria for the implemented system, and all the major problems of system co-

operativity that were discovered during WOZ should have been removed.

5.6 USES OF WOZ

As mentioned in Section 5.1, a WOZ simulation may be used for two different

purposes: as an interactive speech systems development technique and as an experimental

method for investigating particular phenomena of general interest to interactive speech

systems development. This section illustrates the different uses of WOZ by considering the

development of the Danish Dialogue System.

5.6.1 USE OF WOZ FOR DEVELOPMENT: THE DANISH DIALOGUE SYSTEM

The interaction model for the Danish Dialogue System was developed during seven

iterations of WOZ simulations. The first five iterations produced only a few dialogues each

whereas the two last iterations each produced a corpus of 47 dialogues. From the seven

iterations a total of 125 dialogues were transcribed, amounting to about seven hours of

spoken language dialogue. Twenty-five early dialogues were never transcribed.

 149

The purposes of the experiments were (i) to optimise the usability aspects of the

system while still satisfying the resource and technological constraints (cf. Section 3.2), and

(ii) to collect a sub-language which could serve as a basis for specifying the input vocabulary

and input grammars of the system. The task domain was Danish domestic flight ticket

reservation, change of reservation, and information on departures, fares and travel

conditions.

THE WOZ SET-UP

Figure 5.3 shows the WOZ set-up. Subject and wizard are connected via a telephone.

At the wizard‟s end, an assistant follows the spoken interaction between the subject and the

simulated system. All components will be explained below.

Subject

Telephone

Scenarios and other

instructions

Graph structure with

predefined phrases

Timetable

calendar

Notes made by the

assistant

Scenarios

Equalizer +

harmonizer

Wizard interface

including telephone

Tape recorder

Assistant Wizard

Figure 5.3. The WOZ set-up for developing the Danish Dialogue System. The

main communication line follows the solid arrows. The dotted arrow indicates

logging. The dashed arrows on the right-hand side of the figure mean „used by‟.

On the left-hand side, dashed arrows show the assistant operating the tape

recorder and communicating with the wizard and the wizard interface.

The experimenter

In the first four iterations there was no need for an experimenter as only system

developers were involved as subjects and wizard. The need for an experimenter arose from

WOZ5 onwards. In WOZ5 colleagues acted as subjects and in WOZ6 and WOZ7 most

subjects were external. The experimenter contacted subjects and asked if they were willing

to participate. When subjects had agreed to participate, the experimenter would take care of

distributing all relevant material to them. The experimenter acted as contact person before,

during and after the simulations. Having interacted with the system in WOZ6 and WOZ7,

subjects were debriefed by the experimenter through interviews.

 150

THE SYSTEM (WIZARD) SIDE

The system simulation side consisted of a wizard and wizard support, including, in

some iterations, an assistant. All seven iterations were full simulations, i.e. no implemented

system modules were included. Simulation thus covered input understanding and output

planning and generation including appropriate response times.

THE WIZARD

The wizard was one of the system developers. Initially, two system developers took

turns acting as wizard but it was soon realised that, because of the amount of wizard training

needed, only one person should act as wizard. We used five WOZ iterations for wizard

training and for adjusting the interaction model. This was too many even if the individual

iterations were small. WOZ1-WOZ4 only included between two and six dialogues each and

WOZ5 included 13 dialogues. We started our WOZ work more or less from scratch and

without sufficient operational guidance from the literature. We now believe that, given

careful planning of the series of iterations and awareness of the problems, the results we

obtained from 7 iterations could have been achieved in 3 to 4 iterations. This agrees with the

recommendations of [Fraser and Gilbert 1991b].

SUPPORTING THE WIZARD

The interface device which was used in all experiments was a telephone. The only kind

of filter we used on output was a combination of an equaliser and a harmoniser which

served to distort the wizard‟s voice. The hardware gave the wizard‟s voice a slightly metallic

sound with a distant echo-effect. The filter was only used in WOZ7. See Section 5.6.2 for

details on the effect of output filtering. No input filters were used.

None of the simulation environment tools used in the seven WOZ iterations were

automatic. A number of manual tools were used, however. The most important tool was the

interaction model. In the first two iterations, the interaction model was represented as a

collection of loosely organised output phrases on paper. From WOZ3 onwards, a graph

representation with system phrases in the nodes and key contents of user input along the

edges was used instead (Figures 5.7 and 5.8). A flight timetable, a list of prices and a

calendar were used to represent the domain model part of the interaction model.

In order to keep track of the information provided by the subject, a note sheet was

filled in by the assistant (Figure 5.4). In the beginning this was done during the session with

the user. We then realised that we could speed up those wizard answers which required

„database‟ look-ups if the look-ups were made prior to the interaction with subjects and the

values inserted in the note sheet. This became fairly easy to do when, from WOZ5 onwards,

the scenarios became quite detailed. The wizard and the assistant also had copies of the

scenarios used by the subjects. In the later WOZ iterations, pre-computed ticket prices were

inserted in the wizard‟s version of the scenarios. This was done to speed up the wizard‟s

response times in cases where subjects would ask for a ticket price. The wizard would have

access to the note sheet and the scenarios whenever needed during interaction. Moreover,

the note sheet was organised so that the wizard could read it aloud as summarising feedback

by the end of a reservation dialogue.

 151

TRAVEL INFORMATION (tape/side/counter: / /) date:

Assistant: Wizard: User:

You have now booked ticket(s)

from to

for (name(s))

on (day, date) at (time) ,

returning on (day, date) at (time) .

The tickets are on (red/green) conditions.

Your reference number is .

Are the tickets to be mailed or will the traveller pick them up at the airport.

Figure 5.4. A note sheet to be filled in by the assistant and used by the wizard.

The phrase concerning discount (red/green conditions) was used only if the

subject had booked a discount ticket.

From WOZ5 onwards an assistant helped off-load the wizard. The assistant was the

same person as the experimenter. The assistant operated the tape recorder, took notes on

the information provided by subjects and provided other practical support, such as guidance

to the wizard if he had lost his way in the graph representation of the interaction model.

THE USER SIDE

The user side involved a total of 24 subjects in the seven iterations. During simulation,

all interaction with subjects was carried out via the telephone to make the situation as

realistic as possible and allow subjects to communicate in their normal environments.

THE SUBJECTS

Only the three system developers participated as subjects in the first four iterations.

One system developer and two colleagues participated in WOZ5. WOZ6 and WOZ7 were

the “core” iterations that would eventually form the basis for the implemented interaction

model including the sub-language. Each of these two iterations involved 12 subjects. The

majority of the subjects were external end-user representatives, the rest were colleagues.

Apart from three colleagues, none of the subjects in WOZ6 and WOZ7 had tried the system

before. Almost all subjects in WOZ6 and WOZ7 had a background as office secretary,

linguist or computer scientist. See Section 5.6.2 for more details on subjects‟ backgrounds.

INSTRUCTING THE SUBJECTS

Subjects were contacted by the experimenter. Having agreed to participate, each

subject in the fifth, sixth and seventh iterations received instructions in terms of (i) a letter

which briefly introduced the system and informed on the experiment, (ii) four scenarios and

(iii) a questionnaire to be filled in and returned immediately after interaction with the system.

Before an experiment, the experimenter would call the subject at work and ask the subject to

 152

call the system. Subjects were not told in advance that the system was simulated. The

introductory letter was phrased in a way which made people believe that they were about to

interact with a real system. The letter informed on the background and use of the system,

comparing the system to voice response systems which most subjects would have tried

already.

Throughout the simulations, interaction with the system was based on scenarios. The

first four WOZ iterations were based on a set of ten loosely defined scenarios describing

cases that the system should be able to handle (Figure 5.5). The scenarios had not been

designed to systematically represent as many situations of use as possible but were primarily

intended for domain and task exploration and for training of the wizard. Subjects often

revised a scenario and sometimes invented a new scenario on the fly which was never

written down. In the last three WOZ iterations a new set of scenarios was used. This second

scenario set included a total of 28 scenarios. Only some of them were used in WOZ5

whereas all were used in WOZ6 and WOZ7. The scenarios were designed on the basis of the

dialogue structure that had emerged from WOZ4. By then the scenarios could be more

systematically designed as most of the domain and task structure had been uncovered. The

scenarios in the second set contained more details than those in the first set and left few or

no decisions to the subject (Figure 5.6). This would facilitate the wizard‟s job because, as

mentioned, he would be able to anticipate more or less exactly what a user would answer at

a certain point during interaction. However, the detailed scenarios turned out to have the

negative effect that users began to model the details of the scenario‟s phrases. See Section

5.6.2 for more details on the design and use of scenarios.

You study at the Academy of Music in Aalborg. You are going to visit your parents in

Copenhagen for Christmas. They have promised to pay your ticket.

Figure 5.5. Early WOZ scenario.

Book two return tickets from Copenhagen to Aalborg for Tuesday 27th October for Jens Høst

and Anton Sigurdsen (ID-numbers 27 and 28). They want to travel at 7:00 or 7:30. For the

home journey they want the departure at 17:25. The customer number is 110.

Figure 5.6. Late WOZ scenario.

Whereas the domain coverage of the second set of scenarios was reasonable, the

scenarios had not been designed to enable simulation of meta-communication. The scenarios

did not provide incorrect information to subjects, and subjects were not otherwise asked to

cause miscommunication. This proved to be a drawback during implementation since we had

no information to work from on users‟ meta-communicative reactions.

DATA COLLECTION

All interactions were recorded on tape. No video was used and since no computer was

involved, no electronic log files were produced. Apart from the recorded interactions, all

documentation from the experiments is in paper form.

 153

POST-EXPERIMENTAL CONTACTS

The questionnaire that was distributed to the subjects contained three types of

question. First, subjects were asked about their background with respect to the domain and

the use of computers. Secondly, they were asked a series of multiple choice questions that

had been designed to elicit their opinion of the system. Each question was to be answered by

choosing a point on a five-point scale from positive to negative. Finally, three questions

were asked, inviting subjects to state (1) what they would like to have changed in the way

they had to address the system; (2) what they liked about the system; and (3) what they did

not like about it. Nearly all subjects answered and returned the questionnaire. Results from

the questionnaire are shown in Figure 8.31.

Following their interaction with the system, subjects received a debriefing telephone

interview. Unfortunately, the interviews were not pre-structured as advised in Section 5.3

above and hence their results are difficult to compare. In the WOZ7 debriefing, subjects

were asked if they believed that they had interacted with a real system. The majority of

external subjects believed that the system was real whereas, of course, our colleagues knew

that it was simulated.

DEVELOPMENT OF THE INTERACTION MODEL

The first interaction model for the Danish Dialogue System was not developed

systematically on the basis of the elements of interactive speech theory presented in Chapter

2. We did not have the theory at the time, nor did we have the co-operativity guidelines for

interaction model design (Chapter 4). It is probably correct to say that the first interaction

model was built ad hoc. As discussed in Chapter 3, it had been decided that the system

should be able to handle Danish domestic flight reservation, change of reservation, and

information on departures, fares and travel conditions. All three system developers had some

basic knowledge in the domain. Moreover, publicly available flight timetables and interviews

with travel agents provided input for interaction model development.

In the first interaction model, system output was represented as a loosely ordered set

of pre-defined, task-relevant phrases. There were no constraints on which phrases could be

used in which circumstances nor on who could take the initiative and when. The choice of

system output was left fully to the wizard who, as a result, had great problems in

consistently using the same phrase in similar situations as well as in simply finding the

appropriate phrase among those listed. In addition, the domain coverage was not yet

adequate with the result that a needed output phrase sometimes would be absent from the

interaction model.

Following each iteration except the very first ones, the recorded interactions were

transcribed, annotated, analysed and evaluated in order to assess the extent to which the

system goals and constraints had been satisfied. These processes will be described in detail in

Chapters 7 and 8.

Evaluation results were used to improve the interaction model before the next WOZ

iteration. Obviously, the WOZ1 interactions were far indeed from complying with the

requirements specification and, as mentioned, the wizard had severe problems simulating the

system in the first place. Although more phrases were added to the interaction model after

 154

the first iteration, the second iteration continued to create problems of information

management for the wizard. Clearly, a more powerful representation was needed to

effectively support the wizard and facilitate his work, as well as to obtain a consistent

interaction model which might eventually satisfy the requirements specification. From

WOZ3 onwards, a graph structure (a state transition network) having pre-defined system

phrases in the nodes and expected contents of user input along the edges was used for

interaction model representation (Figure 5.7). This representation provided much more

structure to the tasks which the system should be able to handle. For instance, the graph

helped making explicit the information which the system would need from its user in order

to book a ticket. The graph also partially fixed the order in which sub-tasks could be carried

out. For each node in the graph, there would typically be between one and three possible

edges to follow, as illustrated in Figure 5.7. The wizard‟s task was to decide which edge to

follow given the user‟s input. The number of edges from a single node were to grow later on

(Figures 5.8 and 5.9).

Which time of the day are we talking about?

wrong hour

At [time] there is no departure

from [airport] to [airport] .

On [day] the [date] in the (morning/afternoon/ ...)

there is a flight from [airport] at [time] arriving in

[airport] at [t ime].

correct hour

Figure 5.7. Part of the TIME sub-graph from WOZ3 (translated from the

Danish).

Over the following two iterations (WOZ3 and WOZ4), the domain coverage gradually

became more well-circumscribed and complete. Once the first graph structure was in place,

analytical task walk-throughs as well as scenario-based user interactions helped reveal

missing system phrases and missing graph edges which would force the wizard to improvise

during interaction. Figure 5.8 shows a far more elaborate version of the part of the

interaction model which deals with hour of departure (compare Figure 5.7).

 155

At which t ime of the day?

[Iteration: Which t ime do you then want?]

The f light at [time]

is fully booked.

The closest other

departures are at

[time] and [t ime].

You can obtain xx

discount if you choose

the departure/one of

the departures at

[time] [day] [date]

instead.

There is no departure at [t ime].

The closest departures are at

[time] and [t ime].

On [day] the [date] in the

(morning/afternoon/.. .)

there are f lights to [airport]

at [t ime], .. . , and [t ime].

RETURN

Do you want one of these flights?

fully

booked

no

discount wrong
hour

t ime

exact

hour

Figure 5.8. Part of the TIME sub-graph from WOZ6 (translated from the

Danish).

 156

Mødetider
Man skal møde senest 10 minut ter før afgang.
Skal billetten afhentes eller har man andet end håndbagage skal man møde senest 20
minutter før afgang,
Børn der rejser alene eller folk med ledsagerservice skal møde senest 30 minutter for
afgang.

Vil du informeres om t ider, priser eller rejsebetingelser?

Vil du informeres om
mødet ider,

bagage,
husdyr,

børn ,
ledsagersevice,

eller rabatformer?

Ledsagerservice
Børn under 5 år og andre passagerer med behov for hjælp kan ledsages af en
st ewardesse mod bet aling af tur-retur-billet til normalpris.
Best illing skal ske samt idig med pladsreservation.
Kontakt telefon nummer 12 34 56 78.

Børn
Ét barn under 2 år per voksen rejser gratis; er der mere end ét per voksen skal du
bruge vores ledsagersevice, hør denne.
Børn mellem 5 og 11 år kan rejse alene t il halv normalpris.
Kontakt telefon nummer 12 34 56 78.

Husdyr
Husdyr kan medtages på de f leste afgange. Best illing skal ske samt idig med
pladsreservation. Kontakt telefon nummer 12 34 56 78.

Bagage
20 kg bagage og 5 kg håndbagage kan gratis medt ages af alle passagerer over 2 år.
Ekstraordinær bagage som barnevogne og cykler kan medtages på de fleste afgange.
Best illing skal ske samt idig med pladsreservation.
Kontakt telefon nummer 12 34 56 78.

Prisformer
Foruden normalprisen findes fire rabat former:
rød på visse hverdagsafgange,
grøn på alle afgange på lørdage og søn- og helligdage,
st andby for personer under 26 og over 60,
og grupperabat for mindst 10 personer.
Hvilken prisform vil du informeres om?

Gruppebetingelser
Grupper på mindst 10 personer kan få en særlig rabat.
Du kan få flere oplysninger på telefon 12 34 56 78.

Røde betingelser
Rød rabat kan fås til returrejser på visse hverdagsafgange.
Reservation af ud- og hjemrejse skal ske samtidig og kan ikke
ændres. Hjemrejsen skal ske efter t idligst 2 nætt er og senest
inden en måned efter udrejsen.

Grønne betingelser
Grøn rabat kan fås t il returrejser på lørdage samt søn- og
helligdage. Reservation af ud- og hjemrejse skal ske samtidig og
kan ikke ændres. Hjemrejsen kan – med undt agelse af visse
helligdage – ske samme dag og senest en måned efter udrejsen.

Standby betingelser
Stand-by billetter kan udnyt tes hvis man er under 26
eller over 60, og hvis der 10 minutt er før afgang st adig
er ledige pladser. Der kan ikke reserveres plads.

Information

Normalbetingelser
Normalpris giver adgang t il alle afgange. Ændringer i rejserute
eller reservation er tilladt, og ubenyttet billet refunderes fuldt ud.

SLUT(INFO)

Priser
Vil du informeres om normalprisen
eller om rabatmuligheder?

norm alrabat

Har du konkrete ønsker med hensyn til
personer eller tider
eller vil du blot have generel information
om rabat muligheder?

Der findes fire typer rabatter:
rød på hverdage,
grøn på lørdage og søn- og helligdage,
st andby for personer under 26 og over 60,
og grupperabat for mindst 10 personer.

generel

konkret

Tider

Hvilken dag drejer det sig om?

Hvilken t id på dagen?

Der er ingen afgang tid. De nærmest e
afgange er klokken xx og klokken xx.

dag den dato [om morgenen/…]
er afgange fly fra lufthavn til lufthavn
klokken xx, … og xx.
[Dog er afgangen xx udsolgt].

dag

forkert tid tid/
klokkeslæt

Konkrete priser

PRIS(RØD)

PRIS(GRØN)

PRIS(STANDBY)

Hvor går rejsen hen?

Hvor st arter rejsen?

Hvor mange personer drejer det sig om?

GRUPPEPRIS

Hvilken dag skal rejsen starte?

dag(e)

lufthavn

•10<10

Er det en returrejse?

ja
nej

Er (den/de) rejsende mellem 12 og 26
eller over 60 år?

ja

nej

Der er ingen
rabat muligheder!

Hvilken dag rejses retur?

lufthavn

dag

Hvor mange af de rejsende er under 12 år?

Nævn (barnets alder/
/børnenes aldre)0

>0

m indst 1 dag
i weekend

begge dage
hverdage

Hvor mange af de rejsende
er mellem 12 og 19 år?

aldre

<flere end 0, m en m indst en voksen>

Har de samme postadresse som (den/de) voksne?

antal

ja/nej

Normalpris
Normalprisen for en enkeltbillet er 645 kr. for en voksen
og 323 kr. for et barn mellem 2 og 11 år; returpriserne er 1290 kr. og 645 kr.
[Med hver voksen kan højst ét barn under 2 år rejse gratis] .

Standbypris
En standbybillet koster 325 kr .

Grøn pris
En grøn afgang koster 850 kr. ret ur for voksne
[og 400 kr. ret ur for børn mellem 2 og 11 år i følge med en voksen].
[Med hver voksen kan ét barn under 2 år rejse gratis].
[En voksen ledsager (fx ægtefæ lle) og ledsagede børn mellem 12 og 19 år
 — alle med samme post adresse — rejser return for 550 kr.]

Rød pris
En rød afgang koster 645 kr. ret ur for voksne.
[og 323 kr. ret ur for børn mellem 2 og 11 år i følge med en voksen].
[Med hver voksen kan ét barn under 2 år rejse gratis].

SLUT(INFO)

Gruppepris
Grupper på mindst 10 personer kan få en særlig rabat.
Du kan få flere oplysninger på telefon 12 34 56 78.

Hvor st arter rejsen?

Hvor går rejsen hen?

lufthavn

lufthavn

Pris(normal/standby/rød/grøn/rød+grøn)
(Den samlede pris/prisen) for x (voksne/voksen) [og y børn] på
(normal/standby/rød/grøn/kombineret rød-grøn) afgang
(København-Ålborg/Ålborg-København) [ret ur] er xx kr.

PRIS(NORMAL)

alle

Hvor st arter rejsen?

Hvor går rejsen hen?

lufthavn

lufthavn

SLUT(INFO)

Vil du have mere information?

INFORMATION SLUT eller
RESERVERE.D

Rød rabat er mulig

Grøn rabat er mulig

ja/nej
– 1 dag i weekend

Kombinationen røde betingelser til grøn pris er mulig.

PRIS(GRØN)
/RØDE BETINGELSER

SLUT(INFO)

<hvis reservere>

for m ange sm å

Hvilken rabatform vil du informeres om?

E

Kundenummer xx.
Hvor st arter rejsen?

Hvor går rejsen hen?

Vil du reservere returrejse?

Drejer det sig om
(den samme person/de samme personer)
som (den/dem) der rejser ud?

PERSONER

PERSONER

Er du specielt interesseret i at udnytt e rabatformer?

Hvilken dato st arter rejsen?

KLOKKESLÆT(BESTIL)

Hvilken dato rejses hjem?

lufthavn

lufthavn

ja

nej

nej

ja
nej

dato

Oplys venligst kundenummer

kundenr
har/husker ikke kundenr

Man skal have et kundenr
for at kunne reservere.
Henvend dig venligst til vores
kundeservice, telefon 12 34 56 78.

SLUT

Hvilken dato skal rejsen st arte?

dato

dato

ja
Der er mulighed for rød rabat på hverdage
og grøn rabat på lørdage, søn- og helligdage.
Vil du høre mere om rød eller grøn rabat nu?

nej

rød

grøn

ja/rød+grøn

Reservere

BEKRÆFTELSE

BEKRÆFTELSE

Hvilken dato st arter rejsen?

Ønsker du stadig rabat ?

KLOKKESLÆT(BESTIL)

KLOKKESLÆT(BESTIL)

KLOKKESLÆT (RABAT)
nej

dato

Hvilken dato rejses hjem?

dato

Ønsker du stadig rabat ?

KLOKKESLÆT (RABAT)

nej

RESERVERE.C

nej

C

BEKRÆFTELSE

ja

―RØDE BETINGELSER‖
+PRIS(RØD)

―GRØNNE BETINGELSER‖
+PRIS(GRØN)

D

Personer
Hvor mange personer skal rejse [hjem]?

x personer

Angiv id-nummeret
på (personen/den n'te
person)

id-num m er

RETUR

id-num m er

Du skal have et id-nummer
for (denne person/hver person) for at
kunne reservere.
Kontakt venligst telefon 12 34 56 78

SLUT

id-num(re/mer) id-num re personer

> 9 personer

Grupper på mindst 10 personer kan opnå rabat.
Kontakt venligst telefon 12 34 56 78.

SLUT

har ikke id-num m er

PRISER.E

Før startede [ud]rejsen klokken xx.
Med den ændrede dest inat ion er den
nærmeste afgang klokken xx.
Vil du have den?

<m ere end én person>
Oplys id-numrene på
dem som ikke skal med

Billett erne er afsendt.
Kontakt venligst telefon
nr 12 34 56 78.

Vil du ændre eller slette
denne reservation?

Vil du ændre tider, personer
eller dest inat ion?

tider

personer

ændre

slette

ja

ja

ÆNDRING.B

SLUT

Skal der fjernes personer
fra reservat ionen?

ja/nej

nej

Vil du ændre mere
ved denne reservat ion

destination

afsendt

nej

Reservationen med referencenummer xx
gælder nu til en rejse lufthavn-lufthavn for navn(e)
dag den dato klokken klokken
[og retur dag den dato klokken klokken]

Hvor skal rejsen st arte?

Hvor skal rejsen gå hen?

KLOKKESLÆT

KLOKKESLÆT

<hvis returrejse>
Før startede [hjem]rejsen klokken xx.
Med den ændrede dest inat ion er den
nærmeste afgang klokken xx.
Vil du have den?

lufthavn

lufthavn

nej ja

nej

KLOKKESLÆT

ja

B

Hvilken dato skal
rejsen st arte?

Hvilken dato
rejses hjem?

dato

KLOKKESLÆT

dato

Ændring (genfind)
<kundenr uoplyst>
Oplys venligst kundenummer

kundenum m er

Kundenummer xx
Oplys venligst referencenummer

Systemet kan ikke f inde frem t il reservationen.
Kontakt venligst telefon 12 34 56 78

SLUT

har/husker ej
kundenum m er

Et kundenummer er nødvendigt for at kunne
ændre og reservere.
Kontakt venligst telefon 12 34 56 78

SLUT

flere rejser/
husker ej
id-num m er

Oplys venligst id-nummer

Hvilken dato st arter den rejse
der skal ændres?

id-num m er,
en rejse

husker ej
referencenum m er reference-

num m er

Referencenummer xx er en rejse
for navn(e) den dato fra lufthavn
til lufthavn. [og retur den dato].

dato

husker ej dato

Reservationen med referencenummer xx
er nu slettet

SLUT

Før startede rejsen dag den dato klokken xx.
Vil du ændre det te?

ja

<hvis retur>

Før startede rejsen
dag den dato klokken xx.
Vil du ændre det te?

ja

<hvis enkelt>

Alle?

<m ere end én rejsende>
Gælder ændringen alle personer?

De rejsende er id-nr navn, … og id-nr navn.
Oplys id-numrene på dem ændringen gælder.

RETUR

ja

id-num re

nej

ALLE?
ALLE?

nej

id-num re husker ej

(den/de) rejsende er id-nr
navn(, … og id-nr navn.)

Oplys id-numrene på
de ekst ra personer

id-num re husker ej

Du skal have et id-nummer
for (denne person/hver person)
for at kunne reservere.
Kontakt venligst
telefon 12 34 56 78

SLUT

id-num(re/mer) id-num re personer
Skal der føjes nye til?

id-num(re/mer)
id-num re personer

flere datoer

Der er følgende rejser:
rejse, … og rejse.
Oplys venligst referencenummer

referencenum m er

klokkeslæt

Klokkeslæt (bestil)

forkert
tid

udsolgt

tid

RETUR

KLOKKESLÆT

Vil du have (en af disse afgange/denne afgang)?

ja

hvilken?

RETUR

klokke-
slæt

nej Vil du stadig reservere [hjemrejse]?

janej

SLUT

klokke-
slæt

nej (udsolgt)

<returrejse>
Vil du stadig have udrejsen?

janej

RETUR

dag den dato, hvilken tid på dagen?

Der er udsolgt på afgangen tid.
De nærmest e andre afgange er
klokken xx og xx.

Der er ingen afgang tid.
De nærmest e afgange er
klokken xx og xx.

(om morgen/…) dag den dato
er der afgange fra lufthavn til lufthavn
klokken xx , … og xx.

<helt udsolgt>
Der er ikke f lere ledige afgange denne dag.
Vil du stadig reservere?

ja

Hvilken dato vil du have?

KLOKKESLÆT

dato

nej

SLUT

<pladser>

dato
(hverdag)

dag [den dato] er der røde afgange
klokken xx , … og xx.

nej

jaklokke-
slæt

hvilket

dato
(grøn dag)

dag er alle afgange grønne.

KLOKKESLÆT(BESTIL)

Klokkeslæt (rabat)

Klokken xx

klokke-
slæt

RETUR

Klokken xx

Klokken xx

Vil du have (en af disse afgange/denne afgang)?

Systemet kan informere om priser , tider og
rejsebet ingelser samt reservere billett er til
indenrigsfly i Danmark.
Du bruger det ved at besvare systemet s spørgsmål.
Desuden kan du bruge de to specielle kommandoer
gent ag og ret for at få gentaget eller ret tet den
seneste oplysning.
Systemet forstår dig kun når spørgsmål besvares
kort og et ad gangen.

Vil du informeres, reservere eller ændre en tidligere reservation?

reservere

Start

Hovedvalg

inform eres ændre

Goddag, det te er DanLuft s rejseservice for indenrigsfly.
Kender du dette system?

nej

ja

Slut

Bekræftelse

Der er nu reserveret xx [voksen]billett (er) fra lufthavn til lufthavn
til navn(e) [og xx børnebillett er til navn(e)]
med udrejse [ugedag] den dato klokken xx
[og hjemrejse [ugedag] den dato klokken xx].
[Der gælder (røde/grønne) bet ingelser] .
Dit referencenummer er xx.

<m ere end et par dage til afrejsen>
Vil du at have (billetten/billet terne) tilsendt, eller skal de(n) hent es i lufthavnen?

(Billet ten/billett erne) bliver t ilsendt
(i løbet af et par dage/ca. en uge før afrejsen)

(Billet ten/billett erne) vil ligge til afhentning
(på lufthavnens billet kontor/
 ved check-in-pult nummer 19 i lufthavnen).
Billett er skal afhent es
senest 20 minutt er før afgang.

Vil du mere [svar venligst ja eller nej]?

ja nej

HOVEDMENU farvel!

tilsendt hentes

Gentag

Gentag system ets seneste (sam lede) ytring

Ret
gentag det seneste spørgsm ål som gav en oplysning
gentagne 'ret' popper baglæns

Undskyld
Undskyld[, jeg forstod ikke]

gentag system ets seneste spørgsm ål

RETUR

Graphs 921008
Dybkjær & Dybkjær

1

8

9

10

22

11

13

12

14

4

5

2

3

15

19

20

21

6

7

17

18

16

Figure 5.9. The full dialogue model graph as used in WOZ7. Note that the text

is not intended to be readable but merely to illustrate the complexity of the

dialogue model.

From WOZ5 onwards, when the task domain structure had become reasonably well-

defined, development focus shifted towards attempts at satisfying the specification‟s

constraints on system vocabulary, user utterance length and user topic predictability (cf.

Chapter 3). Subjects had been explicitly asked to be brief from WOZ4 onwards.

Work on the vocabulary constraint led to elaboration of the language used in the pre-

defined system phrases. The idea was that this might contribute to decreasing the size of the

 157

vocabulary used by subjects since they would often re-use the system‟s expressions. Care

was taken that the same expressions and phrases were used in similar contexts by the

system. It was particularly clear that subjects modelled the system‟s phrases when offered a

choice among several possibilities, but similar behaviour could be observed in other

situations as well, such as re-use from system questions. For instance, if the system asked

“Where does the journey start?”, many subjects would reply “The journey starts in ...”.

Work on the user utterance length and user topic predictability constraints led us to

take away the initiative from subjects to elicit more predictable answers. Interaction thus

became increasingly system directed, partly through the transformation of user questions

into system questions. Users‟ answers are typically shorter than their questions. After each

iteration, we looked for system phrases or utterances which caused too lengthy or

unpredictable answers or which confused subjects into asking questions. Such phrases or

utterances were revised and often made more specific. Sometimes intonation was used to

make the meaning of the system‟s output clearer. Finally, the wizard had been training from

early on to use a monotonous, machine-like voice. This was meant to support users in

believing that they communicated with a real system, which again might influence their use

of language, making it simpler and briefer.

Between the fifth and sixth WOZ iteration we recorded a corpus of 25 Danish

domestic flight reservation dialogues in a travel agency, corresponding to about one hour of

spoken human-human conversation. The original intention had been to make these

recordings early in the design process and prior to the development of the first interaction

model, but this had proved impossible because of practical problems. Based on the

recordings, the WOZ6 interaction model was adjusted in the light of typical task order

structures identified in the human-human flight reservation conversations.

In WOZ6 and WOZ7, restrictions were imposed on what the wizard would be able to

understand. This was not done on the basis of explicit rules as recommended in Section 5.4.

It was left to the wizard to judge when user input was too far from what the final system

would be able to manage. When this happened, the wizard would ask again for the

information.

In WOZ7 most constraints were satisfied. Those which were not, or whose

satisfaction remained unknown, were essentially the following three. First, although the

vocabulary size in each individual iteration was well within the 500 word limit, no

convergence was found. The prediction therefore was that 500 words would be insufficient

for the application. Secondly, meta-communication had been virtually ignored during

simulation. Thirdly, the need for system directed interaction meant that two of the three

tasks originally planned for the application, i.e. the information and change of reservation

tasks, could be handled only in a very unnatural, menu-like way which we did not consider

acceptable to users. Under the given constraints those two tasks were considered infeasible.

5.6.2 USES OF WOZ FOR EXPERIMENTATION

We used the WOZ simulations for studying or experimenting with some parameters of

potential importance for the use of WOZ for interactive speech systems development. Three

studies are presented below. The first experiment addresses the influence of voice distortion.

The second study addresses the effects of users‟ backgrounds. The third experiment

 158

investigates users‟ modelling of scenarios. The latter study was performed during the user

test of the Danish Dialogue System. However, as scenario design is basic to WOZ, the

investigation will be presented in this chapter.

VOICE DISTORTION

In half of the WOZ7 interactions, system output was filtered to distort the wizard‟s

voice. We wanted to test the influence of output filtering on subjects‟ behaviour and beliefs

about the system. In contrast to much of the literature, such as [Fraser and Gilbert 1991a,

Fraser and Gilbert 1991b, Amalberti et al. 1993], we found that system output filtering had

no significant effect on user performance nor on subjects‟ beliefs about the system. When

parameters such as number of turns, word types, word tokens, and word tokens per turn

were compared, there was a small difference between interactions in which system output

was filtered and those in which no filter was used. However, this difference was not

significant. Furthermore, the subjects who heard the distorted voice on the average used

more turns, word types, word tokens and word tokens per turn than the subjects who heard

the wizard‟s undistorted voice. Our hypothesis is that, in our case, the potential effects of

output filtering had already been achieved by a combination of strongly system directed

dialogue and the wizard‟s (mostly successful) use of monotonous voice and controlled

intonation [Dybkjær and Dybkjær 1993].

SUBJECTS‟ BACKGROUNDS

In WOZ6 and WOZ7 most subjects were either professional secretaries, academic

linguists or academic computer scientists. We looked at how the users‟ backgrounds

affected their interaction with the system. The secretaries had considerable domain

knowledge. The computer scientists had considerable general system knowledge but were

not domain experts. The linguists neither had considerable general system knowledge nor

were they domain experts.

The results obtained during WOZ6 and WOZ7 provide confirmation that subjects‟

professional backgrounds affect their interaction with the system. Figure 5.10 shows that the

linguists tended to use many word tokens and many different word types. They

experimented with the system to figure out which words and grammatical constructs it

would understand. The secretaries were much more co-operative, trying to reach the goal of

the interaction as easily and quickly as possible. One group of computer scientists were co-

operative, focusing on the goal of the interaction and apparently took care to express

themselves briefly as they had been asked to do. The second group of computer scientists

experimented with the system, but not, like the linguists, with grammatical constructs but,

rather, with the system‟s semantics [Dybkjær and Dybkjær 1993].

Although hardly based on statistically significant numbers of subjects, Figure 5.10

illustrates a simple point. This is the importance of choosing the right user groups for WOZ

experimentation. Since subjects‟ backgrounds appear to affect their interaction with the

system, it is important to choose subjects having a background corresponding to that of the

users of the final system. Ignoring this precaution runs the risk of obtaining data which are

less reliable than they might have been. Just as an untrained human wizard cannot fully

simulate an interactive speech system, it seems probable that having a certain type of

 159

background, experience and training cannot be simulated. It is therefore not sufficient just to

ask any person, such as a student, to behave in the WOZ experiment as s/he believes that,

for instance, a professional secretary would behave. The parameters which were in focus in

the WOZ development of the Danish Dialogue System, such as vocabulary and utterance

length, cannot be simulated straightaway. What is a natural way of communication in

context for a professional secretary is not necessarily quite as natural for an academic

linguist.

0,5

0,4

0,3

0,2

0,1

Tokens

Secretary Computer scient istLinguist Other

T
y
p
e
s

p
e
r

t
o
k
e
n

300250200150100500

Figure 5.10. Average number of word types per word token in relation to

number of tokens used by each subject in WOZ6 and WOZ7.

PRIMING EFFECTS OF SCENARIOS

Analysing the problem

In parallel with the user test of the Danish Dialogue System we investigated to which

extent subjects were primed by scenarios. The reliability of the collected data on users‟ sub-

language depends on the fact that subjects‟ use of spoken language during interaction with

the system is not overly influenced by the written language used in the scenarios. When

interacting with the implemented system, users will use spontaneous speech rather than read-

aloud speech. It is crucial that the system‟s sub-language is developed on the basis of

spontaneous speech similar to that used by the eventual user population. During the final

WOZ experiments we discovered that subjects tended to repeat the date and hour of

departure expressions used in the scenarios. We therefore decided to test the extent of these

priming effects and how they might be avoided.

 160

First, a set of scenarios were systematically generated as follows. Since the flight ticket

reservation task is a well-structured task in which a prescribed amount of information must

be exchanged between user and system, it was possible to extract from the dialogue

structure a set of sub-task components, such as number of travellers, age of traveller, and

discount or normal fare, any combination of which should be handled by the system. The

scenarios were generated through systematically combining these components. This process

generated a set of 20 scenarios described in written text much like those from the late WOZ

experiments (see Figure 5.6).

We then considered how to prevent users from modelling the scenario language in

order to avoid the risk that the language understood by the final system would be that of the

designers rather than that of the end-users. For each sub-task in the dialogue structure, the

type of question posed by the system was categorised. There were four types of question.

One type invited a yes/no answer. A second type invited an answer containing an item from

an explicit list of alternatives, i.e. a multiple choice question. The third type invited the user

to state a proper name or something similar to a proper name, such as an airport name or the

user‟s own customer number. The fourth type were open questions about a specific topic,

such as the date of departure. In the first three cases, the key information to be provided by

the user can be co-operatively expressed only in one of several closely related ways, which

means that it does not matter if users model the expressions of the scenario representation.

For instance, there are only two different names for the airport in Copenhagen

(„Copenhagen‟ and „Kastrup‟) and both must be included in the system‟s vocabulary no

matter which name is being used in the scenarios. It is only in the fourth case that co-

operative user answers may express the key information in many different ways. It is exactly

in these cases that it is desirable to know how users would spontaneously express

themselves and hence mandatory to prevent them from modelling the scenario expressions.

Questions of this type all concerned date and hour of departure. We therefore decided to

focus on masking the scenario expressions of date and hour of departure.

In general, dates are either expressed in relative terms as being relative to, for instance,

today, or in absolute terms as calendar dates. Hours are either expressed in quantitative

terms, such as „ten fifteen AM‟ or „between ten and twelve‟, or in qualitative terms, such as

„in the morning‟ or „before the rush hour‟. The masked scenario representations never

included re-usable expressions referring to dates or hours of departure. Relative dates were

expressed through presenting a list of days from today onwards. Absolute dates were

expressed as calendar indices such as might be used by a customer when booking a flight.

Quantitative hours were expressed using the face of a clock. Qualitative hours were

expressed using (travel) goal state temporal expressions rather than departure state temporal

expressions, such as in „they want to arrive early in the evening‟. This means that the user

had to (i) make an inference from the hour indicated in the scenario representation in order

to determine when it would be desirable to depart, and (ii) spontaneously articulate the

result of that inference. This would exclude the possibility of priming.

To test the effects upon users‟ language of masking all temporal expressions in the

scenario representations, subjects were divided into two groups, one serving as the control

group. Each test scenario was represented in two different ways (Figures 5.11 and 5.12).

The masked version (Figure 5.12) combines language and analogue graphics whereas the

control group version (Figure 5.11) uses standard written text. The test involved a total of

 161

12 subjects. Six subjects received text scenarios and another six received analogue graphic

scenarios. Each subject interacted with the system on the basis of four different scenarios.

Subjects sometimes repeated a scenario if they did not succeed the first time. In this way, 32

dialogues based on text scenarios and 25 dialogues based on graphic scenarios were

recorded. For more details on the user test, see Chapter 8.

Rikke Hansen (customer number 4, ID-number 2) from Copenhagen is going to travel to

Rønne in Bornholm on January 23 at 10:15. Rikke is 10 years old.

Figure 5.11. Scenario T21 described in written text only.

Rikke Hansen (customer number 4, ID-number 2) from Copenhagen is going to travel to

Rønne in Bornholm as shown in the calendar and on the clock. Rikke is 10 years old.

JANUARY 1995 FEBRUARY 1995

M T W T F S S WEEK M T W T F S S WEEK

 1 52 1 2 3 4 5 5

 2 3 4 5 6 7 8 1 6 7 8 9 10 11 12 6

 9 10 11 12 13 14 15 2 13 14 15 16 17 18 19 7

16 17 18 19 20 21 22 3 20 21 22 23 24 25 26 8

23 24 25 26 27 28 29 4 27 28 9

30 31 5

 162

Figure 5.12. The same scenario as in Figure 5.11 but represented through a

combination of text and analogue graphics (G21). The journey start date and

week are in boldface, i.e. Monday (M) 23 January 1995 in Week 4.

Our hypotheses as regards date and time were that (1) there would be a massive

priming effect from the text scenarios and none from the graphic scenarios, and (2) the

dialogues based on graphic scenarios would contain a richer vocabulary than those based on

text scenarios in terms of (i) total number of different words and (ii) out-of-vocabulary

words. The reason for the first hypothesis was explained above. The reason for the second

hypothesis was that the richness of the spontaneous spoken language of the users would

exceed that of the designers. The first hypothesis was confirmed but the second was not. In

addition, we found an unexpected result which could provide a strong argument in favour of

using analogue graphic scenarios in (sub-language) interaction model development.

Priming effects

As expected, there was a massive priming effect from the text scenarios and virtually

none from the graphic scenarios. The first row of Figure 5.13 shows the “cleaned” number

of user turns for which priming from the scenarios was possible. “Cleaned” means that we

have counted only the first occurrence of a user answer containing a date or a time in

response to each of the four system questions concerning the dates and times of out and

home journey departures. In these cases, there is no immediate priming from the expressions

used by the system itself and figures are not influenced by repeated or changed user answers.

 WOZ7 Text Graphic

First date and time answers 74 106 84

Primed answers 59 59 1

Primed out date 91% 45% -

Primed home date 83% 23% -

Primed out hour 68% 78% -

Primed home hour 73% 71% -

Figure 5.13. Priming effects in WOZ7 and in text scenario-based and graphic

scenario-based interactions, respectively (see text).

 163

Each date or time expression in the users‟ answers was compared to the scenario text.

Complete matches and matches where optional parts of the date or time expression had been

left out or added were counted as primed cases. If non-optional parts of the date or time

expression had been changed, the case was considered as non-primed. For example, if the

scenario said „Friday the second of January‟, then „the second of January‟ and „Friday the

second‟ would count as primed but not „the second of the first‟ which is a common Danish

calendar expression. All annotation and counting concerning priming was done

independently by two of the system developers and compared and discussed in case of

disagreement.

In the text scenario-based interactions, priming was not equally distributed across date

and time. This may have the following explanation. The time expressions used in the

scenarios were similar to the feedback expressions used by the system and chosen from

among the most common expressions of time in the Danish. A broader variety of date

expressions was used in the text scenarios although most frequently of the form „the second

of January‟. Furthermore, there are several frequently used date expression formats in the

Danish. The system‟s feedback was of the form „the second of the first‟. The decrease from

45% (out date) to 23% (home date) partly seems to be due to the fact that users went from

modelling the scenario text to modelling the system‟s feedback when answering the question

about home date, and partly to the use of relative dates such as „the same day‟.

Throughout the WOZ scenarios, the date format „Friday the second of January‟ was

used, which was in accordance with the system‟s feedback. This, and the general frequency

of this expression, may explain the high date priming percentage in WOZ7.

It was controlled that the observed priming from the text scenarios was not simply an

effect of using standard expressions which subjects would have used anyway. The date and

time expressions used in the interactions based on graphic scenarios were compared to the

corresponding expressions used in the text scenarios. Since the graphic scenarios often

contained no precise hour, time expressions were also compared by form. The result is

shown in Figure 5.14. A full match means that if the expression had been found in the

corresponding interaction based on the text scenario, it would have been considered primed.

In a form match only, the form of the expression is the same as in the text scenario but not

its exact value. Figure 5.14 clearly shows that the observed effect in Figure 5.13 cannot be

ascribed merely to the use of standard Danish date and time expressions in the text

scenarios.

 Full

matches

Form

matches

Total no. of

expressions

Full + form

matches

Primed answers 17 10 86 31%

 164

Primed out date 8 - 25 32%

Primed home date 3 - 18 17%

Primed out hour 3 7 25 40%

Primed home hour 3 3 18 33%

Figure 5.14. Priming effects in the graphic scenario-based dialogues when the

text scenario priming criteria are applied.

Vocabulary effects

The use of graphic scenarios did not result in a significantly richer spontaneous

vocabulary containing more word types than did the use of text scenarios, nor did the use of

graphic scenarios elicit more out-of-vocabulary words. On the contrary, interactions based

on graphic scenarios contained less different words (Figure 5.15). The scenario sets

generated no out-of-vocabulary date terms and only nine new time terms.

 Text

scenarios

Graphic

scenarios

no. of subjects 6 6

no. of different scenarios 20 20

no. of dialogues 32 25

no. of user turns 547 451

no. of user turns* 181 178

no. of user word tokens 1606 862

no. of user word tokens* 705 451

no. of user word types 151 94

no. of user word types* 85 63

average user utterance length 2.94 1.91

average user utterance length* 3.90 2.53

longest turn 23 11

number of turns > 10 word tokens 16 1

Figure 5.15. Comparative data on interactions based on two different scenario

types. * indicates that the figures presented only concern the parts of the

interactions dealing with date and time.

Graphic scenario users massively replaced relative dates with absolute dates. This may

be because people generally tend to do so in reservation tasks, or because people tend to do

so in interaction with machines which they know are inferior with respect to language

understanding. Whichever explanation is true, the effect is that subjects tended to

standardise their date vocabulary by using exact dates rather than using their relative dates

vocabulary.

 165

Similarly, graphic scenario users tended to replace qualitative time with quantitative

time, although less strongly so than in replacing relative dates by absolute dates. Again, the

tendency is towards exactitude at the expense of using the language of qualitative time. The

effect is another limitation on the vocabulary used.

We see three implications of these findings:

(i) The introduction of graphic scenarios into interactive speech systems development

is not a means of doing away with good task scenario designs which may efficiently explore

the task domain, users‟ language and user task performance. Good scenario design, however

represented in the scenarios, is still essential to good interaction design.

(ii) Given the fact that neither text nor graphic scenarios are able to elicit the full

diversity of potential user language vis-à-vis the system, field trials of interactive speech

systems are still essential to the design of workable real-life systems.

(iii) The good news is that, in the graphic scenarios, subjects demonstrated a clear

tendency towards expressing themselves in exact terms as regards dates and times.

More information on priming and vocabulary effects, including the statistics involved,

can be found in [Dybkjær et al. 1996, Chapter 15].

An unexpected result

We found a significant difference in word tokens per turn, i.e. average user utterance

length, between interactions based on text (2.94) and graphic scenarios (1.91), respectively

(Figure 5.15). Apart from the scenario representations, all subjects received identical

information. They were asked the same questions and they all believed that they were

communicating with a machine. Task contents were identical in the two sets of scenarios.

There were no significant differences between the two user populations. The most plausible

explanation, therefore, seems to be that the observed difference is produced by the different

scenario representations themselves. In the text-based interactions, subjects read aloud from

their scenario representation. What they produced was, in effect, not spontaneous spoken

discourse but read-aloud text.

In the graphic-based interactions, subjects could not read aloud from their scenario

representation because it does not contain textual expressions for date and time. To

communicate the task contents of the graphic scenarios, therefore, subjects had to produce

spontaneous spoken language.

When developing realistic interactive speech applications, we need to copy or imitate

realistic situations of use to the extent possible. Use of read-aloud text in communicating

with the system is hardly close to realistic situations of use of most interactive speech

systems. This would imply that textual development scenarios which afford read-aloud

solutions for communicating with the system, are unsuited for interactive speech systems

development. Other solutions should be found in order to ensure that subjects actually do

produce spontaneous speech in communicating with the system. One solution is to use

analogue graphic representations of scenario sub-tasks when necessary. We believe to have

shown that this is in fact possible to do for the representation of temporal scenario

information.

 166

6 IMPLEMENTATIONAL ISSUES
The implementational issues of interactive speech systems do neither in principle nor in

practice differ much from those of any other software system. Nevertheless, this chapter

illustrates some important implementational issues raised in particular by the nature of the

dialogue control layer.

In Section 6.1 the overall structure of the Danish Dialogue System is described from

an implementational viewpoint, emphasising the physical architecture and the overall flow of

control and data. Section 6.2 describes in more detail the dialogue control layer. Finally,

Section 6.3 discusses the problem of debugging. As such, debugging is a rather well-

developed area of software engineering. It is included in this book because the emphasis on

human-machine dialogue highlights problems that have received little treatment in the

standard literature although similar problems have begun to appear in papers concerning the

testing of graphical user interfaces.

6.1 THE OVERALL DIALOGUE SYSTEM

Current, limited interactive speech systems have a rather uniform architecture (cf.

Figures 1.2 and 2.2). Moreover, the basic functionalities are obligatory. Thus a combined

development and production platform, tailored to interactive speech systems, is useful for

the cost-efficient development of such systems. Examples of platforms are GDS (generic

dialogue system) [Bækgaard 1996], and SpeechActs [Martin et al. 1996]. Figure 6.1 shows

the GDS architecture that was used in the Danish Dialogue System.

Parser

Communication manager

Speech
recogniser

driver driver

Telephone
line interface

driver

Keyboard text
recogniser

driver

Interpretat ion and
control module

(ICM)

DDL-tool

Dialogue
control

structure

Acoust ic and
syntactic
models

Lexicon
and

grammar

Syntact ic
models and

abbreviat ions

driver

Reproduct ive
speech player

driver

Applicat ion
database

Customer, t ime/fare,
reservat ion, and

f light files
Computation rules

Pre-recorded
phrases

 167

Figure 6.1. Architecture of the Danish Dialogue System. Boxed text denotes a

program, unboxed text denotes a resource. Connections represent dataflow,

arrowheads indicating single direction only. The dotted lines indicate that the

DDL-tool offline generates the dialogue control description and provides online

control of the interpretation and control module (ICM) which is an interpreter of

the event-driven dialogue description language (DDL). Programs equipped with

a driver may run on different machines, communicating via the TCP/IP based

communication manager.

Figure 6.2 shows how the structure relates to speech interaction theory. Being

hardware, the telephone and telephone line interface actually do not belong to the theory of

Chapter 2, but are shown here to indicate the relationship to Figure 6.1. The figure is

somewhat simplified, e.g. the bigram is derived from the input grammar, and the semantic

output from the parser is post-processed in the dialogue manager (denoted User input in

Figure 6.3) before it is handed over to the item handler which manages the attentional,

intentional, and linguistic structures of the control layer. The term task item or just item

refers to a piece of information that is part of the dialogue task, and will also be used to refer

to the task item object, i.e. the system representation of the value and status of an item. This

will be treated in more detail in Section 6.2.

 168

Recogniser

Continuous

Hidden markov models

Bigram

Parser

Input grammar

Semantic rules

Lexicon

Database

Customer, time/fare,
reservat ion, and f light f iles

Computation rules

Dialogue h istory

Task record

I tem order history

Boolean output semantics

Performance

System directed

Limited user initiative

Telephone

Telephone line interface

Player

Prerecorded phrases

Generation

Phrase grammar

Domain handler

Rules

I tem hand ler

Task template

Exchange order

User model

Via task record

User

Figure 6.2. Interaction model of the Danish Dialogue System. The six boxes

show separately running processes. The dashed box is the dialogue manager, i.e.

the ICM plus the dialogue control structure of Figure 6.1. The arrows denote

information flow between processes. Dashed arrows are merely reading or

updating data structures. The performance is not a process but the behavioural

sum-total of the system‟s processes.

Figures 6.1 and 6.2 also illustrate that speech interaction theory (Figure 2.2) is a

generic conceptual construct that may have different physical expressions. For instance,

language generation, dialogue control, and most of the dialogue context have been

aggregated into one module, whereas the domain context is split into a system-internal

domain handler and a system-external database.

 169

The dynamic flow of data is illustrated in Figure 6.3, cf. also the description

accompanying Figure 2.3. The illustration shows a dialogue on the route task of a

reservation, corresponding to a single exchange of one user utterance followed by the

system‟s feedback. The user has already specified that the journey starts in Copenhagen

(code CPH). The user produces a speech signal which by the recogniser is converted to the

string of lexical references “rejsen går til Aalborg” (the journey goes to Aalborg). The

parser determines the semantics of the string to be a destination (designated to as opposed to

from) with the value Aalborg. This is represented as a semantic object {to = Aalborg}.

The item handler then instantiates the task item object TO to the value ALB representing

Aalborg and some control fields checking and status (cf. Section 6.2). Using the simple

query language which forms part of the communication manager protocol, the domain

handler then sends a request “eve icm app MOD_DBROUTE (CHP ALB)” to the database to

check that the destination pair (CPH ALB) forms a valid route. The request means “an

„event‟ from the „ICM‟ (which is interpreting the dialogue management structure that the

domain handler is part of) to the „application‟ (alias the database), with the „modifier‟

„database route‟, and data part „from Copenhagen to Aalborg‟”. The database in this case

responds positively with an OK, the item is updated with system status yes, and the user

can be informed. Finally, the generation makes a list of the phrase names for the echo

feedback “til Aalborg” (to Aalborg) which is used by the player as names of sound files to

be replayed concatenatively.

 170

speech signal

lexical string

semantic object

item

request

answer

item

phrase names

speech signal

" r e j s e n g å r t i l Å l b o r g "

{ t o = Å l b o r g }

{ i t e m T O , v a l u e A L B , c h e c k i n g y e s ,

 s t a t u s { s y s t e m c h e c k ,

 u s e r i n f o r m } }

{ i t e m T O , v a l u e A L B , c h e c k i n g y e s ,

 s t a t u s { s y s t e m y e s ,

 u s e r i n f o r m } }

e v e i c m a p p

 M O D _ D B R O U T E (C P H A L B)

e v e a p p i c m

 M O D D B _ S T A T U S D B _ O K

" T I L " " A L B "

User

Recogniser

Parser &

User Input*

Item Hand ler*

Domain Handler*

Database

Item Hand ler*

Player

User

Generation*

Figure 6.3. Typical data flow from user input to user output in the Danish

Dialogue System.

Precontext: The FROM task has been completed, establishing that the travel starts

in (is from) Copenhagen. Now the task TO is initiated, the item preconditions

have been checked, and the item record is {item TO, value _, checking

yes, status {system bottom, user bottom}}.

Postcontext: The item record is completed with a value {item TO, value

ALB, checking yes, status {system yes, user yes}}. The item

postconditions are checked, i.e., if the change affects any other items that should

be re-established, then the corresponding tasks are invoked. Finally, checking is

set to false, and control transferred to the next task and item, typically “do you

want a return ticket?”

 171

6.2 DIALOGUE CONTROL

The dialogue control of the Danish Dialogue System separates two issues in a two-

level structure: that of the tasks to be executed, and that of the exchanges to be made for

each task. The two levels are linked via task items which are objects describing the domain

value and control status of sub-tasks. Below we describe the Danish Dialogue System using

these three concepts. The section finishes with more general considerations on dialogue

patterns, dialogue formalisms, and representations of dialogue models.

ITEMS

The information and reservation types of dialogue tasks of which flight reservation is

an example, may be viewed as information slot filling processes. In the Danish Dialogue

System these information slots are modelled by task items. The set of items used is shown in

the task template in Figure 2.5. Each item has the three dynamic fields:

 checking: register if this item is currently being checked.

 status: the status that the system assigns to the current value with respect to the

domain and the user. The status expresses which action to perform next.

 value: the value of the item, if any.

The possible statuses are listed in Figure 6.4. The potential 30 combinations of system

and user status are reduced via a table to the seven possibilities: OK, ask for

new/choice/confirm, check item, feedback, and error (Figure 6.5). In every case priority is

given to the system status, thereby assigning top weighting to the guidelines of truth and

evidence (Chapter 4).

System status

Value Reading Meaning

DB bottom No information from the domain representation is

recorded about the item.

DN reject The value is erroneous according to the domain

representation.

DC check The value must be checked with the domain

representation.

DP partial The domain representation has returned a list of

possible values.

DA accept The value is in accordance with the domain

representation.

User status

Value Reading Meaning

UB bottom No information from the user is recorded about the

item.

UN reject The user has rejected the value (e.g., said “no”).

 172

UC check The value must be checked with the user.

UP partial The user has mentioned an imprecise (partial) value

(e.g., “morning” for hour).

UI inform The user must be informed about the value.

UA accept The user has accepted the value.

Figure 6.4. Possible status values of items in the control structure of the Danish

Dialogue System. Note how the values (bottom, reject, partial,

accept) describe the system‟s model of the user‟s opinion on the value whereas

the values (check, inform) describe a need for certain system actions

towards the user concerning the current value. The values (check, inform,

accept) express different levels of system belief about user agreement.

For each item a set of statically defined methods or operations is specified. The

methods are (cf. also Figure 6.5 below):

 Check pre-required items. For instance, date and route must be established before the

departure hour item can be handled

 Check affected items. After finishing an item it is checked if other items potentially

have been affected. For instance, changing a date is almost certain to affect the

departure hour.

 Ask the user for a value, and await an answer. For instance, “What is the destination?”

 Check value. Before inserting a value into an item it must be checked that the value

has a valid format and is consistent with the current context.

 Feedback: tell the user the current item value. For instance, “To Copenhagen.”

 Provide error message: tell the user that a value is wrong. For instance, “There is no

route between Aalborg and Århus.”

THE TASK LEVEL

The task level defines the overall structure of the dialogue. It is controlled via a task

template (cf. Figure 2.5) that describes a static default order for the sub-tasks, and a

dependency table that describes the dynamic communicational relationships of the tasks. The

task template is defined on the basis of the domain (for instance, a route consists of an origin

and a destination) and on the basis of naturalness (for instance, field studies of conversation

between customers and a travel agent show that traveller identities should preferably be

defined before route and time). It is mainly the guidelines of orderliness and background

knowledge that must be satisfied in these cases (Chapter 4). An important issue in the

specification of items and task template is that of granularity. For instance, we decided to

treat date as one atomic item and to allow a restricted range of standard linguistic

expressions such as “on Friday” and “14 March”, combined with semantic rules for

completing or expanding these into fully qualified date expressions such as “Friday 14 March

1997”, finding the year 1997 from the general dialogue context. The low-level alternative

would be to ask separately for day-of-month and month. The more sophisticated alternative

would be to start by asking for the whole date (as happens now), but then ask separately for

 173

missing sub-items such as day and month if only some of these are missing (and not directly

inferable) in the user input (as recognised by the system). This approach is taken with

respect to the route in the Danish Dialogue System.

A task dependency table describes which items must be specified before which other

items, and how changes in some items may affect the values of other items. These

dependencies are derived from the domain descriptions of the items and are not affected by

the dialogue design guidelines of Chapter 4, other than perhaps truth and evidence. The

whole dialogue might in principle be driven by the task dependency table just by starting

with the reservation item. By applying the dependencies recursively, the dialogue control

will eventually wind up asking for all the necessary sub-items. This accentuates that the role

of the task template primarily is conversational, to obtain a higher degree of naturalness:

from the task domain dependencies taken by themselves, one might very well start by asking,

e.g., for the point of departure, and purely conversational questions such as “Do you know

this system?” would never be asked.

THE EXCHANGE LEVEL

The atomic tasks are described by the exchange structure, also called the dialogue

pattern, and are each of them in a one-to-one correspondence with an item. The dialogue

pattern is specified in terms of item operations—the double boxes of Figure 6.5—and two

additional user events. The pattern has four main parts. First, when entering the item

handling it is checked that all pre-required items are present. Second, when finishing an

atomic task it is checked if other task items have been affected. Third, there is a means of

user-initiated meta-communication via the keywords „repeat‟ and „change‟. Not included in

Figure 6.5 is the possibility for the system to react with time-out in case of excessively long

pauses. Fourth, there is the central status loop defining the possible structure of exchanges

between the user and the system concerning the actual item.

 174

Feedback

OK

ITEM
GLOBAL

Exit

"Change"

(previous item)
"Repeat"Check for

required items

Check item

Emit error

message

Check

af fected items

Await

answer
Ask for

- new,

- choice, or

- conf irm

Status

Figure 6.5. Item exchange structure in the Danish Dialogue System. Works co-

routinely with task structure (cf. Figure 2.5). All double boxes are parametrised

by the item.

DIALOGUE PATTERNS

The item exchange structure described above is an example of a dialogue pattern. A

dialogue pattern is a control structure controlling the low-level structure of exchanges. In

the Danish Dialogue System only one single pattern was used. Having a uniform pattern

across all items allows the use of few but well-defined dialogue acts that are easy to grasp by

the user and easy to maintain and grasp by the dialogue designer. Moreover, item-specialised

exchange structures work as re-usable dialogue patterns. For instance, in the Danish

Dialogue System similar items such as origin/destination and out-hour/home-hour are

defined in terms of generic airport and hour items.

The general formulation of dialogue patterns as programming constructs is non-trivial.

Novick and Sutton [1996] have experimented with similar dialogue patterns in the CSLUrp

generic system. However, the CSLUrp patterns do not solve many of the complex problems

encountered when using the common exchange pattern in the Danish Dialogue System.

These problems relate to the discussions of object-oriented programming, programming

patterns, and reusability in general that flourish in computer engineering research. As a

concrete example from the Danish Dialogue System, consider the case of dates. The out

date and the return date have a quite similar structure which is closely related to that of the

generic date. Most grammar, semantics and domain rules may thus be reused. There are

differences, however. The generated phrases must be different: the system clearly indicates

whether it asks for out journey or for home journey. This is handled by the generation

 175

module (Figure 6.2). Semantics are different: out date is completed relative to today whilst

return date is relative to out date: if today is Monday and the user wants to travel on Sunday

and return on Tuesday, then (assuming correct recognition) the Tuesday is not tomorrow

but Tuesday of next week. This is handled in the domain handler module (Figure 6.2). Other

differences may turn up, but already this example shows that dialogue patterns, although

representing an obvious idea, must be parametrisable in quite advanced ways and cannot be

fully separated from the domain and the task.

DIALOGUE FORMALISMS

Figure 6.6 shows the item exchange structure of Figure 6.4 as implemented in the

Danish Dialogue System using the dialogue description language DDL. Other dialogue

description languages are CSLUrp which as a visual programming language is similar to

DDL, Philips‟ HDDL which is a textual formalism, and GADL/IPSIM of [Smith and Hipp

1994]. Common to these languages is that they are event-based and have a range of

primitive operations that support the speech and language layers of interactive speech theory

(Figure 2.2). DDL does not support control above very short and simple touch tone

communication, although it provides handling of abstract semantic events. The item

exchange structure described above, something which is absolutely necessary in any but the

simplest dialogues, was programmed in DDL using DDL as an ordinary programming

language at the level of Basic or C. For instance, the language does not support inheritance

from a common item exchange class; instead, specialisations are explicitly implemented by

the programmer using 20-way case switches on task item names. HDDL provides some

support of operations, such as those shown in Figure 6.4. Only GADL/IPSIM seems to

provide strong support of the context layer.

 176

File Name : info-node.eps

Title : info-node.dvi

Creator : dvips 5.490 Copyright 1986, 1992 Radical Eye Software

Pages : 1 1

Figure 6.6. The DDL representation of the item exchange structure (cf. Figure

6.4).

It remains, however, an open question to which extent primitives of any of the

languages just mentioned, scale up beyond relatively simple, well-structured tasks. Some of

the language primitives necessary seem to be:

 Events, both primitive and more abstract ones, programmer customisable in various

ways. Most current dialogue description languages support this to varying degrees.

 Means such as classes, objects, and libraries for programming-in-the-large, as will be

necessary when task complexity grows based on increased dialogue design experience

and more robust, large vocabulary recognisers. None of the current dialogue

description languages supports this.

 Primitives specialised to the elements of interactive speech theory, such as the

specification and generation of system phrases. None of the current dialogue

description languages supports all elements, mainly because interactive speech theory

is not yet sufficiently well-developed. However, those languages do not either support

designer extensions with new primitives. See also the following points.

 Support of the speech and language layers. As mentioned, this seems to be the best

developed part of current dialogue description languages.

 177

 Support of the control layer (basic item structures, exchange structures, degradation

mechanisms, etc.). Given the discussion of dialogue patterns above, some means of

constructing objects or components should be available.

 Support of the context layer in terms of standardised database queries, domain

constraints, and user model. Only GADL/IPSIM is relatively strong here, but lacks

support of standard database queries.

DIALOGUE MODEL REPRESENTATIONS COMPARED

It may be of interest to compare the three different representations of quite similar

models presented in this book, following the chronological order of our work with spoken

dialogue models:

The direct representation (Figures 5.7 - 5.9). The tasks and the exchanges are

represented in one single graph, with tasks determining the overall structure. Every detail is

hardwired. The aim is to provide a rather detailed and complete, yet easy-to-survey view of

the model for the wizard‟s use in simulations.

The graph representation which showed the model on one board supported the wizard

nicely. However, the model was becoming difficult to survey at a glance, and yet it did not

by far include all of the relevant structure. A rough calculation showed that should all the

tasks be represented in as much detail as the (even incomplete) „hour‟ sub-graph, then the

total graph would have had to grow by a factor of ten.

The implementational representation (Figures 2.5, 6.5, and 6.6). The tasks and the

exchanges are separated into two independent structures, interacting like co-routines and via

guarded (user) events. The common structures are represented in a single dialogue pattern,

delegating all specific details to a parametric structure. The aim is to have a complete, yet

maintainable and uniform operational specification that runs as a computer program.

The task template, the pre- and post-conditions, and the parametric item exchange

structure together yielded a very flexible structure which, due to its uniformity, strongly

supported the final specification of all the system phrases. However, apart from the overall

item exchange structure, the representation is difficult to read for the wizard.

The dialogue act representation (Figure 5.2). The tasks and the exchanges are

represented in one single structure, with exchanges determining the overall structure. Tasks

are determined implicitly via the allowed transitions between system and user dialogue acts.

The common structures are represented in a set of dialogue patterns, delegating all specific

details to a parametric structure (specified by example). The aim is to present a maintainable,

uniform, easy-to-survey, operational specification for the wizard‟s use during simulations, a

representation which, moreover, facilitates the transition to a computer program.

The dialogue act representation may be viewed as turning the direct representation

inside-out. The dialogue act representation takes all the common exchange structures out of

the tasks to form the overall structure, letting tasks be defined implicitly inside the node

phrases and preconditions. The idea was inspired by the implementational representation

described above as well as by the idea of felicity conditions for speech acts. The

representation is very operational and presumably comes close to a computational system.

Its graphic, all-on-one-board representation is easy to follow during interaction with a user,

 178

the more so because of its compactness: the dialogue act representation presents more or

less the same information on four A4 pages as the direct model does on sixteen A4 pages.

6.3 DEBUGGING

Program testing or debugging is an important part of systems development and evaluation. It

is the process of making the system behave as intended. Debugging serves to detect errors in

the implemented program and requires a diagnosis to be made of what is wrong in each case

so that errors can be corrected. Basically, there are two strategies for testing an implemented

system: it may be tested bottom-up or top-down. In bottom-up testing, each system module

is tested separately by embedding it in artificial test surroundings and providing it with input

of the form requested by the module in question. By contrast, top-down testing is a test of

the system as a whole. Missing parts are replaced by dummies simulating the effect of the

absent parts. System input in a top-down test corresponds to input to the final system.

The advantage of bottom-up testing is that system components developed at different

sites and/or not finished at the same time can be tested separately and independently of the

existence of other components. The drawbacks of bottom-up testing are that artificial test

surroundings must be built, which may be costly, and that disagreements on formats in the

communication exchange between the modules are not necessarily revealed.

Top-down testing requires an (almost) final system and the construction of dummies if

there are unfinished parts. This form of testing will reveal disagreements on formats and is

necessary to make sure that all the modules behave together as intended.

The typical tests carried out during debugging are glassbox tests and blackbox tests.

These tests may be followed by a controlled user test and/or a field test, and an adequacy

test, all of which are kinds of user test (Figure 6.7).

Specificat ion Program

Code

User test

Blackbox

 test
Glassbox

 test

I/O

User

Figure 6.7. Different kinds of test are used to test a system.

There is no general agreement on the definitions of glassbox and blackbox tests. By a

glassbox test we shall understand a test in which the internal system representation can be

inspected. The test should ensure that reasonable test suites, i.e. data sets, can be

constructed that will activate all loops and conditions of the program being tested so that

 179

nothing is superfluous. The relevant test suites are constructed by the system programmer(s)

along with an indication of which program parts the test suites are supposed to activate. Via

test print-outs in all loops and conditions it is possible to check which ones were actually

activated.

In a blackbox test only input to and output from the program are available to the
evaluator. How the program works internally is made invisible. Test suites are constructed
on the basis of the requirements specification and along with an indication of expected
output. Expected and actual output are compared when the test is performed and deviations
must be explained. Either there is a bug in the program or the expected output was
incorrect. Bugs must be corrected and the test run again. The test suites should include fully
acceptable as well as borderline cases to test if the program reacts reasonably and does not
break down in case of errors in the input. Ideally, and in contrast to the glassbox test suites,
the blackbox test suites should not be constructed by the system programmer who
implemented the system since s/he may have difficulties in viewing the program as a black
box.

User tests are discussed in detail throughout Chapter 8.

Blackbox testing and bottom-up and top-down test strategies have been used for the

implemented Danish Dialogue System, although bottom-up testing was mainly used in the

beginning. Glassbox testing was not really used during debugging of the dialogue control

structure (Figure 6.1). A more detailed presentation of the debugging of the dialogue control

structure of the Danish Dialogue System is provided below.

6.3.1 DEBUGGING OF THE DIALOGUE COMPONENT OF THE DANISH

DIALOGUE SYSTEM

The dialogue control structure was not subjected to a glassbox test in the proper sense

of the term. DDL which is the programming language used for the dialogue control

structure, contains a (textual-level) print-out function meant for debugging. However, the

contents of the test output is only to some degree automatically generated and must in many

cases be written by the programmer. Furthermore, because of the rapidly changing code it

would have been almost impossible to maintain data for a complete glassbox test. It would

have been much too time consuming in relation to what we would gain and to the resources

available. Only for final commercial programs a complete glassbox test may be required but

is rare even in these cases. So it was decided to concentrate on the blackbox test in the

debugging phase.

For the blackbox test the implemented dialogue control structure was embedded in
the entire system at the earliest possible except for the speech recogniser which was
disabled to allow reconstruction of errors. Internal communication between system
modules was logged in log files. We created a number of test suites all containing user
input for one or more reservations of one-way tickets and return tickets with or without
discount.

A test suite always had to include an entire reservation involving several
interdependent system and user turns. In a query-answering system a task will often only
involve one user turn and one system turn. Hence one may ask a question and simply
determine from the system‟s answer if the system functions correctly for the test case. In a
task such as ticket reservation which involves several turns, the system‟s reactions to the
entire sequence of turns must be correct. An apparently correct system reaction, as judged

 180

from the system‟s immediate reaction, may turn out to have been partly wrong when we
inspect the sequence of interdependent system reactions. Hence to test our dialogue model it
was not sufficient to test, e.g., isolated transactions concerning customer numbers, possible
destinations or a selection of dates. Also the combinations of the transactions had to be
considered. Moreover, whereas in principle there may be several legal sequences of input
transactions, this is in reality not the case for system directed dialogues. This meant that
knowledge about the requirements specification was not enough. Also the task structure had
to be known to the person who constructed test suites which included their expected results.
Furthermore, because each test reservation can only test a limited amount of cases we had to
create a long series of test reservations.

The main issues to be tested as regards the dialogue control structure were:

• Does it behave as intended with respect to domain communication and is the

behaviour reasonable?

• Does it handle meta-communication as intended and in a reasonable way?

• Does it permit reservations as intended and in an acceptable way?

The dialogue control structure was implemented and tested through a kind of

prototyping. This is reflected in the division of the debugging into three phases:

The first debugging phase

Before a real black-box test could start, the programmer debugged the program until it

functioned reasonably for basic input. In the beginning, a bottom-up strategy was used. As

soon as possible, however, all system modules were integrated and run together as an entire

system, and the bottom-up test was stopped and replaced by a top-down test. The top-down

test allowed the functionality of each module to be tested in its real surroundings and the

specification of input to the dialogue control structure was facilitated. The speech recogniser

was left out in the top-down test of the dialogue control structure because it is important

that errors can be reconstructed. The speech recogniser is very sensitive to noise and to the

way in which an utterance is spoken (voice quality and intonation), which means that one

cannot ensure reproduction of input in such a way that it will be recognised as the same

input each time. Therefore, messages from the recogniser were simulated through direct

textual input to the parser via the Dialogue Communication Manager. Leaving out the

speech recogniser means that all misrecognitions which would have been caused by this

module are eliminated and that the same input will always create the same output.

The input to and the output from each module were sent as output to the screen by the

Communication Manager (Figure 6.1), and could be logged in a script file. The typed input

had a format corresponding to that which the speech recogniser would produce, i.e. it

contained a prefix, the user utterance and a postfix, and it was sent directly to the parser. To

facilitate input specification a program was constructed which would allow specification of

input as ordinary typed utterances. The program would then expand each piece of input to

the format expected by the ICM (Figure 6.1) which would produce input to the dialogue

control structure via the parser.

Three test files were constructed for the first debugging phase. The first one included

the minimum input needed for reservation of a single ticket. The second one was a basic

reservation of a return ticket. The third file was a reservation of a return ticket in which each

 181

user utterance providing information was followed by user utterances asking for repetition

and for correction of the input.

The second debugging phase

When the dialogue control structure allowed the basic reservations specified in the

three test files of the first test phase to be made without system break-downs, a blackbox test

was performed. Test data for this test were constructed by the system developer who had

been least involved in programming the dialogue control structure.

Basically, three types of reservation had to be tested: single tickets, return tickets and

discount return tickets. A thorough test of each of these types includes test cases with legal

input, borderline cases which may be either legal or illegal, and clearly illegal input. In many

cases it was possible to make an exhaustive test of legal key information, i.e. information

which should be accepted and not cause error messages. By key information is meant the

information asked for by the system, such as the name of a destination airport or a customer

number. The key information may be embedded in many different formulations of which only

a selection was tested along with the dialogue control structure. Different grammatical

formulations were not in focus in the dialogue control structure test. A thorough test of

formulations, i.e. which linguistic formulations lead to complete and relevant semantic

objects, belongs to the parser module test, which is not discussed here [Music and

Offersgaard 1994].

The task structure formed the basis for a specification of what to test, cf. Figure 2.5

which shows the final task structure. The task structure has changed somewhat over time but

this does not influence the basic idea of how it can be used for constructing test cases:

Since domain communication is system directed, the system will ask a number of

questions which the user is expected to answer. The types of question asked by the system

may be divided into four categories as described in Section 5.6.2, i.e. questions inviting

yes/no answers, multiple choice questions, questions inviting a proper name or something

similar to a proper name, and questions about a specific topic.

Legal key information in answers to questions belonging to the first three categories

can be tested exhaustively. Legal answers to yes/no questions and to multiple choice

questions are obviously limited in amount. There is also a limited amount of existing

customer numbers, traveller id-numbers, and airport names stored in the database. Only for

questions belonging to the fourth group can the key information be expressed in many

different ways. These questions concern date and time of departure. For this group we

selected a number of different date and time values. Also borderline cases and illegal cases

have been tested. Borderline answers are only possible in the last two categories of

questions. Examples of cases which have been tested for the four example questions

immediately above are:

1. Legal: yes; no

 Illegal: I don‟t know

2. Legal: please send it; he will pick it up in the airport

 Illegal: I want the ticket on Monday

 182

3. Legal: all existing customer numbers including the smallest and largest ones

 Illegal: smallest existing customer number - 1; largest existing customer number +

1; 1000 (which does not exist as a customer number in the database)

4: Legal: August 31; 31.12 (December 31); today; on Monday

 Illegal: February 29 1994; August 32; 1.13; yesterday; St. Hans‟ Day

The three basic reservation types overlap (cf. Figure 2.5). For instance, customer

number and route are needed in all cases whereas a date for the home journey is only

applicable to the reservation of return tickets, including discount tickets.

User meta-communication was tested, i.e. the keywords change and repeat were used

in every possible position.

All parts of the running system, apart from the speech recogniser, were to a certain

extent tested in connection with the blackbox test of the dialogue component. Errors found

were reported to the site at which the component containing the error had been developed.

When the bug had been fixed, the test was repeated to see how the dialogue behaved.

However, focus was on the dialogue control structure and the blackbox test was not

exhaustive due to lack of resources. Nevertheless, the test did reveal a number of problems.

Ordinary bugs and minor problems were corrected at once when they appeared, including

disagreement on formats between the individual system modules. Also larger inconveniences

were discovered which could not be repaired on the fly.

Design rationale (DR) frames (Section 3.4) were used as a tool for representing such

major problems and their analysis (cf. Figure 3.5). DR-frames represent larger problems

encountered during the development process, violated design commitments and reasoning

about how to solve the problems and why one solution may be preferred to others. Twenty

major problems were discovered during the blackbox test in the second test phase and

represented in DR-frames.

Resources were not available for implementing solutions to all the problems
discovered. It was therefore considered, for each problem, how time-consuming the
implementation of a solution would be and how important it was. The hard problems were in
several cases due to the fact that system directed dialogue is not entirely sufficient to handle
the sub-tasks which caused the problems. Solutions to such problems were not implemented
because these solutions would probably be sub-optimal anyway as long as the system
directed dialogue paradigm is maintained. Examples are round-trip tickets and reservations
concerning, e.g., one passenger travelling out alone but going back together with another
person. Both examples deviate from the standard reservation task and in the present system
they have to be carried out as two separate reservation tasks. A round-trip ticket must be
booked as two one-way tickets and the second example would have to be resolved by
booking one return ticket and one one-way ticket.

On the basis of these considerations, solutions or partial solutions to about half of the

discovered problems were implemented. While implementing the chosen solutions, the

programmer discovered and solved other problems caused by the changes. Also a few new

problems were revealed.

 183

The third debugging phase

In the third phase, a blackbox test using the same input as in the second phase was run

on the improved dialogue control structure and identified bugs were corrected. Some of the

test suites had been slightly revised because of changes influencing the task structure, such as

removing system questions due to functionality problems.

During the third test phase a number of bugs were corrected but no new and unknown

larger problems were discovered. However, it became increasingly clear that the use of

system directed dialogue could be a problem in cases where the information expected from

the user may depend on information s/he will get from the system later in the dialogue, and

vice versa. For example, users may prefer to have information on departure times before they

decide on the date of departure and also on whether they want discount tickets. Moreover, it

was clear that a number of problems remained for the repair of which resources were not

available. Problems of these kinds therefore also appear in the controlled user test of the

system (cf. Section 8.3.3).

 184

7. CORPUS HANDLING

7.1 INTRODUCTION

A corpus is a collection or body of linguistic data, organised in a manner that will

facilitate investigation of, and reference to, the data. By today‟s standards, corpora are in

machine-readable form. Dictionary publishers maintain corpora of citations and word uses,

and researchers collect huge (millions of words) corpora of texts of all kinds for many

different purposes. Corpus linguistics is both a well-established discipline and an active

research area [McEnery and Wilson 1996]. A growing sub-discipline focuses on spoken

language [Leech et al. 1995]. Spoken corpora are collections of usually transcribed spoken

language such as monologues, interviews, conversations or task-oriented dialogues. This

chapter focuses on the transcription, markup and coding of spoken dialogue corpora,

emphasising the representations, procedures and tools that are relevant to the design of

interactive speech systems.

Spoken dialogue corpora are used for analytical purposes (including evaluation of

systems and components) and are often created with one particular analysis in mind. Once in

existence, however, a corpus is very often being used later for analytical purposes other than

those originally intended. Typical uses of spoken dialogue corpora address the following

layers of speech interaction theory (Chapter 2):

 Context: who are the participants, which goals do they try to achieve, which domain

data and rules are necessary?

 Control: analysis of speech acts, references and discourse segmentation; tasks and

meta-communicative phenomena; focus.

 Language: extraction and evaluation of vocabulary, grammar, semantics and style.

 Speech: model training for speech recognition; prosody, dialectal variation, evaluation

of speech recognition.

 Performance: analysis of initiative, user and system co-operativity.

A spoken dialogue corpus may be analysed across the layers of speech interaction

theory, for instance with respect to the relation between prosody, on the one hand, and

discourse structure and semantics on the other [Hirschberg et al. 1995, Kompe et al. 1997].

Moreover, a corpus of spoken human-computer dialogues may be used together with log

data in the system development process for testing, e.g., the behaviour and quality of system

components, or the users‟ language (see Chapter 8).

Use of a spoken dialogue corpus, both for planned purposes and purposes which were

not originally intended, requires that the corpus and the analysed phenomena are represented

in a computer tractable, transformable and generally well-described fashion. A spoken

dialogue corpus is represented in some textual (usually computer readable) form, a

transcription. The transcription is obtained by transcribing the speech together with other

recorded material, as will be discussed in Section 7.2. The transcription is usually extended

with markup (or tags or codes), i.e. formal annotation that delimits, marks and documents

 185

identified features and phenomena in the corpus, as discussed in Section 7.3. The process of

inserting markups is called coding (or tagging or annotating) of the corpus. A coding

scheme specifies how and when to code, i.e. defines the markup, procedures for inserting it

and how to ensure the coding quality, as discussed in Section 7.4. Tools for handling

corpora are discussed in Section 7.5. The corpus from the user test of the Danish dialogue

project will be used for illustration below. This corpus has been subjected to statistical

analysis as well as to more qualitative analysis of user problems (see Chapters 5 and 8). The

formal structure of the corpus has been essential to the automation of the statistics and

transformations applied.

7.2 TRANSCRIPTION

The raw data that researchers and developers of interactive speech systems work upon

are voice recordings of human conversation and human-machine spoken interaction, log files

of system modules (if any) and additional material relevant to the conversation or

interaction, such as scenario descriptions and descriptions of the set-up for data capture. The

first task facing the corpus user is to transform the raw data into a convenient, machine

readable and consistent form. One should of course be careful to conserve the original

material.

The initial transcription is important since features such as overlaps, pronunciation, ahs

and ehms, prosody and pauses can be marked only on the basis of the original recordings. A

fundamental recommendation is that a digitised version of the entire speech recordings is

included as part of the corpus.

A first basic choice in the transcription process concerns what should go into the

transcription. Having considered several transcription schemes, Llisterri [1996] proposes

that the transcription of words conform to one of three levels:

 S1: orthographic transcription of the text (Figures 7.1 and 7.2).

 S2: phonemic representation of words in citation form, i.e. the form in which words

are pronounced in isolation. An example is /gUd mO:nIN/ for “good morning” [Roach

and Arnfield 1995].

 S3: phonetic transcription reflecting a discrete symbolic representation of the

perceived actual realisation of the utterance. An example is “'ælsgckn'asda'bo‟” for

“elsker Karen Asta Bo”, literally “loves Karen Asta Bo”. Only the absence of stress

(„'‟) on „Karen‟ shows that the question means “does Karen Asta love Bo”, and not

“does Karen love Asta Bo” („Bo‟ is both a male first name and a family name) [Brink

et al. 1991].

Most transcriptions are in orthographic form. Often standard variations reflecting

pronunciation are used, such as „ik‟‟ for „ikke‟, and usually extra-linguistic features such as

pauses, ahs and ehms, and other acoustic events are added (Figure 7.2). Phonemic and

phonetic level transcriptions use the same special symbols, such as the International Phonetic

Alphabet (IPA) [Llisterri 1996]. In particular the phonetic level transcriptions require trained

phoneticians for their production.

On top of these transcription levels - typically, the orthographic one - prosodic coding

may be added, symbolically representing the linguistically relevant variations that occur in

 186

the domains of time, frequency and intensity in the sound wave corresponding to a speaker‟s

utterance [Llisterri 1996].

A second basic choice is whether to structure the transcription into turns (Figure 7.1)

or into parallel lines of speakers as in representing the different voices of a musical score

(Figure 7.2). The turn structure tends to be used in conversational analysis whereas the

score structure is useful for analysing the temporal acoustic event structure. In turn

transcriptions, the turntaking may be marked as latching or overlapping, or more precise

temporal information on overlaps may be inserted using explicit anchor points and

references.

Figure 7.1. Orthographic, turn-based transcription of recorded speech from the

user test of the Danish Dialogue System. The dialogue has been divided into

numbered turns (29 through 34). S3 and U3 indicate the system and the user,

respectively, during a session with user number 3. By including the user number

and consecutively numbering the turns in the series of dialogues conducted in a

session, turn numbers become unique throughout the entire user test corpus.

Translated from the Danish.

A>

1>

2>jaT og mor og far var så heldige at forsvaret betalte mit

 yes and mum and dad were so lucky that the defence paid my

A> (griner) jo

 (laughs) yes

1> ja nå ja (uf) han

fik et

 ya oh ya (uf) he

got a

2>(griner) men så fik jeg såT en del af orglet ik’

 (laughs) but so I got thenT a part of the organ eh’

A>

S3-29 Please state the customer number.

U3-29 Number four.

S3-30 Customer number four.

How many people will travel?

U3-30 Two adults and two children.

S3-31 Two people.

Please state the ID-number of the first person.

U3-31 Change.

S3-32 Two people.

Is this correct?

U3-32 No.

S3-33 How many people will travel?

U3-33 Four.

S3-34 Four people.

 187

1>halvt orgel som mor kaldte det ik’ PP så kom det ja da jeg

blev

 half organ as mum called it eh’ PP so it came ya when I

got

2> ja

 yes

Figure 7.2. Orthographic parallel lines transcription from [Gregersen and

Pedersen 1991]. The transcription is an excerpt from an unstructured interview

with people from Nyboder, Copenhagen, for use in socio-linguistic investigation.

A is the interviewer, 1 and 2 are the informants. T is a hesitation, PP is long

pause, and uf is something unintelligible. The English translation has been added.

TRANSCRIBING THE USER TEST CORPUS

The process of producing a transcription depends on the available data sources and

editing tools. The large variability in recording conditions and the lack of standardised tools

imply that transcription is usually approached in a pragmatic or ad hoc manner. We present

main points from the process of transcribing the user test corpus from the Danish dialogue

project. In this test in which only the speech recogniser was simulated, each subject had a

single session with the system, interacting on the basis of four task scenarios in one or more

telephone calls (see Section 8.2.2).The user-system interaction was recorded on tape. In

addition, a log file was created during the session, containing:

 What the wizard keyed in as constituting the users‟ utterances.

 All communication between the ICM (interpretation and control module) and the

devices, i.e. the simulated recogniser (textrec), the player and the database (cf. Figure

1.5).

 The parse tree and the resulting, filled semantic slots.

 The full text of the system‟s utterances.

The communication between the ICM and the devices was time stamped although no

direct link to the discourse structure can be inferred since the internal clock signals are not

synchronised. The other data (keyed-in utterances, parsing data and system utterances)

would appear in roughly chronological order, with the keyed-in phrases usually appearing

delayed in the log.

For each session, the log file and the tape recording were converted and merged into a

single TEI conformant transcription (see Section 7.3). The conversion was semi-automated,

using emacs-lisp functions in several iterative phases and using visual inspection of the

transcriptions to check correctness and completeness. The following steps were followed:

 Extract general information for the TEI header, such as identification of the version of

each system module.

 Sort the rest of the log file output chronologically.

 Throw away everything not directly related to the user-system-database

communication. For instance, start/stop commands sent to the (simulated) recogniser

were deleted.

 188

 Put system phrases together to form the system‟s turns.

 Use the keyed-in phrases as a first approximation to the actual user utterances.

 Transform everything into TEI format.

 Transcribe the corpus by using the tape recordings for correcting the keyed-in user

utterances and the system‟s phrases as represented in the log files. Insert pauses and

other non-vocal events.

 Expand the database codes into mnemonics and transform the database query/answer

parameters into a reader-friendly form.

A two-utterance fragment from the user test transcription is shown in Figure 7.3.

Using the keyed-in utterances as a first approximation to the actual user utterances saved

much time in the transcription process, because the person transcribing could concentrate on

correcting the relatively few errors in what the wizard had keyed in. A similar approach can

be used for the output from a sufficiently robust recogniser.

7.3 MARKUP

Although the base transcription in Figure 7.1 is well suited to a human reader, it is

inadequate for computer processing and when more features need to be distinguished. What

is needed is explicit markup, i.e. formal notation that unambiguously denotes the features of

interest. Its precise form is less important as long as the markup is consistent, unambiguous

and well-described.

A proposal for a standard markup format already exists. The Association for

Computers and the Humanities, the Association for Computational Linguistics, and the

Association for Literary and Linguistic Computing have initiated the Text Encoding

Initiative which in 1994 produced a markup format and a set of guidelines for its use in the

markup of text corpora of any kind [Burnard and Sperberg-McQueen 1995, Ide and Véronis

1995]. The format and the guidelines are often referred to as TEI-P3 or just TEI, and the

TEI Guidelines or just the Guidelines, respectively.

TEI defines an SGML document type definition (dtd), thereby providing a formal,

machine processable structure for text markup. SGML (Standardised Generalised Markup

Language) itself is not a markup language but a definition language. Via the SGML dtd‟s the

Guidelines aim to provide specialised packages of markup elements that can be combined

according to the type of text, such as drama or verse, and the purpose of analysis of the

corpus. Furthermore, the Guidelines aim at supporting the exchange of electronic texts, and

prescribe how to extend the TEI format with new markup elements.

One of the TEI packages is aimed at the markup of transcribed speech [Johansson

1995, Burnard and Sperberg-McQueen 1995, Chapter 11]. The main markup elements

provided by TEI for the basic markup of speech are [Johansson 1995]:

 <text>: a transcription of speech treated for some purpose as a unit.

 <div>: a sub-division of a spoken text comprising one or more utterances treated as a

unit for analytic purposes.

 189

 <u>: an utterance, i.e. a stretch of speech usually preceded and followed by silence or

change of speaker.

 <s>: a sub-division of an utterance according to prosodic or syntactic criteria.

 <pause>: a pause either between or within utterances.

 <vocal>: any vocalised but non-lexical phenomenon.

 <kinesic>: any non-vocalised but communicative phenomenon, such as a gesture.

 <event>: any non-vocalised, non-communicative phenomenon, such as a slamming

door.

Please note that in markup terminology the term „element‟ denotes a formal construct

and does not refer to the elements of speech interaction theory (Chapter 2).

Figure 7.3 shows how the first two utterances in Figure 7.1 were encoded in TEI.

Note how utterance identification is represented as an attribute of the element <u>. Elements

may have several attributes holding values that are usually not part of the running

transcription.

Figure 7.3. Utterances in the Danish encoded in TEI. See Figure 7.1 for an

English translation.

There are several advantages of using TEI. First, it provides a formal markup scheme

suited for computer processing. Secondly, as TEI is based on SGML, tools are available for

manipulating and editing the text and the markup. Thirdly, being an international standard,

TEI facilitates the exchange of corpora. Fourthly, TEI represents the investment of a

considerable amount of effort into the uncovering of markup problems.

There are also disadvantages of TEI. It provides a basic standard for event and

utterance markup but most users of TEI are likely to need more features, such as part of

speech, syntactic trees, or speech acts. TEI tries to avoid precluding any particular style of

coding by enabling many different encodings of the same feature, but for more focused

areas, such as spoken human-machine interaction, there is no reason to have a plethora of

possibilities. These may act, rather, as an extra source of confusion. Within the Eagles

project, CES, the Corpus Encoding Standard [Ide 1996], is an attempt to identify a minimal

encoding level for standardised corpora for computational linguistics, providing a descriptive

structural and linguistic representation and a general architecture for using texts as

databases. However, CES provides no recommendations on the encoding of spoken corpora

apart from what is already in TEI, and does not embark on dialogue annotation. The

problem with dialogue annotation is that little agreement exists on which are the necessary

or right phenomena to encode and on how these phenomena should be encoded.

Standardisation of spoken dialogue encoding is a current research theme. Finally, there are

unsolved problems with respect to how to represent orthogonal, overlapping hierarchies of

markup, such as providing different parsing trees of the same utterances.

<u id="S3-29a"> Oplys venligst kundenummer! </u>

<u id="U3-29a"> Nummer fire. </u>

 190

MARKUP OF THE USER TEST CORPUS

The transcriptions from the user test of the Danish Dialogue System include not only

the spoken interaction itself but also the main communication of the system modules as well

as several additional features, such as word category, utterance topic and interaction phase

(see below). TEI was used with the following elements added:

 <keyed>: what was typed by the wizard, after expansion of typing abbreviations.

 <recognised>: what was recognised, i.e. the result of applying a text recogniser to

the keyed-in text. The text recogniser simulated the real recogniser but with character-

based textual word models instead of Markov models.

 <parse>: the semantic parsing result as transferred to the dialogue manager.

 <database>: the communication with the database is shown including all domain, type

and status arguments.

 <t>: record of the type of certain tokens (words). For all other tokens the type is

simply the literal expression of the token.

These elements are documented in more detail in [Dybkjær et al. 1996]. In Figure 7.4,

the documentation of the <t> element is shown as an example.

Types and tokens (<t>)

Record the type of certain tokens (words). For all other tokens the type is the

literal expression of the token.

Example: <t type=month value="FEB">February</t>

All month tokens JAN…DEC count as one type. The seven types used are listed in

the dtd.

dtd:

<!ENTITY % t 'INCLUDE' >

<![%t; [

<!ELEMENT %n.t; - - (#PCDATA) >

<!ATTLIST %n.t; %a.global;

 type (airport | month | week-day |

 name | cardinal | ordinal |

 false-start) #IMPLIED

 value CDATA %INHERITED

 TEIform CDATA 't'

>

]]>

Comments: In the transcriptions one word is one token. Since the vocabulary is

important in studies of human-computer spoken interaction, the domain specific

tokens with a known range and a frequency known to be skewed are marked as an

abstract token <t>. For example, all of the months January through December

should be in the vocabulary even though only January and February occur in the

corpus. All other tokens are implicitly taken to be their own type. For instance,

'rabat' is interpreted as if marked <t type=rabat>rabat</t>.

 191

Figure 7.4. The <t> element in the user test markup [Dybkjær et al. 1996

Section 6.3.9].

With a few exceptions to be explained, care was taken to keep the described

extensions conformant with TEI and to represent the transcriptions in TEI interchange

format [Burnard and Sperberg-McQueen 1995, Chapter 28]. An example of the resulting

markup is shown in Figure 7.5 which presents a single exchange from the user test with

associated system module communication.

Figure 7.5. A marked-up corpus fragment from the user test. Three utterances

are shown: the system‟s question S3-29a “Please state the customer number”,

the user response U3-29a “Number four”, and the system feedback S3-30a

“customer number four” (cf. Figure 7.1). In addition, the figure shows the

following system module actions: what was typed by the wizard, what was

recognised, what was parsed, what the database was asked about, and what it

responded. The „•••‟ denotes material omitted from the figure.

At the lower levels of transcription, some formal tags were used without defining a

TEI conformant element, such as the use of „!‟ to denote a declarative system phrase, and

<u id="S3-29a" who="S" topic=customer> Oplys venligst kundenummer! </u>

<u id="U3-29a" who="C-3" topic=customer> Nummer <t type=cardinal value="4">fire</t>.

</u>

<keyed which="U3-29a">nummerfire</keyed>

<recognised which="U3-29a" grammar="Number" score=0.000000>nummer

fire</recognised>

<parse which="U3-29a">

 | Current parsecontext: grammarset: Command

 | Command Command Yesno Number

 | semantic objects:

 | actionso(action ActionSO) [action --NULL--]

 | yesnoso(choice BooleanSO) [choice --NULL--]

 | customerso(number IntSO) [number [ones •••]]

 | Resulting Parse Tree # 0

 | Subgrammar[5]: Number

 | L:[s_9,sem={number={ones={number=4}}}]:

 | {cat=s,stype=ellipse}.[

 | L:[nummer_1]: {cat=n,nb=sing,semtype=id,

 | defs=indef, [•••]

 |]

 | set Slot number "4"

</parse>

<database type="query" modifier="CUSTOMER">

 | customer: 4 </database>

<database type="answer" modifier="STATUS">

 | status: DB_OK </database>

<u id="S3-30a" who="S" topic=customer>kundenummer <t type=cardinal

value="4">4</t></u>

 192

the internal structure of <semantics> and <database>. The choice of these microtags are

somewhat arbitrary and solely relates to the convenient readability of the transcriptions and

the structure of the log files. The phenomena affected were not in our analytical focus. Even

then, given more advanced extraction and viewing tools it might certainly have been

preferable to encode these phenomena in conformance with TEI. Microtags have been used

more formally in the markup of the Map Task corpus [Carletta et al. 1996b], both for

improved readability and to preserve in textual form what TEI represents as attribute values.

For instance, „hmm‟ is represented in the Map Task corpus as {fp:hmm} whereas TEI

prescribes <vocal desc=“hmm”> [Thompson 1992].

7.4 CODING

The insertion of markup or codes for particular features present in a transcribed

corpus is called coding. Since the markup is being inserted for later use, the coding must be

done with care. The extent of, and the efforts put into, the coding depend on the complexity

of the features to be encoded, the resources available, and the purpose(s) of the coding. In

general, coding requires that the following points be taken into account:

a) Defining precisely the feature to be encoded: which criteria are distinctive for the

different cases of the feature.

b) Defining the markup of the feature: how should it be represented, should it be fitted

into an existing markup.

c) Defining the coding procedure: which instructions and training should the coders have

in how to actually do the coding.

d) Defining a suitable level of coding reliability: how is the correctness and consistency of

the coding ensured; are there any formal measurements.

e) Actually coding the corpus.

f) Checking the quality of the resulting markup.

A coding scheme comprises at least (a) and preferably all of (a-d). The actual coding

comprises at least (e), is preferably based on a coding scheme, and should include (f). Some

coding schemes from solitary projects are [Carletta et al. 1995; Jönsson 1993 Sections 7.2

and 9.3; Gross et al. 1993]. Defining a coding scheme that is generally valid across several

types of corpora and purposes is much more difficult. In a series of workshops of the

Discourse Resource Initiative (DRI), a group of researchers interested in discourse level

annotation are trying to create a general discourse level coding scheme [Carletta et al.

1997]. Currently, the scheme comprises information level (task, communication, or other),

forward-looking speech acts (inform, directive, commissive, …), backward-looking speech

acts (answer, accept, reject, …), and segmentation (identifying the units for dialogue

annotation). The scheme only addresses (a), but is of course developed with a keen eye on

reliability (d).

In some cases, the coding process can be more or less automated. An example is the

coding of a feature such as word class, also called part-of-speech tagging. For instance, in

the context “I am a coder”, „am‟ is the 1st person, singular, present tense of the verb „be‟.

Part-of-speech taggers based on statistical training are now efficient and precise. Brill [1995]

 193

reports a tagging accuracy of 82.2% on unknown words and 96.6% overall. Automation

ensures a consistent coding quality and enables expensive human effort to focus on those

analyses that are not, or cannot be, automated. However, the feature to be encoded can

rarely be defined through criteria that are precise enough for the application of

computational algorithms. Usually, therefore, humans must be used as coders - and this is

why annotated corpora are so precious.

Coding quality (d, f) constitutes a research area of its own [Carletta 1996, Carletta et

al. 1996a]. The coding scheme may be tested by comparing different corpus samples coded

by means of the scheme to assess coverability; by comparing the results produced by

different coders to assess intercoder reliability; and by comparing the results produced by

the same coder on the same corpus sample at different times, for instance with a one week

delay, to assess consistency. The coding quality may be assessed qualitatively through

discussion of the coders‟ choices when they differ, or quantitatively through scoring

measures. An important measure is kappa which describes how well (groups of) coders

agree with each other:

 =
P(A)P(E)

1 - P(E)

where P(A) is the proportion of times that the coders agree and P(E) is the proportion of

times that they are expected to agree by chance. As a rule of thumb, kappa values between

0.67 and 0.8 tentatively show a certain agreement, and values above 0.8 show a certain

agreement, although the values should be interpreted with care. A kappa value of 1 means

perfect agreement (P(A) is one). Consider the segmentation example in Figure 7.6, which

was annotated by two different coders. There are 70 words (inclusive „ah‟) after which a

segment may end, and after nine of the words a segmentation mark has been inserted by one

or both of the coders. Using this to estimate the chance agreement, we get

P(E) = pi
2
 (i=1,2) = (9/70)

2
 + (61/70)

2
 ≈ 0.7759

where pi is the probability of the i‟th case. The coders disagree in three cases, so the

pairwise agreement is P(A) = 67/70 ≈ 0.9571. Using these figures we get ≈ 0.81, which

shows a certain agreement.

Two other measures, precision and recall, may be used if there is an „authoritative

source‟ against which a coder may be compared. Precision expresses the proportion of the

occurrences found that have been correctly coded:

precision =
found incorrect

found

where found represents everything that was marked by the coder, and incorrect represents

the incorrect markups by the coder, as determined by the authority. Recall expresses the

proportion of occurrences that have been found:

recall =
all missing

all

where all represents all occurrences present in the corpus, as determined by the authority,

and missing represents those occurrences that were not identified by the coder.

 194

Although the idea of an authoritative source - usually taken to be a human expert -

often may be dubious, precision and recall together may form a simple and useful expression

of quality when the assessed coder is a software program. Assume, for instance, that in

Figure 7.6 coder 1 is an authoritative expert. Coder 2 has found eight segments two of

which are incorrect, which yields the precision 75%. Coder 1 has provided 7 segments in all,

one of which was missed by coder 2, so the recall is 86%. These results indicate that the

quality could be better, although subjectively the assessment will depend on how complex

the task is judged to be.

Figure 7.6. Dialogue fragment from the Verbmobil corpus that was used for a

segmentation exercise at the dialogue coding workshop at Dagstuhl, Germany,

1997. The exercise was to insert a @ after each segment that could be assigned

a single dialogue act. The segmentations produced by two coders are shown as

@1 and @2, respectively.

THE CODING SCHEME FOR SCENARIO PRIMING

As described in Section 5.6.2, one of the simulation experiments in the Danish

dialogue project involved two groups of subjects, one using text-only scenario descriptions,

and one using an equivalent set of scenarios in which temporal information such as dates and

hours of departure were represented by means of analogue graphics and tables. The purpose

was to study the priming effects of the words used in scenario task descriptions.

The coding scheme for the priming effects is shown in Figure 7.7. Step (1) restricts

investigation to the first occurrences of user utterances addressing the temporal topics in

each interaction. The justification for doing so is to avoid confusing scenario priming effects

with other phenomena, such as priming through the system‟s utterances. Step (2) further

restricts the focus to expressions of time. Step (3) lists the actual priming criteria. The

purpose of these criteria is to ensure consistency of categorisation, both for each coder and

between coders. The set of priming criteria was chosen restrictively, such that the cases

defined as primed all clearly appear to have been primed by the scenarios. Moreover,

excluding borderline cases leaves fewer cases to appeal to in support of the hypothesis under

investigation, which reduces the risk of producing false positive evidence for the hypothesis.

Step (4) ensures consistency of coding and is also likely to reveal weak points in the priming

JBT000: maybe we should get together to talk further about this @1@2 <―ah> how ‗bout

some time in the next couple of weeks @1@2

SRH001: okay @2 well @1 I will be on vacation for the next two weeks @1@2<―ah> how

about Friday the twenty-first @1@2

JBT002: Friday the twenty-first is scheduled from early morning to late afternoon @1@2

could you perhaps choose another day @2 a morning on a Wednesday or an early

afternoon on a Tuesday @1@2

 195

criteria. The coding quality is thus only being assessed qualitatively, but very few cases

turned out to require discussion. An alternative to the applied consensus principle could be

to throw away the cases of disagreement, which in this case would have been statistically

sound (since fewer cases would work against the hypothesis of a priming effect), albeit less

correct.

Step 1) Select the first user utterance after the first system question for each of the

topics outday, outhour, homeday and homehour within each interaction.

Step 2) Extract all user time expressions in these utterances. Time expressions are

understood in a broad sense so as to include, e.g., “an early flight” or “the

cheapest”, but not “yes” or “no”.

Step 3) Mark user time expressions as primed or not primed using the following

examples of expected high-frequency time expressions as templates:

In scenario: Primed if user says one of the forms:

Friday February 5th

February 5th

23 of February

Tomorrow

10:50

10 o‟clock

Friday or

February 5th or

Friday February 5th

February 5th

23rd of February

Tomorrow

10:50

10 o‟clock

Two rules supplementary to the table are:

 To be considered primed, a user time expression must contain nothing but

parts from the priming scenario expression. For instance, the user

expression “tomorrow February 5th” should not be marked as primed by

“February 5th”.

 Repetition of low-frequent (time) expressions from the scenario is priming.

Step 4) Code by two independent coders. Disagreements are resolved via

discussion leading to consensus.

Figure 7.7. The scenario priming coding scheme.

7.5 CORPUS TOOLS

A number of tools are needed in the coding process. In most cases, today‟s interactive

speech systems projects waste large amounts of precious time because they manage with ad

hoc tools. There is a clear need for more investment from public funding agencies in this

area. More general tools are slowly appearing, most of which are still bound to particular

project formats, however. The most important tool functionalities are:

 Data collection: The data needs to be recorded, preferably in some convenient way.

For instance, it is convenient if speakers are digitally recorded from the outset, and

considerable effort can be saved if the speakers and their turns can be separated

 196

automatically at recording time.

Examples of data collection tools are: the TecFaMoo tool collects logs of internet-

based, multimodal interactions between humans and the computer [Traum and

Dillenbourg 1996, Schneider et al. 1996]. The Chiba tools support the creation of a

corpus with temporal information [Tutiya 1996].

 Annotation: It is useful to have an editor for easy insertion and change of markup and

for presenting the corpus text with its markup in a way which is easy to read. This

type of editors has much in common with structural editors for object-oriented

programmes and systems.

Examples of annotation tools are: DAT, the Dialogue Annotation Tool of Rochester

[Allen and Core 1997] is being developed in the framework of the TRAINS project. It

provides a simple means of annotating segmented dialogues with speech act markup

(see Section 7.4), and has online access to the voice recordings of the segments.

Currently, the system is tailored towards annotation of the scheme developed by the

Discourse Resource Initiative (DRI). For the time being, there is no possibility of

customising the tool on-line for annotation of different schemes. Such an option is

integrated in the Alembic Workbench [Day 1996] (see below). Nb (Nota bene)

[Flammia and Zue 1995], developed by Flammia at MIT, has been used initially in the

framework of the DRI. Although developed for the annotation of (hierarchical)

discourse structures, it has also been applied to the coding of dialogue acts. The tool

can be flexibly tailored to the annotation of any labelling system that exposes a flat or

hierarchical structure. Based on these ideas, the annotation tool Nba has been

developed at the University of Linköping. It can be used to annotate dialogues with

discourse information as used in the LINLIN project [Dahlbäck and Jönsson 1992].

 Presentation: It is useful to be able to present the corpus with a focus on particular

features and in a nicely readable form.

Example of presentation tools are: TecFaMoo can present the multimodal information

available to a human participant at any time during the recorded dialogue.

 Extraction: It is useful to be able to extract part of the corpus or its markup.

Examples of extraction tools are: the Nba (see above) extracts speech act structures

from annotated dialogues. The CQP/XKWIC corpus query tools developed at the

University of Stuttgart allow the extraction of text according to (i) linguistic criteria

(annotated), (ii) regular expressions over characters and/or word forms, and (iii) non-

overlapping structural subdivisions, such as sentences, paragraphs, sections etc. The

Alembic Workbench (see below) also allows the extraction of all corpus material that

has been labelled with a specific category [Day 1996].

 Analysis: A number of statistical functions are generally useful, such as the counting of

frequencies and the computing of averages, kappa values etc. Moreover, support of

qualitative analysis is useful, such as the comparative presentation of structures of

annotation.

Example of analysis tools are: the Nba (see above) can graphically present the speech

act structures from two codings simultaneously, and it can convert a speech act

structure into a dialogue grammar.

 197

 Conversion: It is an advantage if a tool can read and write markup formats that are

usable by other tools (of other project groups). This is a precondition of tool

generality. Among the most prominent tools that can automatically translate an

annotated corpus into a corpus labelled with categories of another scheme is

latex2html. It converts LaTeX-code into Code including Html Markup. Usually, such

tools are only able to translate from one scheme to another, without any possibility of

abstraction. Normally, a loss of information is inevitable when corpora are being

translated. So far, none of the available tools inform the user about the information

loss incurred.

 Integrated platforms: There are few platforms for integrating corpus tools. One

example is the Alembic Workbench [Day 1996] which has been developed recently by

the MITRE corporation. This tool can be individually adapted to new coding schemes.

The system also allows the annotation of non-hierarchic structures, as is necessary for

the coding of referring expressions. The tool supports the representation of

annotations in SGML. It also includes various methods for the visualisation of

annotations. Another example is LT NSL which is a development environment for

SGML-based corpus and document processing, with support for multiple versions and

multiple levels of annotation (http://www.ltg.ed.ac.uk/ software/nsl/). It consists of

methods for accessing and manipulating SGML documents and an integrated set of

SGML tools.

Many of the tools presented above provide means for visualising annotations: Nb, for

example, provides a graphical representation which emphasises the hierarchical nesting of

discourse structures. Alembic allows the contrasting of two annotated corpora through

pointing out stretches of discourse where the labelling of the two data sets disagree,

highlighting corresponding labels by the use of the same colour.

A specific tool may have one or several of the functionalities listed above. It is

important that tools can be easily adapted to changing needs if they are to be used outside a

small group working on a particular project. Adaptation should preferably be possible

without having to hack into the code of the tools, as is necessary with respect to virtually

every available tool today.

CORPUS TOOLS IN THE USER TEST

As described in Section 7.2, the raw data collected in the user test of the Danish

Dialogue System consisted in a simple system log file and speech recorded on audio tape.

This data was turned into a transcription by means of editing commands and tailored

functions in the emacs editor. Later on, the audio tapes were converted into digital format

and segmented into utterances using the AudioTool on the Sun Solaris platform. The turn

segmentation of the recordings took about 10 hours of labour for each hour recorded.

A mode (specialised editing environment) for the emacs editor was programmed,

providing functions for easy insertion of markup, viewing parts of the markup, and for

computing simple statistics on the annotated corpus, such as frequencies.

 198

A C++ program was written for the extraction of parts of the corpus into an html

pretty-print format as shown in Figure 7.8. This made it possible to choose at will which part

of the coded dialogue to present as well as the markup elements to be presented.

Figure 7.8. Pretty-printed corpus extracts used in the qualitative analysis

discussed in Chapter 8. Key system module information has been included but its

presentation does not obstruct the reading of the transcribed spoken interaction.

The extracts have been generated by a program that converts TEI codes into

html codes, removing large parts of the information in the process. The extract

shown was adapted for this figure and translated from the Danish. Turns S3-29

and U3-29 correspond to Figure 7.3.

customer S3-29a Please state the customer number!

customer U3-29a Number 4.

 keyed: numberfour

 recognised [Number/0.000000]: number four

 semantics: number "4"

 database [query/CUSTOMER]

 database [answer/STATUS] DB_OK

customer S3-30a Customer number 4

persons S3-30b How many people will travel?

persons U3-30a 2 adults and 2 children.

 keyed: Twoadultsandtwochildren

 recognised [Persons/-76.000000]:

 okay nine and two children

 semantics: number "2" choice "1"

persons S3-31a 2 people

 199

8 EVALUATION

8.1 INTRODUCTION

Systems evaluation is a highly important discipline which is tightly interwoven with

systems development. Evaluation is constantly needed throughout development to measure

progress towards the goals which the system has to meet. Interactive speech systems

evaluation is today as much of an art and a craft as it is an exact science with established

standards and procedures of good engineering practice. In particular, little is still known on

interaction model evaluation including evaluation of dialogue components and integrated

interactive speech systems. There is not even consensus on terminology. Following

[Hirschmann and Thompson 1996, see also Gibbon et al. 1997], we shall distinguish among

three types of evaluation which, although they are clearly not orthogonal, seem to cover the

relevant aspects of evaluation and subsume the scopes of other commonly used terms and

distinctions. Each of these three types of evaluation may be used at any stage of systems

development:

 performance evaluation, i.e. measurements of the performance of the system and its

components in terms of a set of quantitative parameters;

 diagnostic evaluation, i.e. detection and diagnosis of design and implementation

errors;

 adequacy evaluation, i.e., how well do the system and its components fit their purpose

and meet actual user needs and expectations.

Other common terms are „blackbox‟ and „glassbox‟ tests and „progress evaluation‟.

Blackbox and glassbox tests may be considered kinds of diagnostic evaluation but these

tests are carried out on implemented components or systems only. Blackbox and glassbox

tests were discussed in more detail in Section 6.3. Progress evaluation compares two

iterations of the same system during development and is a kind of performance evaluation

(see Section 8.2).

Performance, diagnostic and adequacy evaluation should be performed as integral

parts of the development process to measure progress towards satisfaction of the

requirements specification, evaluation criteria and design specification. Performance

evaluation is made throughout the development process with more or less the same

emphasis from one iteration to another. Some parameters are only measured while the

system is being simulated whereas the measurement of others only make sense when the

system has been implemented (Section 8.2). Diagnostic evaluation is of central importance

in the early development process but should require less effort in the final phase by which

time most errors should have been removed. Adequacy evaluation typically includes a few

central performance measurements as well as measurement of user satisfaction. Adequacy

evaluation is used mostly in the later phases of development. This is because a number of

adequacy aspects cannot be tested in a sensible way until an implemented and debugged

system is available for the purpose. For instance, it does not make sense to measure real-

time performance on a simulated system.

 200

Another useful distinction is the distinction between objective evaluation and

subjective evaluation. Objective evaluation addresses objectively measurable parameters of

system or component performance. Subjective evaluation addresses the opinions which

users have formed of the system. Performance evaluation and diagnostic evaluation are

forms of objective evaluation whereas adequacy evaluation includes both objective and

subjective evaluation.

Many evaluation measurements can be made independently of whether the system has

been implemented or not. However, as suggested above, there are cases in which the state of

the system being developed makes a difference for a given test. We shall highlight such cases

when encountering them below.

In addition to distinctions between different types of evaluation such as the above,
distinction may be made between different types of tests. Test types refer to aspects of the
context of the evaluation, such as the users involved, whether scenarios are being used or
not, or whether the system being tested is implemented or simulated. The tests to be
mentioned below are controlled tests, field tests and acceptance tests. Roughly speaking,
controlled tests are performed during simulation and often also after implementation; field
tests are performed after implementation and towards the end of systems development; and
the acceptance test is the final test of a system. This notwithstanding, a test may be carried
out as a controlled test or as a field test no matter if the system is being simulated or not.
Each test typically includes all of the three evaluation types mentioned above.

In a controlled test, the users need not be those who will actually use the final system.
However, it is recommended to select the test subjects from the target user group to ensure
that they have a relevant background (Section 5.6.2). In the controlled test, the tasks to be
carried out (the scenarios) are not selected by the participants. To ensure reasonable
representativity of scenarios with respect to system functionality and task domain coverage,
and to bring the controlled test as close to benchmarking as possible, scenario selection
should ideally be done by an independent panel according to guidelines on, i.a., who should
select the scenarios, their coverage of system functionality and task domain, the number of
scenarios per user and the number of users. The panel should include end-users as well as
system developers. A field distribution problem attaches to all results of controlled tests.
The frequency of different tasks across the domain of application may be different in real life
from that imposed in the controlled test. This may significantly affect the frequency of the
interaction problems encountered in the test.

In a field test, the system is being tested by real end-users in their appropriate

environments. This means that the tasks carried out will be real-life tasks which, however,

may not necessarily be representative of the full range of system functionality unless the

duration of the field test is very long. The field test option will not always be available for

research systems due to the missing customer. It may be preferable to carry out a controlled

test before a field test because the controlled test will allow an evaluation which is close to

benchmarking.

The acceptance test is the final test of the system before it is accepted for operational

use [Sommerville 1992]. The test aims to demonstrate that the requirements in the contract

(the requirements specification) have been satisfied and the evaluation criteria met. Often the

system is tested with data supplied by the procurer or in a set-up specified by the procurer.

Detected errors must be corrected immediately. In case of larger disagreements with, or

omissions in, the requirements specification, developer and procurer must discuss what to

do. In the worst case the procurer may turn down the system if the developer did not meet

the requirements agreed upon (cf. Section 3.2). However, it is not always solely the system

 201

developer‟s fault that the system does not exhibit the performance and functionality

anticipated by the procurer. In such cases, procurer and developer must negotiate what to

do in order to reach an agreement.

This chapter presents a partial scheme for the evaluation of data produced in

controlled tests from recorded, transcribed and annotated corpora of spoken interactions.

Section 8.2 discusses performance evaluation. Section 8.3 addresses diagnostic evaluation.

A systematic method for the detection of interaction problems is presented and a proto-tool

provided for the classification and diagnosis of interaction problems. Section 8.4 discusses

user errors as detected by the method presented in Section 8.3. Section 8.5 discusses

adequacy evaluation.

8.2 PERFORMANCE EVALUATION

Together with the requirements specification, evaluation criteria, including

performance parameters, should be established for the system to be developed (cf. Section

3.2 and Figure 3.3). The performance parameters are used during WOZ and/or in later tests

of the system. As noted already, the measurement of certain performance parameters may

not make sense during WOZ because only the wizard‟s and not the system‟s capabilities can

be measured at this stage. Other performance parameters can only be sensibly used during

WOZ. They are therefore not part of the evaluation criteria aimed at the final system but are

nevertheless important for assessing WOZ progress. Such parameters include measurement

of the completeness of the interaction model, i.e. the extent to which the wizard has to

improvise not-yet-specified parts of the interaction model, and measurement of how well the

wizard performs. Progress evaluation, i.e. comparison between iterations, is used frequently

during WOZ. The performance parameters defined in the evaluation criteria may be

numerous and differ from system to system. We illustrate performance evaluation through

describing how it was carried out during the WOZ experiments for, and the user test of, the

Danish Dialogue System.

8.2.1 PERFORMANCE EVALUATION DURING WOZ

Performance evaluation in our WOZ experiments measured the performance

parameters in the list of evaluation criteria in Figure 3.3 (except for real-time performance),

i.e. average and maximum user utterance lengths (Figures 8.1 and 8.2) and vocabulary size

and convergence (Figures 8.4 and 8.5). In addition, we considered that it would be relevant

to measure the longest turn per iteration (Figure 8.3), initiative (Figure 8.6), number of turns

(Figure 8.7), interaction model complexity (Figure 8.8), and wizard performance in terms of

ad hoc generated phrases and jumps (Figures 8.9 and 8.10). Information concerning

utterance lengths, vocabulary size and turns was extracted automatically from the annotated

corpus. The other parameters were measured manually. Performance results were compared

to requirements to ascertain how close they were to meeting the design goals. Results were

also compared to the results of earlier WOZ iterations in order to measure progress. Figures

8.1 through 8.10 allow comparison of all the performance parameters measured in the seven

WOZ iterations.

Average and maximum utterance lengths. The specification required an average user

utterance length of 3-4 words and a maximum length of 10 words. These requirements were

 202

eventually satisfied. Figures 8.1 and 8.2 show average utterance length and average number

of turns per dialogue exceeding 10 words, respectively. We also measured the longest turn

in each iteration (Figure 8.3). In WOZ7 the longest utterance contained 12 words and in

total only three utterances exceeded 10 words. This was found acceptable. A main factor in

reducing user utterance length was the transfer of initiative to the system. Answers are often

briefer than questions and tend to use elliptical constructions.

16

14

12

10

8

6

4

2

0

WOZ iteration

7654321

Wizard Subjects

T
o
k
e
n
s

p
e
r

t
u
r
n

Figure 8.1. Average length of wizard and subject utterances in terms of tokens

(words) per turn.

WOZ iteration

7

6

5

4

3

2

1

0
7654321

Wizard Subjects

T
u
r
n
s

>

1
0

t
o
k
e
n
s

p
e
r

d
i
a
l
o
g
u
e

Figure 8.2. Average number of turns per dialogue exceeding 10 tokens (words).

 203

WOZ it erat ion

200

175

150

125

100

75

50

25

0

7654321

T
o
k
e
n
s

Wizard Subjects

Figure 8.3. Longest user turn and system turn for each iteration.

Vocabulary size and convergence. For each iteration, the total number of words

(tokens) and the number of different words (types) were measured. Figure 8.4 shows the

average number of types and tokens per dialogue. As each iteration included a different

number of dialogues, the total numbers of types and tokens could not be immediately

compared. As an illustration, the subjects in WOZ1 used 608 tokens and 138 types in 6

dialogues; in WOZ6 subjects used 2171 tokens and 250 types in 47 dialogues; and in WOZ7

subjects used 1633 tokens and 165 types in 47 dialogues. Thus the total number of types in

each iteration was far from the upper limit of 500. However, each successive iteration

generated relatively many new types. Therefore, although sufficiently small within each

iteration, i.e. less than 500 word types, the deliberately artificial maximum of 500 words

could easily turn out to be insufficient for the final system. Vocabulary convergence was

measured in WOZ7 in terms of subjects‟ cumulative word type/token ratio (Figure 8.5).

Convergence towards zero of the cumulative word type/token ratio is desirable because it

indicates that the vocabulary size is sufficiently large for the application, i.e. it is not likely

that a new user will introduce new word types. However, as shown in Figure 8.5, users‟

vocabulary in WOZ7 did not converge. This finding supported the assumption that 500

words may be too few for the application.

 204

WOZ iteration

7654321

25
0

20
0

15
0

10
0

5
0

0

Wizard's tokens

Subjects' tokens

Wizard's types

Subjects' types

T
o
k
e
n
s

o
r

t
y
p
e
s

p
e
r

d
i
a
l
o
g
u
e

Figure 8.4. Average number of word types and word tokens per dialogue.

%

N
e
w

t
y
p
e
s

0

5

10

15

20

25

0 500 1000 1500 2000

16

18

20

15

21

22

23

24

3

17

19

6

Tokens cumulatively

Figure 8.5. Cumulative type/token ratio for the subjects in WOZ7. The word

types counted do not include numbers, week-days, months, destinations, names

and false starts. Subject numbers are indicated in the data points.

Initiative. To allow real-time performance, the active vocabulary could be at most 100

words at a time (Section 3.2). This strongly restricts the possibilities of user initiative during

interaction. The early WOZ iterations allowed free mixed initiative interaction which was

soon realised to be far from realistic in terms of the active vocabulary required. We therefore

gradually transferred initiative to the system by letting the system ask questions of the user,

thereby reducing average user utterance length and active vocabulary size. Initiative was

roughly measured in terms of number of user questions and system questions, respectively

 205

(Figure 8.6). Much effort went into achieving an interaction structure which corresponded

to the one that users would expect based on their experiences from human-human

reservation dialogues. This helped prevent the occurrence of user initiative. Domain

interaction was eventually made completely system directed, as this turned out to be

necessary in order to meet the constraint on active vocabulary size.

100

80

60

40

20

0

7654321

WOZ iteration

Wizard Subjects

%

q
u
e
s
t
i
o
n
s

Figure 8.6. Number of questions in per cent of the total number of turns.

Average number of turns per dialogue. This parameter was measured during WOZ in

order to gain a rough idea of whether the interaction model appeared reasonable in this

respect (Figure 8.7). If, for instance, completing the reservation task would on average

require two or three times the number of turns required in human-human interaction, user

acceptance of the system might be in jeopardy. The average number of turns in the human-

human dialogues which we recorded in a travel agency was 20 (Section 5.6.1). This average

was never exceeded in the WOZ corpus, nor did we find any other indication that the

number of turns was unreasonable.

 206

WOZ iteration

20

15

10

5

0

7654321

Wizard and subjects

T
u
r
n
s

Figure 8.7. Average number of turns per dialogue for wizard and subjects

together.

In addition to the above performance parameters which were relevant throughout the

development process, we measured the following performance parameters which were

merely of interest during WOZ.

Complexity of the interaction model. The complexity of the interaction model

represented as a transition network was measured in terms of the total number of nodes, the

number of nodes containing system phrases (including questions), and the number of nodes

containing system questions (Figure 8.8). The purpose was to assess the wizard‟s work load.

The number of nodes increased throughout WOZ as the interaction model became more and

more well-defined. Similarly, the difference increased between the total number of nodes and

the number of nodes containing pre-defined phrases. This difference indicates the increase in

the number of nodes which only contained jumps to other parts of the network. Each jump is

a sort of interrupt at which the wizard has to search for where to continue. The larger the

mentioned difference is, the more difficult it is for the wizard to simulate the system

appropriately and in close-to-real-time.

 207

WOZ iteration

200

150

100

50

0
7654321

Nodes with predefined phrases

Nodes with predefined phrases containing quest ions

Nodes in total

N
o
d
e
s

i
n

g
r
a
p
h

s
t
r
u
c
t
u
r
e

Figure 8.8. Total number of nodes in the graph representing the interaction

model, number of pre-defined phrases, and number of pre-defined phrases

containing questions.

Number of ad hoc generated phrases. The number of ad hoc generated phrases

(Figure 8.9) provides an estimate of how well the pre-defined phrases in the current

interaction model cover the task domain. To a certain degree, this measure is also an

expression of how well-trained the wizard is. In particular in the early iterations, the wizard

often failed to find the relevant phrase even if it was present in the interaction model. The

introduction of a graph structure for interaction model representation from WOZ3 onwards

was of great help to the wizard in finding the relevant phrases.

WOZ iteration

100

90

80

70

60

50

40

30

20

10

0
7654321

Wizard

%

a
d

h
o
c

g
e
n
e
r
a
t
e
d

p
h
r
a
s
e
s

Figure 8.9. Number of ad hoc generated phrases in per cent of the total number

of turns.

 208

Number of ad hoc generated jumps. From WOZ3 onwards, the interaction model was

represented as a state transition network consisting of a number of sub-graphs each of which

included indication of relevant jumps to other sub-graphs. The number of ad hoc jumps

(Figure 8.10) includes error jumps as well as jumps missing in the interaction model graphs.

Both kinds of ad hoc jumps occurred particularly in the early WOZ experiments while the

wizard was relatively untrained and the interaction model structure was not yet adequate.

WOZ iteration

3

2,5

2

1,5

1

0,5

0
76543

Wizard

A
d

h
o
c

g
e
n
e
r
a
t
e
d

j
u
m
p
s

p
e
r

d
i
a
l
o
g
u
e

Figure 8.10. Average number of ad hoc generated jumps per dialogue.

After WOZ7, measurement of the various parameters described above had

demonstrated levels of performance sufficient for proceeding to system implementation.

8.2.2 PERFORMANCE EVALUATION DURING THE USER TEST

When the Danish Dialogue System had been implemented and debugged, a controlled

user test was carried out with a simulated speech recogniser. A wizard keyed in the users‟

answers into the simulated recogniser. The simulation ensured that typos were automatically

corrected and that input to the parser corresponded to an input string which could have been

recognised by the real recogniser. In this set-up, recognition accuracy would be 100% as

long as users expressed themselves in accordance with the vocabulary and grammars known

to the system. Otherwise, the simulated recogniser would turn the user input into a string

which only contained words and grammatical constructs from the recogniser‟s vocabulary

and rules of grammar.

The user test was based on 20 different scenarios which had been systematically

designed by the developers as described in Section 5.6.2. Each scenario was represented in

two different versions: a masked version combining language and analogue graphics, and a

standard text version (see Figures 5.11 and 5.12).

Twelve external subjects who had never interacted with the system and who

represented the target group, i.e. (mostly) professional secretaries, participated in the user

test. The percentage of secretaries approximately corresponded to the percentage of

secretaries among the customers who called the travel agency in which we recorded our

 209

human-human dialogue corpus (Section 5.6.1). Subjects conducted the dialogues over the

telephone in their normal work environments. Before interacting with the system, each

subject received an introductory letter, a leaflet briefly describing the system, four scenarios

and a questionnaire. After the experiment they received a telephone interview and filled in

the questionnaire.

The subjects were given a total of 50 tasks based on 48 individual scenarios two of

which contained two tasks. A task consists in ordering one or more tickets for one route. A

route is a full trip, i.e. either a one-way trip, a two-way trip or a round-trip. The number of

recorded dialogues was 57 of which 32 were based on text scenarios and 25 were based on

graphic scenarios. Subjects sometimes reiterated a failed dialogue and eventually succeeded

with the task. A dialogue is one path, whether completed or not, through the dialogue

structure. If, at the end of the dialogue, the user selects to do a second reservation without

hanging up, the user opens a new dialogue. As in the WOZ experiments, all dialogues were

recorded, transcribed and annotated. In addition, all transactions between the individual

system modules were logged.

In the user test we measured many of the same parameters as in the WOZ

experiments, including average and maximum utterance lengths, vocabulary size, longest

turn, user initiative and average number of turns. Real-time could still not be reliably

measured since a wizard was involved. Vocabulary convergence was not measured since the

measurement of vocabulary size made it clear that 500 words were insufficient. Interaction

model complexity, and wizard performance in terms of ad hoc generated phrases and jumps

were irrelevant to the user test. As in the WOZ experiments, as much information as

possible was extracted automatically from the annotated corpus. Figure 8.11 presents the

results from the user test and allows comparison with the corresponding WOZ7 results. The

user test results are discussed in the following.

Average and maximum utterance lengths. The average user utterance length (average

number of tokens per turn) was still well within the required limits. However, the prescribed

maximum user utterance length (10 tokens) was exceeded in 17 cases and the longest user

utterance contained 23 words. Ten of the long utterances were produced by the same

subject. Particularly in the first dialogue, this subject tended to repeat an utterance if the

system did not answer immediately. The majority of long utterances, both for this subject

and in general, was caused by user-initiated corrections which did not make use of the

keyword „change‟ but were expressed free-style by users. Two long utterances were

produced by subjects who took over the initiative when asked „Do you want more?‟. This

question was clearly too open. Finally, subjects sometimes provided more information than

had been asked for. All long utterances, therefore, were produced when subjects took over

the initiative against the principles on which system directed interaction is based. Still, the

fact that only 1.7% user utterances exceeded the prescribed maximum appears acceptable.

 210

 WOZ7 User test

Subjects (total) 12 12

Dialogues (total) 47 57

 User System User System

Turns (total) 881 905 998 998

Tokens (total) 1633 10495 2468 12185

Types (total) 165 350 188 189

Longest turn 12 92 23 87

Turns > 10 tokens (total) 3 272 17 253

Tokens per turn (average) 1.85 11.59 2.47 12.20

Types per turn (average) 0.19 0.39 0.19 0.19

Turns per dialogue (average) 18.74 19.26 17.51 17.51

Turns > 10 tokens per dialogue

(average)

0.06 5.79 0.30 4.44

Tokens per dialogue (average) 34.74 223.30 43.30 213.77

Types per dialogue (average) 3.51 7.45 3.30 3.32

User questions (total) 4 — 4 —

User questions (% of turns in total) 0.45 — 0.40 —

Types per token (average) 0.10 0.03 0.08 0.02

Figure 8.11. Comparison of results from WOZ7 and the user test. All system

turns except for the closing phrase contained a question. Cardinals, ordinals,

destinations, names, months, days of week, and false start items were counted as

one group each, thus adding only six word types to the total number of types.

Vocabulary size. As predicted, the system‟s vocabulary was insufficient. This was no

surprise, as related ATIS results from other languages suggest a domain vocabulary of

1000-1200 words [Peckham 1993]. The test corpus showed 51 out-of-vocabulary word

types. Excluding numbers as well as names of months, days of the week, airports, names and

false start items, this meant that 28.2%, or more than one fourth of the user word types,

were out of vocabulary. In particular, the system‟s sub-language vocabulary as regards

quantitative time expressions was insufficient.

Initiative. As in WOZ7, very few questions were asked by the users. In WOZ7, 4 in

881 user utterances were questions. In the user test, 4 in 998 user utterances were questions.

One of these four questions was asked because the subject had misread the scenario text.

The three other questions all concerned available departure times. This is not surprising

since departure times constitute a type of information which users often do not have in

advance but expect to be able to obtain from the system. When users lack information, the

reservation task tends to become an informed reservation task and hence an ill-structured

task (see Section 9.2.1).

Average number of turns per dialogue. The average number of turns per dialogue was

actually a bit lower in the user test than in WOZ7, and still well below the average of 20

found in the human-human corpus from the travel agency. This was considered satisfactory.

 211

There was reasonable correspondence between the final WOZ performance results and

the performance results obtained during the user test. Nearly all parameters remained within

acceptable limits in the user test, showing only limited deviations from the WOZ7

measurements. Only the vocabulary turned out to be clearly insufficient.

8.3 DIAGNOSTIC EVALUATION

The process of diagnostic evaluation focuses on the detection, classification,

diagnostic analysis and repair of recognition problems, linguistic problems, dialogue

interaction problems and any other kind of problem which may affect user-system

interaction. When problems have been properly repaired, they are prevented from occurring

in future user interactions with the system.

Apart from causing problems of user-system interaction, which may be fatal to the

success of the transaction being made through spoken interaction, interaction problems tend

to make user task performance unnecessarily bumpy and generate user dissatisfaction with

interactive speech systems technologies. It is the system developer‟s task to detect and

diagnose such errors so that they can be repaired in order to prevent human-machine

miscommunication from seriously damaging the user‟s task performance. Some forms of

miscommunication cannot be prevented from occurring and must be handled on-line through

meta-communication. User-initiated repair meta-communication functionality is needed to

overcome the effects of system misrecognitions. In addition, users will inevitably provide

input which, although recognised and understood by the system, requires system-initiated

clarification meta-communication. Most user-initiated clarification meta-communication is

difficult or impossible to handle on-line by current systems. Furthermore,

miscommunication, even when successfully resolved, always leads to additional user-system

exchanges which delay task performance. It follows that diagnostic evaluation with the

purpose of reducing the amount of miscommunication that can occur, is highly important to

successful interaction design. Reduced meta-communication is a source of interactive speech

systems robustness and of increased interaction quality, smoothness and efficiency.

In spite of its clear importance, there is an evident lack of a rigorous methodology in

support of systematic and exhaustive diagnostic evaluation. In the following, we present two

approaches to the systematic detection of problems of user-system interaction. The first

approach is used either to identify problems in an interaction model prior to using it with

subjects, for instance prior to running a WOZ experiment, or to identify problems in an

actual corpus of dialogues. The method mainly detects structural problems revealed through

deviations from the interaction model. The second approach not only serves to identify

deviations from the dialogue structure but addresses details of formulation as well. This in-

depth approach has two parts. The first part helps system developers detect any kind of

user-system interaction problem. The second part supports the classification, diagnosis and

repair of dialogue interaction problems.

8.3.1 THE WALK-THROUGH AND PLOTTING APPROACHES

The walk-through or plotting approach can be used whenever the developers have

available some representation of the interaction model and examples of actual situations of

use of the system, such as scenarios, and mainly helps detect structural problems and missing

 212

parts of the interaction model. The approach may be used before as well as after a WOZ

iteration. When the approach is used before a WOZ iteration, a walk-through is made of the

current interaction model representation based on the scenarios to be used in the upcoming

WOZ experiments. If a deviation from the interaction model representation occurs during

the matching process, this indicates a potential interaction problem which should be analysed

and removed, if possible.

When the approach is used after a WOZ iteration, we term it the plotting approach.

The idea is to plot the transcribed dialogues onto the current interaction model

representation in order to systematically detect interaction problems. As in the walkthrough

approach, deviations indicate interaction design problems. Deviations must be marked and

their causes analysed whereupon the interaction model is revised, if necessary.

Both the walk-through version and the plotting version of the described approach

were used during the WOZ experiments for the Danish Dialogue System. The WOZ

interaction model was represented as a complex state transition network that had system

output in the nodes and expected contents of user utterances along the edges (cf. Figures 5.7

and 5.8). For each scenario to be used, we made a walk-through of the state transition

network. Significantly, many problems were discovered analytically through these scenario-

based designer walk-throughs of the interaction model. This seems to be typical of

interaction model development and illustrates the need for a tool, such as a set of design

guidelines (cf. Section 4.2), which could help designers prevent such problems from

occurring. After each WOZ iteration we plotted the transcribed dialogues onto the state

transition network representing the interaction model. This process also revealed many

interaction problems.

Figure 8.12 shows a sub-network from WOZ6 onto which the corresponding part of a

dialogue has been plotted. The annotation shows that the subject expected confirmation

from the system. When it became clear that the system was not going to provide

confirmation, the subject asked for it. The dialogue fragment in Figure 8.13 provides the

background for the subject‟s deviation from the WOZ6 interaction model. The subject has

made a change to a flight reservation. After the user has stated the desired change, the

dialogue continues as shown in Figure 8.13.

yes

Goodbye!RETURN

(FRAME1)

no

U8-S9-U9: U asks for

confirmation and gets it.

3

Do you want anything else?

END

 213

Figure 8.12. A plotted END of dialogue sub-graph from WOZ6. The encircled

number (3) refers to the CHANGE of reservation sub-graph, cf. S7-U7 in the transcribed

dialogue in Figure 8.13. The user is expected to say, in U8, either “yes” or “no” to the

simulated system‟s question (S8) “Do you want anything else?” If “yes”, the system will

initiate a fresh dialogue by returning to the sub-graph FRAME1. If “no”, the system will end

the dialogue by saying “good-bye”. What actually happens is that in S8 the user initiates the

clarification sub-dialogue conducted through U8-S9-U9. The boldfaced loop marks this

deviation from the graph path which may reveal a dialogue design problem. The loop is

annotated with numbered reference (in italics) to U8-S9-U9 and a description of the

deviation. S refers to system and U to user.

Figure 8.13. The subject has made a change to a flight reservation. After the

user has stated the change, the dialogue continues as shown. S is the simulated

system, U is the user.

From this point onwards the dialogue finishes as expected. Analysis convinced us that

the interaction model had to be revised in order to prevent the occurrence of the user-

initiated clarification meta-communication observed in U8, which the implemented system

would be incapable of understanding. In fact, the WOZ6 interaction model can be seen to

have violated the following co-operativity guideline: Be fully explicit in communicating to

users the commitments they have made (cf. Figure 4.1). As a result, system confirmation of

changes of reservation was added to the WOZ7 sub-graph on change of reservation.

It may be asked how the walk-through or plotting approach can be applied if there is

no graph representation of the interaction model. Figure 8.15 shows an example of a walk-

through of the scenario in Figure 8.14. The representation used is independent of the

interaction model representation and thus more general than the one used in Figure 8.12.

Figure 8.15 is based on the implemented interaction model of the Danish Dialogue System.

Marie Hansen from Copenhagen is going to Aalborg tomorrow together with her daughter

Rikke Hansen who is 10 ten years old. The calendar below starts with today in boldface and

shows the day of departure as the next day in boldface. Their ID-numbers are 4 and 2 and their

customer number is 4. They would prefer to arrive around noon. The flight and transportation

from the airport takes about five quarters in total.

JANUARY 1996

T F S S M T W T F S S M T W T F S S

Figure 8.14. Scenario G11.

S7: Do you want to make other changes to this reservation?

U7: No, I don't.

S8: Do you want anything else?

U8: Ah no ...I mean is it okay then?

S9: [Produces an improvised confirmation of the change made.]

U9: Yes, that‘s fine.

S10: Do you want anything else?

 214

S greet (know)

U ans (yes\no)

S req (customer no.)

U ans (4)

S feed (4)

S req (no. of travellers)

U ans (2)

S feed (2)

S req (ID-no.)

U ans (4)

S feed (4, MH)

S req (ID-no.)

S feed (one-way)

S req (date)

U ans (Friday)

S feed (Friday, January 19)

S req (hour)

U ans (before noon)

S feed (before noon, date)

S stat (9:40, 11:10)

S req (select)

U ans (11:10)

S feed (11:10)

S sum (2 tickets

 215

U ans (2)

S feed (2, RH)

S req (from)

U ans (Copenhagen)

S feed (Copenhagen)

S req (to)

U ans (Aalborg)

S feed (Aalborg)

S req (return)

U ans (no)

 for ID 4, MH, and ID 2, RH,

 from Copenhagen to Aalborg

 on Friday January 19 at 11:10.

 price: 1060 DKK

 deliver at airport

 reservation no. B75)

S cont (another reservation)

U ans (no)

S final (bye)

Figure 8.15. Scenario-based walk-through of an interaction model. The scenario

is shown in Figure 8.14. The interaction structure is the one of the implemented

Danish Dialogue System. S means system, U means user, req means request, ans

means answer, feed means feedback, sum means summary, cont means continue.

Semantic key contents of expected system and user utterances are shown in

parentheses.

8.3.2 THE IN-DEPTH APPROACH

For problem detection in the user test corpus, we used the methodology described

below which enables the detection of any kind of interaction problem including recognition

problems, linguistic problems, such as lacks in grammar and vocabulary, problems of

dialogue interaction, and other problems, such as database errors and cases of system

breakdown. In the following figures, only dialogue interaction problems have been indicated

as only these will be discussed in any detail.

Detection of interaction problems was done by comparing expected and actual user-

system exchanges. (Designer) expectations were based on the task structure and on the

scenarios given to users. Actual exchanges were taken from the recorded and transcribed

user-system interactions. Potentially, an interaction problem has been detected if there is a

deviation between the expected and actual user-system exchanges. Each such deviation, or

problem symptom, is marked up by inserting a brief and temporary description of what the

problem appears to be. Following the mark-up process, a diagnostic analysis of the marked-

up deviations is carried out. This analysis consists in (i) verification of the symptom

observed, including check of the scenario interpretation underlying the presumed deviation;

(ii) problem diagnosis through use of interaction transcriptions and system logs as

necessary; (iii) identification of one or several system or interaction re-design cures, or of

measures to prevent the occurrence of user errors, including evaluation of their feasibility;

and (iv) final classification of the problem. The diagnostic analysis may show that a

marked-up utterance contains more, or other, problems of interaction than temporarily

indicated initially. Similarly, what was initially believed to be a user error (cf. Section 8.4),

may be shown through analysis to be a dialogue interaction design problem, and what was

 216

initially believed to be a dialogue interaction design problem may turn out to be something

else instead, such as a linguistic problem.

Symptom verification consists in checking, for each marked-up deviation between the

expected and actual user-system exchanges, if the expectation was correct. In particular the

scenario interpretation should be checked. We found that a scenario sometimes may have

other legitimate interpretations than the one envisioned by the system developers and

reflected in the expected user input. If this is the case, the definition of the expected user-

system exchange is modified. If, on the other hand, the expectation was correct or if the

modified expectation still leaves a deviation, an actual problem of user-system interaction

has been detected, and steps (ii), (iii) and (iv) above should be performed. How to do this is

discussed in Section 8.3.3 and in Section 8.4. In the remainder of the present section, we

illustrate the methodology up to and including step (i).

Figure 8.17 shows problem detection and final mark-up of dialogue interaction

problems in a dialogue from the user test. Based on the ticket reservation task structure,

Column 1 shows the system‟s questions in the order in which they would be asked. For

system directed interaction, an ordered list of system questions can be constructed because

sub-tasks are being addressed in a fixed order. For mixed-initiative interaction and user-

directed interaction, the order in which sub-tasks are being addressed may depend on the

scenario and on user preferences. A diagnostic evaluation template for such dialogues may

therefore be less general and may have to be adapted to each concrete scenario and

dialogue. Column 2 in Figure 8.17 shows the key contents of the expected user input, or

normative user answers, which were filled into the template prior to the user test. In Figure

8.17, the normative user answers reflect Scenario T32 which is shown in Figure 8.16.

Anders Bækgaard (ID-number 6), Paul Dalsgaard (ID-number 3) and Børge Lindberg (ID-

number 4) work in a department in Aalborg that has customer number 3. They are all going to

Copenhagen on the first weekend in February. They want to depart by the earliest flight on

Saturday at 7:20 and return by the latest flight on Sunday at 22:40.

Figure 8.16. Scenario T32.

Scenario: T32a User: 6 Date: 16 January 1995

1. System

questions

2. Normative

user answers

3. Actual system-user

exchanges

4. Problems

System already

known

no / yes / - -

Customer

number

3 S6-28: Is it customer number 4?

U6-28: No, 3.

S6-29: Number 10 does not exist.

Which number?

U6-29: 3.

Number of

travellers

3 S6-30: Number of travellers?

U6-30: 3.

 217

ID-numbers 6, 3, 4 S6-31-33: ID-numbers?

U6-31-33: 6, 3, 4.

Departure

airport

Aalborg S6-34: From which airport?

U6-34: Aalborg.

Arrival airport Copenhagen S6-35: To which airport?

U6-35: Copenhagen.

Return journey yes S6-36: Return journey?

U6-36: Yes.

Interested in

discount

no / yes S6-37: Interested in discount?

U6-37: Yes.

Date of

departure (out)

February 4 S6-38: Date of departure?

U6-38: First weekend in

February

S6-39: Friday February 10.

Hour of

departure (out)

7:20 At which time?

U6-39: Saturday at 7:20.

S6-40: No departure at 7:20.

Closest other red departure at

10:50. Do you want this?

U6-40: No.

S6-41: At which time?

U6-41: Saturday at 7:20.

S6-42: No departure at 7:20.

Closest other red departure at

10:50. Do you want this?

U6-42: Yes.

E2, GP10x2

GP1, SP10

GP10x2

GP1, SP10

Date of

departure

(home)

February 5 S6-43: Date of return?

U6-43: Sunday February 5.

S6-44: Sunday February 12.

Hour of

departure

(home)

22:40 At which time?

U6-44: 22:40.

E2

Delivery airport / mail S6-45: Confirms the reservation.

Should tickets be mailed or

picked up at the airport?

U6-45: Mailed.

E2

More yes / no S6-46: Do you want more?

U6-46: Yes.

Figure 8.17. The system‟s questions, key contents of the expected (normative)

user answers, and actual user-system exchanges in Dialogue T32a. The notation

in the fourth column refers to detected and classified dialogue interaction

problems. E means user error, GP means generic dialogue design error and SP

means specific dialogue design error. Note that the system‟s erroneous

understanding of „first weekend in February‟ has not been marked because this

problem is caused by lacks in vocabulary and grammar and hence is a linguistic

problem.

 218

Figure 8.18. Excerpt from dialogue T32a from the user test of the Danish

Dialogue System (translated from the Danish). The dialogue is based on

Scenario T32 (Figure 8.16). S means system, U means user. GPs and SPs are

dialogue interaction problems, Es are user errors. The dialogue was a

transaction failure.

After the user test, the key contents of each actual user and system utterance were

entered into Column 3 of the template. Note that „key contents‟ means the semantics of the

core message rather than the surface language of an utterance. As can be seen from Figure

8.17, system feedback is only indicated in case of misunderstandings or other problems. In

all other cases, it appears superfluous to include system feedback because this will merely

repeat what the user just said. Pointers from Column 3 to the transcribed corpus in terms of

unique turn identifiers allow access to the complete surface language of the user-system

exchanges and to a log of internal system module communication whenever needed during

diagnostic analysis.

Finally, Column 4 in the template in Figure 8.17 serves the markup of interaction

problems that have been detected through comparison between normative and actual user-

system exchanges. Column 4 shows the detection of where in the dialogue a dialogue

interaction problem occurred, and a final classification of that problem which indicates what

went wrong. The previous, temporary mark-up is not shown. As an example, consider the

temporary mark-up of U13 in Figure 8.18 which shows the part of Dialogue T32a in which

S11: Are you particularly interested in discount?

U11: Yes.

S12: On which date will the journey start?

U12: The first weekend in February.

S13: Friday February 10th. At which time?

U13: It must be on Saturday at 7:20. E2, GP10, GP10

S14: There is no departure at 7:20. The closest other red departure is at 10:50. Do you

want this departure? GP1, SP10

U14: No.

S15: At which time?

U15: Saturday at 7:20. GP10, GP10

S16: There is no departure at 7:20. The closest other red departure is at 10:50. Do you

want this departure? GP1, SP10

U16: Yes.

S17: On which date will the return journey start?

U17: On Sunday February 5th.

S18: Sunday February 12th. At which time?

U18: 22:40. E2

S19: 22:40. You have now booked 3 tickets for Anders Bækgaard, Paul Dalsgaard and

Børge Lindberg from Aalborg to Copenhagen on Friday February 10th at 10:50

returning on Sunday February 12th at 22:40. The tickets are on green conditions.

Your reference number is 51. The total price is 2820 kroner. Are the tickets to be

mailed or will the travellers pick them up at the airport?

U19: They should be mailed. E2

 219

miscommunication occurs. In S13, the system has misunderstood the user‟s indication of a

date. The diagnostic analysis had shown that this misunderstanding was due to lacks in

grammar and vocabulary and it is therefore not marked in Figure 8.17. However, the

subsequent answer by the user manifests several dialogue interaction problems. So in Figure

8.17 we wrote “the user only tries to correct part of the misunderstood date and s/he does

not use the keyword „change‟ to do this”. It was only later that we became aware of the

additional problem that, in U13, the user provides answers to two system questions in a

single utterance.

Although not explicitly indicated in the diagnostic evaluation template illustrated in

Figure 8.17, it is assumed that meta-communication may occur at any time during

interaction. Actual meta-communication may indicate an interaction problem, such as a lack

in the system‟s vocabulary, although this need not be the case. Meta-communication is a

natural phenomenon which will not go away completely however perfect the interaction

design becomes.

8.3.3 DIALOGUE DESIGN ERRORS

In order to classify and diagnose dialogue design errors and provide clues to their

repair, we used a typology of non-co-operative system interaction behaviour (Figure 8.19)

developed on the basis of the design guidelines presented in Chapter 4. The underlying

assumption is that any dialogue design error, apart, perhaps, from problems of system

impoliteness, can be viewed as a problem of non-co-operative system behaviour. The

typology of (system) co-operativity problems presented in Figure 8.19 distinguishes the

same seven aspects of interaction as do the guidelines in Figure 4.1 and has a corresponding

distinction between generic and specific problems.

COOPERATIVITY PROBLEM

Aspect Generic or specific problem

Group 1: GP1: System provides less information than required.

Informativeness SP1: System is not fully explicit in communicating to users
the commitments they have made.

 SP2: Missing system feedback on user information.

 GP2: System provides more information than required.

Group 2: GP3: System provides false information.

Truth and
evidence

GP4: System provides information for which it lacks
evidence.

Group 3:

Relevance

GP5: System provides irrelevant information.

Group 4: GP6: Obscure system utterance.

Manner GP7: Ambiguous system utterance.

 SP3: System does not provide same formulation of the same
question to users everywhere in its dialogue turns.

 GP8: Too lengthy expressions provided by system.

 GP9: System provides disorderly discourse.

Group 5:

Partner
asymmetry

GP10: System does not inform users of important non-
normal characteristics which they should, and are able to,
take into account to behave cooperatively in dialogue.

 SP4: Missing or unclear information on what the system can

 220

and cannot do.

 SP5: Missing or unclear instructions on how to interact with
the system.

Group 6:

Background

GP11: System does not take users‟ relevant background
knowledge into account.

knowledge SP6: Lacking anticipation of domain misunderstanding by
analogy.

 SP7: System does not separate when possible between the
needs of novice and expert users.

 GP12: System does not consider legitimate user expectations
as to its own background knowledge.

 SP8: Missing system domain knowledge and inference.

Group 7:

Repair and

GP13: System does not initiate repair or clarification meta-
communication in case of communication failure.

clarification SP9: System does not initiate clarification if it has failed to
understand the user.

 SP10: Missing clarification of inconsistent user input.

 SP11: Missing clarification of ambiguous user input.

Figure 8.19. A typology of dialogue co-operativity problems. GP means generic

problem. SP means specific problem. GPs subsume SPs.

In the template shown in Figure 8.17 several dialogue interaction problems are

indicated, some of which represent dialogue design errors. In the following, we exemplify

the diagnosis, classification and repair of each type of dialogue design error in Figure 8.17,

i.e. GP1, SP10 and GP10. We then review the dialogue design errors found in the user test

data more generally. Finally, we discuss why some of the error types in the typology were

not found among the user test data.

In the diagnostic analysis of the user test data, each identified dialogue design error

was (a) characterised with respect to its symptom, (b) a diagnosis was made, and (c) one or

several cures were proposed. The „cure‟ part of the diagnostic analysis may suggest several

ways in which to improve system dialogue behaviour in order to prevent detected problems

from occurring in the future. For an interaction problem to count as a dialogue design error,

at least one of the proposed cures should specify revised dialogue design. Otherwise, the

detected problem is not a dialogue design error. This is why problem classification, although

used from initial problem detection onwards, can be completed only when possible cures for

the problem have been identified. Furthermore, the „cure‟ part of the diagnostic analysis may

show that a new type of dialogue design error should be added to the typology in Figure

8.19. What we found was that virtually all dialogue design errors in the user test could be

classified according to this typology. Only two new underlying specific principles, and hence

two new problem types (SP10 and SP11), were added. These had to do with the fact that

system-initiated repair meta-communication had not been simulated during WOZ (cf.

Sections 4.4.4 and 5.6.1).

 221

A single utterance may represent several dialogue design problems as illustrated in

Figures 8.20 and 8.21. In such cases, each individual problem must be analysed separately.

We shall sometimes refer to such co-existing problems in an exchange without providing a

full symptom-diagnosis-cure treatment of them. In the figures to follow, S means system and

U means user.

Symptom: S11: Are you particularly interested in discount? U11: Yes. S12: On which date

will the journey start? U12: The first weekend in February. S13: Friday February 10th. At

which time? U13: It must be on Saturday at 7:20. S14: There is no departure at 7:20. The

closest other red departure is at 10:50. Do you want this departure?

Diagnosis: The system provides insufficient information. It does not inform the user that there

is a blue departure at 7:20 on Fridays.

Cure: The system should provide sufficient information, for instance by informing the user

that there is no red departure but that there is a blue departure at the chosen hour. The system

should also mention that it still assumes the date to be Friday.

Figure 8.20. A dialogue design error from Dialogue T32a. The problem is of

type GP1: the system provides less information than required. It may be debated

whether the first part of S14 manifests a problem of type GP1 or of type GP3

(false information). Viewed in isolation, the information provided by the system

is false but viewed together with the rest of U14, the information rather appears

insufficient.

Symptom: S11: Are you particularly interested in discount? U11: Yes. S12: On which date

will the journey start? U12: The first weekend in February. S13: Friday February 10th. At

which time? U13: It must be on Saturday at 7:20. S14: There is no departure at 7:20. The

closest other red departure is at 10:50. Do you want this departure?

Diagnosis: There is, in fact, a departure at 7:20 but it does not offer discount. The system

implicitly assigns priority to discount over departure time without sufficient reason.

Cure: S should ask U about priority saying, for instance: “7:20 is not a discount departure. Red

discount can be obtained on the departures at x, y and z. Which departure do you want?”

Figure 8.21. A dialogue design error from Dialogue T32a. The problem is of

type SP10: missing clarification of inconsistent user input.

Figures 8.20 and 8.21 show the analysis of two problems from Figure 8.17. The

analysis led to the error classifications indicated in the legends to the figures, i.e. GP1 and

SP10, respectively. The classifications become inserted in the template as shown in Figure

8.17, replacing the temporary markup of unclassified problems. In addition to problem

classification, the typology also provides cues to problem repair, for instance by pointing to

the fact that the system does not provide sufficient information. The „cure‟ part of the

analysis provides a more detailed proposal for how to repair the problem. S16 in Figure 8.18

contains two dialogue design errors which are similar to those analysed in Figures 8.20 and

8.21.

 222

Figures 8.22 and 8.23 present analyses of a third dialogue design error from Figure

8.17. A single utterance turns out to exhibit two errors of the same type. In its introduction,

the system asks users to use the keywords „change‟ and „repeat‟ for meta-communication

purposes and to answer the system‟s questions briefly and one at a time. Despite the

introduction, a significant number of violations of those instructions occurred in the user

test. Figure 8.22 analyses the problem of a user attempting to make a change through a full-

sentence expression rather than by saying „change‟. Figure 8.23 analyses the problem of a

user answering several questions at a time. Although the system has clearly stated that it has

some non-normal characteristics due to which users should modify their natural dialogue

behaviour, this is not cognitively possible for many users. Therefore, the problems should be

considered errors of dialogue design rather than user errors. These problems will be further

discussed in Section 8.4. U15 in Figure 8.18 contains two dialogue design errors which are

similar to those analysed in Figures 8.22 and 8.23.

Symptom: S13: Friday February 10th. At which time? U13: It must be Saturday at 7:20.

Diagnosis: The user is too occupied with the problem to remember to use the keyword

„change‟ when trying to change Friday into Saturday.

Cure: „Change‟ is not natural. Prefer more natural mixed-initiative meta-communication.

Figure 8.22. A dialogue design error from Dialogue T32a. The problem is of

type GP10: the system does not inform users of important non-normal

characteristics which they should, and are able to, take into account to behave

co-operatively in dialogue.

Symptom: S13: Friday February 10th. At which time? U13: It must be Saturday at 7:20.

Diagnosis: Natural user response package.

Cure: Allow naturally related information, such as date and time, to be provided in the same

user answer.

Figure 8.23. A dialogue design error from Dialogue T32a. The problem is of

type GP10: the system does not inform users of important non-normal

characteristics which they should, and are able to, take into account to behave

co-operatively in dialogue.

Figure 8.24 presents an overview of the types of dialogue design error that were

identified in the user test. For each identified GP and SP, the actually observed dialogue

design errors are briefly characterised with global indications of their causes and repair. The

figure contains 13 GPs and SPs. Although the generic problems GP11, GP12 and GP13

were not directly observed in the user test data, these problems are still regarded as having

occurred because cases of one or more of the specific problems subsumed by each of them

were found in the data. The violation of GP3 was not, in fact, caused by a dialogue design

error but by our database design.

COOPERATIVITY PROBLEM No. TF CAUSE/REPAIR

 223

GP1: System provides less information

than required (final question too open;

withholding important information,

requested or not).

19 System question design

(4).

System response design

(15).

SP2: Missing system feedback on user

information (system misunderstandings

only show up later in the dialogue).

2 1 System response feedback

design.

GP3: System provides false information

(on departures).

2 Database design.

GP5: System provides irrelevant

information (irrelevant error message

produced by grammar failure).

2 1 Grammar design or speech

recognition design coupled

with improved repair

design.

GP6: Obscure system utterance

(grammatically incorrect response; obscure

departure information).

7 System response grammar

design (1).

System response design

(6).

GP7: Ambiguous system utterance

(question on point of departure).
2 System question design.

GP10: System does not inform users of

important non-normal characteristics

which they should, and are able to, take

into account to behave co-operatively in

dialogue (indirect response, change through

comments, asking questions, answering

several questions at a time).

33 Unreasonable system

demands on users.

Improve the system to

handle the violations.

SP4: Missing or unclear information on

what the system can and cannot do

(system does not listen during its own

dialogue turns).

33 1 Speech prompt design.

SP5: Missing or unclear instructions on

how to interact with the system (under-

supported user navigation: use of „change‟;

round-trip reservations).

2 1 User instruction design.

SP6: Lacking anticipation of domain

misunderstanding by analogy (user is

unaware that discount is only possible on

return fares).

3 User information design.

SP8: Missing system domain knowledge

and inference (temporal inference;

inference from negated binary option).

4 System inference design.

SP10: Missing clarification of inconsistent

user input (system jumps to wrong

conclusion).

5 System clarification

question design.

SP11: Missing clarification of ambiguous

user input (system jumps to wrong

conclusion).

5 2 System clarification

question design.

 224

Figure 8.24. Typology of the 119 dialogue design errors (including two

database errors) identified in the user test. The number (No.) of occurrences of

each problem is shown as is the responsibility for transaction failure (TF) per

problem type. The rightmost column shows the global cause(s) of the problems

and hence what needs to be repaired to prevent them from re-occurring.

Section 4.3 has shown other representative examples of dialogue design errors

identified in the user test. Examples of errors of types GP1, SP10 and GP10 were already

shown above. All identified errors of type SP10 were very similar whereas the errors of type

GP1 were of three different kinds as illustrated in Figure 4.2.

Errors of type GP10 were of four different kinds: users asked questions, provided

indirect answers, such as answering „cheap‟ to the question of hour of departure, answered

several questions at a time, often through providing two temporal expressions in the same

utterance, and attempted to make changes through full-sentence expressions rather than by

saying „change‟ (cf. Figure 4.14). The most frequent cases were changes through comments

and answering several questions at a time. Almost all of these cases led to misunderstanding

or non-understanding.

It is significant that the large majority of dialogue design errors could be

straightforwardly classified. It is only to be expected, however, that some errors are

borderline cases which may receive alternative classifications. One such case was mentioned

in Figure 8.20. Figure 4.9 (first example) shows an example which was categorised as a

problem of type GP6 (obscure system utterance). Arguably, this example may instead be

considered a problem of type GP3 (system provides false information). Obscurity and

falsehood can be difficult to distinguish from one another.

Eight of the 24 problem types in the typology were not observed in the user test.

Figure 8.25 explores why. Most of the problems in question are either easy to avoid during

dialogue design once it has been decided to do so (SP1, SP3, SP9); or it is difficult to tell

from observed co-operativity problems whether or not concrete cases occur because these

types of design error must be massively present for a concrete co-operativity problem to be

observed (GP2, GP8, SP7). If less massively present, users tend to suffer in silence during

the dialogue and complain afterwards. An example of this was found in the WOZ

experiments. The fact that problems GP2 (system provides more information than required)

and GP8 (system is too verbose) had occurred became apparent from users‟ complaints that

the system talked too much. The problem was solved by removing superfluous information

and constructing more succinct system utterances.

COOPERATIVITY PROBLEM COMMENTS

SP1: System is not fully explicit in

communicating to users the

commitments they have made.

Easy to ensure once this has been

decided.

GP2: System provides more information

than required.

Difficult to test through identified

cooperativity problems.

GP4: System provides information for

which it lacks evidence.

The system cannot directly commit this

error. Problems SP10 and SP11

indirectly raise issues of this kind.

 225

SP3: System does not provide same

formulation of the same question to

users everywhere in its dialogue turns.

Easy to ensure once this has been

decided.

GP8: System is too verbose. Difficult to test through identified

cooperativity problems.

GP9: System provides disorderly

discourse.

Great care taken during dialogue design

to avoid this problem.

SP7: System does not separate when

possible between the needs of novice

and expert users.

Difficult to test through identified

cooperativity problems.

SP9: System does not initiate

clarification when it has failed to

understand the user.

Clarification ability is easy to provide

once this has been decided.

Figure 8.25. Why some dialogue design errors were not observed in the user

test.

8.3.4 DIAGNOSTIC EVALUATION CRITERIA

We have described the methods used for diagnostic evaluation of the WOZ and user

test corpora from the Danish dialogue project. In particular, we have provided detailed

results from the diagnostic evaluation of the user test corpus. We shall now briefly discuss

those evaluation criteria from Figure 3.3 which require diagnostic evaluation, i.e. the criteria

task domain coverage, robustness, principled restrictions on language and dialogue, and

flexibility. Throughout the development process, only ad hoc estimates were made of the

extent to which the system conformed to these criteria. No precise and operational metrics

was developed for measuring conformance to the criteria most of which, as ordinarily used,

are somewhat vague. For this reason, these criteria are also included in the subjective part of

the adequacy evaluation (Section 8.5). The exception seems to be task domain coverage. In

most cases it will be clear whether the task domain coverage is deficient or not.

WOZ. Considerable work went into ensuring sufficient task domain coverage through

testing the simulated system on a broad selection of scenarios and repairing deficiencies

which had been revealed through the matching and plotting approaches described in Section

8.3.1. The WOZ system was very robust because of the wizard. Non-robust system

behaviour was not simulated. Users‟ language and dialogue were gradually restricted until

the domain communication became completely system directed. Apart from that, only a

minimum of restrictions on language and dialogue were simulated in WOZ7. These

additional restrictions were imposed as rejections of user input which clearly could not be

handled by the final system. However, rejections were few and rather ad hoc. Missing

flexibility was a main reason for not implementing those parts of the interaction model

which concerned information and change of reservation. Users‟ had to make a considerable

number of tedious and inefficient choices to get their information or change of reservation

tasks done through system directed interaction. As regards the reservation task, much work

went into defining an acceptable and natural task structure for the users. In addition, an

optional introduction and optional information on discount types were introduced to

increase flexibility.

 226

User test. The diagnostic evaluation of the user test corpus showed that the

implemented system‟s task domain coverage is functionally acceptable. Usability limitations,

on the other hand, still remain exactly at the points of maximum task complexity where

system directed interaction comes close to its limits. When, for instance, four persons want

to fly out together and only 2 persons want to fly back together, or when a person wants to

fly out to airport X and back from airport Y, the system‟s limitations become apparent. The

problem is not functional because, functionally speaking, such cases are dealt with simply

through a series of reservations of return tickets and/or one-way tickets. To users, however,

this is a counter-intuitive and cumbersome way of doing things. Counter-intuitiveness can be

helped through additional system instructions (cf. the comment on SP5 in Figure 8.24). This,

however, makes the entire interaction more cumbersome for all users. The tedious splitting-

up of complex tasks into simple ones can be avoided by adding a series of extra questions to

be posed by the system, making the entire interaction more cumbersome for the users who

want to make simple reservations. Neither of these remedies are particularly attractive. Real

solutions can be found only through allowing longer user utterances, more open system

questions and mixed-initiative interaction.

To allow early error detection by the users, and thereby increase robustness, the

system provides feedback by echoing the key information in the latest user utterance (see

SP2 in Figure 8.24, however, for cases of missing feedback). Furthermore, at the end of a

reservation task, a summary is provided of the entire reservation made by the user.

Functionally speaking, as long as the user can be understood by the system at all, iterative

use of the „change‟ command enables the user to change anything that the system has done

wrong during the preceding interaction. The system‟s dialogue is robust in these respects, at

least.

The domain communication of the implemented system is completely system directed,

which strongly restricts users‟ language and dialogue but in a natural way. However, the

vocabulary and grammar of the system imposed restrictions which were less natural and

principled. For instance, conjunctions are not accepted although they are highly natural for

users even in system directed communication. As we have seen, it also turned out that the

use of keywords for having information changed or repeated was unnatural to users (see

SP5 and GP10 in Figure 8.24).

System directed domain interaction through non-open questions affords little dialogue

flexibility. However, as the task of reservation is a well-structured one, system directedness

seems generally acceptable for the purpose of this task, at least up to a certain level of

complexity as argued with respect to task domain coverage above. Another example of

meeting the complexity boundary is the following. When users have conflicting desiderata,

typically concerning hour of departure and an interest in discount, one may observe

problems in the dialogue because users will have to backtrack to de-select discount if they

end up giving priority to the conflicting hour of departure.

8.4 A BY-PRODUCT: USER ERRORS

As a by-product of the diagnostic evaluation of user-system interaction in the user test,

the in-depth methodology described in Section 8.3.2 produced a series of interaction

problems which we classified as user errors rather than dialogue interaction design errors. A

 227

common topic in the general HCI literature, user errors have received comparatively little

treatment in the literature on interactive speech systems. We want to argue that not

everything that goes wrong in spoken interaction between user and system is due solely to

errors made by the system developers. Users make errors, too. Some might want to

disagree. As an extreme viewpoint, it might be maintained that the system must be able to

deliver what the user wants no matter how the user behaves. We suspect, however, that not

even a mind-reading system could do that. At the other extreme it might be claimed that

users just have to get used to the system no matter how silly it behaves. But nobody would

claim that, we submit. Clearly, a more balanced viewpoint is required. Users make errors

during spoken interaction and some interaction problems are the compound effects of

interaction design errors and user errors. It follows that diagnostic evaluation of spoken

interaction includes user errors within its scope. This raises the tricky issue of how to

separate errors made solely by users from compound errors and from pure errors of dialogue

interaction design.

The following discussion of the user errors identified in the user test of the Danish

Dialogue System is less principled than the discussion in Section 8.3.3 of dialogue design

errors in the sense that we did not have an independent classification of user error types to

depart from. Thus, the typology to be presented below has been established empirically

based on the user test itself.

The concept of a „user error‟ is a complex one, as we shall see. Our initial definition of

a user error, and one which might appear plausible to many system developers, was

something like the following: a user error is a case in which a user does not behave in

accordance with the full normative model of the dialogue. In controlled user testing, the full

normative model of the dialogue is defined by (i) explicit designer instructions to users, i.e.

the scenarios that users have to carry out in dialogue with the system; (ii) explicit system

instructions to users, such as the system‟s introduction to itself (cf. Figure 2.3); (iii) explicit

system utterances during dialogue; and (iv) implicit system „instructions‟ to users. (i)

through (iv) will be illustrated and discussed below. (i) is absent in field testing and in

practical system use. In such cases, the full normative dialogue model reduces to (ii)-(iv). (ii)

is very important to interactive speech systems design and use because interactive speech

systems are vastly inferior dialogue partners when compared to humans. This means that

humans must be told how to interact with an interactive speech system lest they treat the

system as a human dialogue partner. Users, of course, should react appropriately to the

system‟s utterances during dialogue (iii), given their scenarios and the dialogue context. The

need to include (iv) follows from the important fact that it is impractical to explicitly inform

users about all the types of behaviour which they should avoid during interaction with the

system. Rather, users should be made to grasp the general fact that the system is a severely

restricted interaction partner which should be treated accordingly.

According to the above definition of „user error‟, 102 individual user errors were

found in the user test corpus which contains a total of 998 user utterances (Figure 8.11). A

more thorough analysis of the user errors that were identified on the basis of the above

definition revealed, however, that a significant number were caused by dialogue design

errors. For instance, users responded differently from what they should have responded

according to the scenario because of missing system feedback or because a system question

was too open and invited users to respond in ways which we had not intended. We shall

 228

ignore such cases and focus on the dialogue errors that were made solely by the users. This

leaves 61 individual user errors for discussion in what follows.

Each user error was analysed and (a) characterised with respect to its symptom, (b) a

diagnosis was made, and (c) a preventive measure was proposed whenever possible. A

single utterance sometimes contained several user errors and sometimes an utterance

contained both dialogue design errors and user errors (cf. U13 in Figure 8.18 which is

analysed in Figures 8.22, 8.23 and 8.26).

Figure 8.26 shows the analysis of a problem detected in Figure 8.17. The analysis led

to the classification indicated in the legend to Figure 8.26, i.e. the problem is a user error of

type E2: ignoring clear system feedback. Upon diagnostic analysis, and just as in the case of

dialogue design error types, user error classification results are inserted in the diagnostic

evaluation template to replace the temporary indication of an unclassified problem (cf.

Figure 8.17). U18 and U19 in Figure 8.18 contain two user errors which are similar to the

one analysed in Figure 8.26.

Symptom: S12: On which date will the journey start? U12: The first weekend of February.

S13: Friday February 10th. At which time? U13: It must be Saturday at 7:20.

Diagnosis: The user ignores the system‟s date feedback and only tries to change Friday into

Saturday.

Preventive measure: People sometimes do not listen sufficiently carefully. They may also care

less in experimental settings than in real life. In experiments people may be more attentive if a

reward is offered to the best user.

Figure 8.26. A user error from Dialogue T32a. The error is of type E2: ignoring

clear system feedback. This error was considered a direct cause of the

transaction failure.

Figure 8.27 presents an overview of the user error types that were initially identified in

the user test. Two error types (E3 and E6) were divided into sub-types. E1 includes the

scenario violations, i.e. violations of explicit designer instructions. E2 and E3a include cases

in which users did not pay attention to explicit system utterances (feedback and questions).

E3b is closely related to E5 (see below). E3b, E4, E5, E6 and E7 represent violations of

explicit system instructions provided in the system‟s introduction. As we shall see, however,

E3b, E4, E5 and E6 turned out to be disguised dialogue design errors. In E8 the user

violates implicit system instructions. For each identified user error type in Figure 8.27, one

or more sub-types are indicated which briefly characterise the problem. For each sub-type,

 229

preventive measures, if any, are indicated. In the following, each error type is discussed in

more detail.

Error Types Error Sub-Types No. of

Cases

Preventive Measure

E1. Misunderstanding

of scenario.

a. Careless reading or

processing.

14 Use clear scenarios,

carefully studied, to

reduce errors.

E2. Ignoring clear

system feedback.

a. Straight ignorance. 7 Encourage user

seriousness to reduce

errors.

E3. Responding to a

question different from

the clear system

question.

a. Straight wrong

response.

4 Encourage user

seriousness to reduce

errors.

 b. Indirect response. 3 Disguised dialogue

design error.

E4. Change through

comments (including

„false‟ keywords).

a. Cognitive overload. 17 Disguised dialogue

design error.

E5. Asking questions. a. Asking for decision-

relevant information.

3 Disguised dialogue

design error.

E6. Answering several

questions at a time.

a. Natural response

„package‟.

10 Disguised dialogue

design error.

 b. Slip. 1 None.

E7. Thinking aloud. a. Natural thinking

aloud.

1 None.

E8. Non-cooperativity. a. Unnecessary

complexity.

1 None.

Figure 8.27. The initially identified user error types and sub-types.

E1 Misunderstanding the scenario

As remarked earlier, scenario misunderstandings are artefacts of controlled user

testing. Nevertheless, controlled user testing is important in systems design and it may be

worth considering ways of preventing user errors in controlled test environments. It should

be noted that scenario misunderstandings cannot give rise to transaction failure. The system

cannot be blamed for not knowing that the user was supposed to have asked for something

different from what s/he actually did ask for. Transaction failure occurs only when users do

not obtain the reservation they actually ask for. In fact, scenario misunderstandings rarely

would appear to lead to other forms of dialogue interaction problems. They may do so if the

user mixes up several possible scenarios and thereby manages to provide inconsistent input.

Normally, however, users just carry out a different scenario. This may, however, affect the

quality of system evaluation. A scenario which is not being carried out may result in that part

of the interaction model remains untested.

 230

Almost one fourth of the 61 user errors were due to users acting against the

instructions in the scenarios. These errors were of three (task-dependent) kinds: (a) users

asked for one-way tickets instead of return tickets; (b) users were not interested in discount

although according to the scenario they should have been; and (c) users tended to

miscalculate the date of departure if this date was given only indirectly in the scenario. It

seems likely that the main reason for the many scenario misunderstandings is the artificial

experimental situation. People care less in an experiment than they do in real life and

therefore tend not to prepare themselves sufficiently for the dialogue with the system. In

addition, unclear scenarios cause errors. E1 thus raises two issues in the preparation of

controlled user testing: (i) to reduce the number of errors, scenarios should be made as clear

as possible. Nothing is gained by unclear or misleading scenarios. Clear scenarios should not

be confused with simple scenarios. Scenarios should reflect the types of information real

users actually have when addressing the system. This information may be complex and some

scenarios should reflect that. This means that users may have to perform some mental

processing of the scenario information in order to provide correct answers to the system‟s

questions. (ii) Users should be encouraged to carefully prepare themselves on the scenarios

they are to complete in conversation with the system. This should mirror the interest real

users have in getting the system to deliver what they want. A practical solution is to promise

an award to subjects who stick to their scenarios in conversation with the system. Awards

depend on culture so we will not suggest a good bottle of wine as the sole solution.

Whatever preventive measures are taken, however, scenario misunderstandings are not

likely to be entirely absent from controlled user tests but reducing their number is an

important goal.

E2 Ignoring clear system feedback

The speech recognition capabilities of most telephone-based systems are still fragile. It

is therefore important that users listen carefully to the system‟s feedback to verify that they

have been correctly understood. Of the seven transaction failures in the user test, one was

caused by a combination of a dialogue design error and a user who ignored clear system

feedback. A second transaction failure occurred solely because the user did not pay

sufficient attention to the system‟s feedback which made it clear that the user had been

misunderstood (cf. Figures 8.18 and 8.26). Three of the seven detected E2 cases occurred in

this dialogue in which the user continuously ignored the system feedback on dates. Thus,

four out of the seven detected cases of ignored system feedback had severe implications for

the success of the transactions. Moreover, had the user test included a real recogniser, more

cases of system misunderstanding would no doubt have occurred and hence more cases in

which users would have had to identify system misrecognitions from the system‟s feedback.

The notion of a transaction failure that is caused by a “clean” user error may be

controversial. It might be argued that transaction failures should be caused by system design

errors of one kind or another. On the other hand, it might be said that most user errors of

ignoring clear system feedback only arise because the system has misunderstood the user in

the first place. This problem does not seem to have any obvious solution. Whatever one

chooses to do, this should be made clear in the definition of „transaction failure‟ adopted

because the resulting transaction failure percentage constitutes an important quantitative

measure of system performance.

 231

E2 raises the issue of encouraging test subjects to „act‟ seriously during interaction

with the system and be very attentive to what the system says because recognition in

interactive speech systems is much more error-prone than the hearing capabilities of normal

humans. This would help reducing the number of user errors caused by ignored system

feedback. Nothing is gained by having subjects who care too little about what is going on

during the dialogue. Whatever preventive measures are taken, however, the problem of user

inattention is not likely to go away completely. This is true of both „artificial‟ user tests and

real-life use of commercial systems.

E3 Responding to a question different from a clear system question

E3 has at least two sub-types. The first sub-type, E3a, included four cases in which

users gave a straight wrong response to a system question. An example is shown in Figure

8.28. In one case the answer was not understood by the system and in three cases it was

misunderstood. E3a raises the same issue as did E2 of encouraging users to seriously pay

attention to the system‟s utterances. Similarly, E3a errors are not likely to go away

completely, neither in „artificial‟ user tests nor in real-life interaction.

Symptom: S: Where does the journey start? U: Saturday.

Diagnosis: The user responds to a question different from that asked by the system.

Preventive measure: People sometimes do not listen sufficiently carefully. They may also care

less in experimental settings than in real life. In experiments people may be more attentive if a

reward is offered to the best user.

Figure 8.28. A user error from Dialogue G13a. The error is of type E3:

responding to a question different from the clear system question (straight

wrong response).

The second sub-type, E3b, concerns indirect user responses. An example is shown in

Figure 8.29. In human-human conversation, indirect answers of this type would be perfectly

all right. An indirect response suggests that the speaker does not possess the information

necessary to provide a direct answer. In response to the indirect user answer in Figure 8.29,

a human travel agent would list the relevant departures on which discount may be obtained.

Our interactive speech system, however, has limited inferential capabilities and is not able to

cope with indirect responses. They will be either not understood or misunderstood.

Symptom: S: At which time? U: It must be as cheap as possible. S: Sorry, at which time?

Diagnosis: The user wants a discount ticket but since s/he has asked for a one-way ticket this is

not possible and the system does not offer it. However, the user does not know this and wants

to let the hour of departure depend on when there is a cheap departure.

Preventive measure: Probably none. This kind of response is natural to humans in situations

in which they do not have sufficient information to provide a direct answer.

 232

Figure 8.29. A user error from Dialogue T13a. The error is of type E3:

responding to a question different from the clear system question (indirect

response). This problem is a disguised dialogue design error although in our

analysis it was first classified as a user error.

E3b is among the most challenging types of user errors in the test material. Indirect

responses are natural to humans in situations in which they do not have sufficient

information to produce a direct response. In such cases, we provide instead the information

that we actually possess, leaving it to the interlocutor to infer the information asked for. We

do this co-operatively, of course, only in cases in which the interlocutor can be assumed to

have the information needed to perform the inference. The system, posing as a perfect

domain expert, may legitimately be assumed to possess the required information. What the

user overlooks, however, is that the system does not have the capability to draw the proper

inferences from the user‟s information. The E3b cases, therefore, raise the hard issue of the

extent to which dialogue designers should consider providing their systems with appropriate

inferential skills. There does not currently appear to exist a principled answer to this

problem. Furthermore, it may be argued that indirect user responses are not user errors at

all. They do not conflict with the system‟s introduction. At best it might be argued that

indirect responses conflict with the difficult requirement on users which we have called

„implicit instructions‟ to users (see above). If, however, we are right in the above

interpretation of E3b-type user contributions, they are in fact oblique questions asking for

information (see E5 below).

E4 Change through comments

E4 gave rise to numerous (almost 30%) user errors in the test. In 16 out of 17 cases,

users tried to make corrections through natural sentences rather than by using the keywords

prescribed in the system‟s introduction. An example is shown in Figure 8.18 and analysed in

Figure 8.22. In none of these cases was the requested correction understood as intended.

Only in one case did the user achieve the intended correction. In this case, the user used a

keyword different from „change‟ but meaning the same, which accidentally was recognised

as „change‟. The theoretical importance of these findings is that of emphasising the

undesirability of including designer-designed user keywords in dialogue design for

interactive speech systems. Such keywords will neither correspond to the keywords

preferred by all or most users nor to the natural preference among native speakers to reply in

spoken sentence form rather than through keywords. It is furthermore our hypothesis that

the more cognitive load a user has at a certain stage during dialogue task performance, the

more likely it is that the user will ignore the system‟s instructions concerning the specific

keywords to be used.

E4 raises the hard issue of allowing users a more natural form of repair meta-

communication.

E5 Asking questions

E5 is among the most challenging types of user errors in the test data and is closely

related to E3b above. Three out of the four E5 cases occurred when the system has asked

for an hour of departure. An example is shown in Figure 8.30. What the observed cases

 233

show is that reservation dialogue, in its very nature, so to speak, is informed reservation

dialogue. It is natural for users who are making a reservation or, more generally, ordering

something, that they do not always possess the full information needed to decide what to do.

In such cases, they ask for the information. Since the system poses as a perfect domain

expert, this is legitimate. What users overlook, and despite what was said in the system‟s

introduction, is that the system does not have the skills to process their questions. As with

E3b above, it is not clear what the interaction designer should do about this problem in the

short term (we shall return to the longer-term perspective in Section 9.2). Current systems

are not likely to be able to understand all possible and relevant user questions in the context

of ordering tasks. The optimistic conclusion is that E3b and E5 only constituted 6 errors in

total in the user test, and that skilled users of the system will learn other ways of eliciting the

system‟s knowledge about departure times. However, a principled solution to the problem

only seems possible through enabling the system to conduct rather sophisticated, advanced

mixed-initiative domain dialogue (see Section 9.2).

Symptom: S: At which time? U: What are the possibilities? S: Sorry, at which time?

Diagnosis: This is a very natural question when the user does not know the exact departure

times.

Preventive measure: Allow advanced mixed-initiative domain communication. Reservation is

often informed reservation.

Figure 8.30. A user error from Dialogue T12a. The error is of type E5: asking

questions. In fact this problem is a disguised dialogue design error although in

our analysis it was first classified as a user error.

E6 Answering several questions at a time

E6 has at least two sub-types. The first sub-type, E6a, gave rise to many (about 16%)

user errors in the test. An example is shown in Figure 8.23. Other examples are: a user who

answers “the journey starts on Friday at 8:15” when asked for a date of departure, and a

user who answers “no, change” when asked if it is correct that the destination is Karup. In

seven of the ten cases, only the part of the user‟s response which answered the system‟s

question was understood. In the remaining three cases, the entire user response was

misunderstood. What this error type suggests is that (i) users naturally store information in

„packages‟ consisting of several pieces of information. This means that they are unlikely to

consistently split these packages into single pieces of information despite having been told to

do so in the system‟s introduction. Interaction designers should be aware of the existence of

such natural information packages and enable their system to understand them. (ii) Users

have stereotypical linguistic response patterns, such as prefixing a „change‟ keyword with a

„no‟. Interaction designers should be aware of these natural stereotypes and enable the

system to understand them. The problem posed by the E6 cases appears solvable by today‟s

technology. Our interactive speech system is already able to accept such stereotypes, e.g.

when information on departure and arrival airports is being provided in the same utterance.

However, due to the present, strong limitations on active vocabulary we have not been able

to allow natural information packages and stereotypes throughout the reservation dialogue.

 234

The second sub-type, E6b, illustrates a phenomenon which no feat of spoken

interaction design is likely to remove, i.e. the naturally occurring slips-of-the-tongue in

spontaneous speech. Slips do not appear to constitute any major problem, however. Only

one slip causing an interaction problem occurred in the entire corpus: when asked for the

customer number, the user said “four, no sorry, change, change”. Only the number was

recognised, forcing the user to change it in the following utterance.

E7 Thinking aloud

E7 illustrates another phenomenon which no dialogue design effort is likely to remove,

i.e. the naturally occurring thinking-aloud in spontaneous speech. Thinking-aloud does not

appear to constitute a major problem. Only one case of natural thinking-aloud occurred in

the entire corpus: when asked for an hour of departure, the user said “well, let me see, at

8:30 at the latest”.

E8 Non-co-operativity

E8 illustrates yet another phenomenon which cannot be removed through interaction

design, i.e. the deliberately non-co-operative user. Only one case of deliberate user non-co-

operativity was detected in the test corpus. The user replied “the ticket should not be sent”

to the system‟s question of whether the ticket should be sent or would be picked up at the

airport. This reply would not have been considered non-co-operative if produced in human-

human conversation. However, the reply is unnecessarily complex and cannot be handled by

our interactive speech system. We know that the particular user who caused the problem

was deliberately testing the hypothesis that the system would be unable to handle the input

because she said so in the telephone interview following her interaction with the system.

Interactive speech systems designers have no way of designing dialogues with sufficient

robustness to withstand deliberately non-co-operative users. Nor should interactive speech

systems designers attempt to do so, apart, of course, from ensuring that the system will not

break down and that deliberately non-co-operative users cannot cause any harm. When

successful, deliberately non-co-operative users will fail to get their task done.

SUMMARY ON USER ERRORS

The E1 errors are of only minor importance as they will disappear when the system is

being used in real life. Furthermore, the evidence suggests that E1 errors do not tend to

cause severe dialogue interaction problems. Similarly, E8 errors are of minor importance

because users will stop experimenting with the system when they want the task done. E6b

and E7 can hardly be prevented but, at least according to our test data, they are infrequent

and do not cause severe problems of interaction.

E2 and E3a seem to have a much larger effects on dialogue transaction success.

Although they can hardly be completely avoided, it is likely that their number can be reduced

by clearly making users aware of the importance of paying attention to system feedback and

system questions. Real-life users are likely to be more attentive.

E3b, E4, E5 and E6a are the most challenging error types found in the corpus. They

would all be perfectly acceptable in human-human dialogue. However, because of the limited

dialogue capabilities of our SLDS, it is clearly stated in the system‟s introduction how users

 235

should interact with it in order to prevent these errors. Whereas E3b is less clear, the E4, E5

and E6a errors all violate the system‟s explicit instructions. The important question is why

so many users violate exactly these instructions. A likely explanation is that, at least for

many users, it is not cognitively feasible to follow the system‟s explicit instructions. In an

extreme example: had we asked users to always use exactly four words in their responses to

the system‟s questions, this would clearly have been cognitively infeasible. Similarly, several

of the things which the system‟s introduction asks users to do or avoid doing turn out to be

unrealistic given the dialogue behaviour that is natural to most people. This reveals a

fundamental shortcoming in our initial concept of „user error‟. It is not sufficient to provide

clear and explicit instructions to users on how to interact with the system. It must also be

possible for users, such as they are, to follow these instructions in practice, as stated in co-

operativity problem GP10 in Figure 8.19. The conclusion is that E3b, E4, E5 and E6a are

not user errors at all but rather constitute more or less difficult problems of dialogue

interaction design. A simple revision of our initial definition of „user error‟ provided at the

start of the present section is: a user error is a case in which a user does not behave in

accordance with the full, and cognitively feasible, normative model of the dialogue.

E3b, E4, E5 and E6a are otherwise very different. E3b and E5 result from a mismatch

between generic task type (ordering) and the type of interaction initiative adopted for the

application (system directed domain communication). E4 and E6a belong to a much more

general class of human-machine interaction problems. For years, in fact, experts on human

error in the field of human factors have been aware of the broad category of errors

illustrated by E4 and E6a. The reason why these errors are easy to overlook during design

and until the user and field test data come in, is that, in principle, we can all avoid them. For

instance, we can all easily say „change‟ when we want to correct a system misunderstanding.

During actual task performance, however, whether the task be one of driving a car or

communicating with an interactive speech system, we tend to fall back on our natural skills

and what is inherent to the human cognitive processing architecture, more or less ignoring

rules or instructions that conflict with those skills and that architecture.

8.5 ADEQUACY EVALUATION

Adequacy evaluation aims at testing how well the system conforms to particular

performance measures and meets user needs and expectations. Adequacy evaluation thus

includes objective as well as subjective measures. Examples of performance measures which

are often included in adequacy evaluations of interactive speech systems are real-time

performance and transaction success rate. Adequacy cannot be fully evaluated in a simulated

system. However, although perhaps not fully reliable during simulation, the performance

measures selected to form part of an adequacy evaluation may still provide valuable

information on interaction acceptability and could serve as part of the stop criterion for

WOZ.

Transaction success rate, number and nature of interaction problems, and other

objective performance measures are not sufficient for measuring adequacy, however. A high

transaction success rate does not necessarily guarantee high user satisfaction. User

satisfaction is not necessarily achieved by technically excellent systems and cannot be

sufficiently measured through objective evaluation. Subjective evaluation techniques, such as

 236

questionnaires and interviews, are needed as well. However, it is very difficult to specify in

advance the “scoring levels” that should be attained in those questionnaires and interviews.

No methodology exists for synthesising the results of user evaluations of interactive

speech systems [Fraser 1995]. Nevertheless, questionnaires and interviews can be useful in

identifying weaknesses that have been overlooked or cannot easily be identified through

objective measurements. The difficulties with questionnaires and interviews concern which

questions to ask and how, and how to interpret the answers received. Questionnaires also

tend to be rigid, in particular if the multiple choice technique is being used. If, on the other

hand, questions are too open, the risk is that people do not tell us what we would like to

know. Also, people often do not like to spend time on writing about what they liked and did

not like about the system. This is much easier to communicate in an interview. In interviews,

however, subjects are rarely asked precisely the same questions in precisely the same way.

This makes it even more difficult to compare the users‟ answers. In addition, people tend to

express what they like and what they dislike in rather different ways. In spite of problems in

evaluating questionnaires and interviews such evaluation vehicles are still to be

recommended (cf. Section 5.3.5).

We did not perform an objective adequacy evaluation of our WOZ data. Transaction

success rate was measured in the user test. There is still no standard definition of

„transaction success‟ [Giachin 1996]. In the Danish Dialogue System we defined successes

as reservations carried out according to the scenario specification or according to the user‟s

mistaken interpretation of the scenario. As failures were counted reservations in which the

user failed to obtain what was asked for even if this was due to an error committed by the

user. Based on this definition, the task transaction success in the user test was 86%. Seven

tasks were counted as transaction failures. One of the failures was exclusively caused by a

user who did not listen to the system‟s feedback, and a second transaction failure was

caused by a combination of an interaction design error (SG11) and a user error. The five

remaining transaction failures were caused by interaction design errors, i.e. violations of the

guidelines GG5, SG2, SG4, SG5 and SG11 (cf. Chapter 4). As remarked earlier, it is an

open question whether transaction failures caused exclusively by user errors should count as

failures.

We also considered to use the result of the diagnostic evaluation of number and types

of interaction problems as part of the adequacy evaluation. However, the problem is how to

specify quantitative criteria in advance. It is not obvious how many and which types of

interaction problems could be accepted.

Subjective evaluation was included both in the WOZ experiments and in the user test.

In the last three WOZ iterations as well as in the user test, subjects were asked to fill in a

questionnaire after their interaction with the simulated system. In this questionnaire, users

were first asked about their background, including how familiar they were with the task,

with voice response systems and with systems that understand speech. They were then asked

a number of multiple choice questions on the interactive speech system. For each question

they were asked to tick off one in five boxes on a scale from negative to positive, for

instance „difficult‟ versus „easy‟. Finally, users were asked to provide free-style comments

on whether something ought to be changed in the way in which they had to address the

system, what they liked about the system, and what they did not like.

 237

The multiple choice questions and users‟ responses to them are reflected in Figure

8.31. As the figure also indicates, three new questions were added to the user test

questionnaire: how was the systems‟ speech? what do you think of the language you felt that

you had to use? and was the system fast or slow?

In many cases there is no real difference between the WOZ answers and the user test

answers. This is true with respect to the properties of satisfactoriness, kindness, simplicity of

use, predictability, reliability, desirability, future usefulness and lack of errors, all of which

were evaluated positively in the sense that positive evaluations range from 50% upwards.

The positive evaluation of the number of errors made by the system (few errors) is

encouraging (about 80%). The number of system errors is a quantifiable aspect of

robustness (cf. Section 8.3.4). Positive improvements from WOZ7 to the implemented

system can be seen on acceptability (to 75%), efficiency (to 70%), usefulness now (to 60%),

and ease of task performance (to 80%). There are also improvements in the evaluation of

stimulatingness and preference of the system over a human travel agent but both remain low

(45% and 25%, respectively). The main reasons probably are the rigid interaction structure

and, in particular for the latter percentage, the correct impression that the system has limited

capabilities and cannot cope with non-routine matters. The preference for a human agent is

probably quite common. There is a one-page overview which shows how 19 different

newspapers and magazines have written about the Swiss Prisma Voice system for train

timetable information. Three in six comments on the system‟s particular advantages end by

stating that humans are still better than machines for the task [Hans van der Linde, personal

communication].

 238

0 20 40 60 80 100

User prefers S

Task perf. easy

Correct ion easy

Free user language

S output quality

S few errors

S useful in future

S useful now

Desirable S

Reliable S

Predictable S

Simple S

Stimulating S

Kind S

Flexible S

Efficient S

Fast S

Satisfactory S

Acceptable S

Per cent

User test WOZ7

Figure 8.31. Subjects‟ answers to the questionnaires from WOZ7 and the user

test in per cent of maximum positive score. A score of less than 50 per cent

indicates a negative opinion of the system. „S‟ in the left-hand column refers to

the system.

There are drops in the positive evaluation on two important parameters, namely on

flexibility (to 23%) and ease of making corrections (to 45%). The low evaluation on

flexibility is probably due to the rigid, system directed dialogue structure and the restriction

to keywords for meta-communication. The negative development with respect to ease of

making corrections may be ascribed to the fact that misunderstandings were not simulated in

WOZ7. This meant that hardly any user-initiated meta-communication was required. In the

user test, the simulated recogniser sometimes misunderstood what the user said. In addition,

the use of keywords for making corrections does not form part of the natural human

linguistic skills.

Finally, in view of the fact that the user test used a bionic wizard system, it is no

surprise that subjects did not find the system fast (20%) and thus did not experience real-

time performance. Output quality was rated high (87%). Not surprisingly, in view of the

requirement to use keywords in initiating meta-communication and the inadequate

vocabulary, subjects did not find that they could use free natural language (40%).

 239

Valuable knowledge from a systems design point of view was obtained through the

free-style questionnaire answers. Although most subjects wrote only one or two brief

remarks, a few subjects had bothered to write detailed comments. In these comments, users

would sometimes be quite specific about what had annoyed them during interaction with the

system, providing useful clues to what might be improved. For instance, one user pointed

out that the system should react more quickly when users do not answer. This user would

also have liked the possibility of providing the system with a destination without an airport

and then be informed on the nearest airport.

We also interviewed users on the phone immediately after their interaction with the

system. During WOZ, the purpose only was to ask if they believed the system was real and

to debrief them on the experiment. In the user test, users were asked the following four

questions: How was it to talk to the system? What is your immediate impression of the

system (specific problems/advantages)? Do you think the system was real? Would you be

interested in trying the system with the real recogniser? Like the free-style comments in the

questionnaire, the telephone interviews provided useful information on users‟ opinions of the

system. The opinions expressed in the interviews were in accordance with the multiple

choice answers in the questionnaire but contributed explanations of why the users held those

opinions. For instance, a user would have liked the possibility of indicating an arrival hour

and then getting the departure time from the system. Other users complained about the rigid

dialogue and their difficulties in using the keyword „change‟.

We did not ask the users to assign priority to their critical comments on the system.

However, even if we had done this and modified the system accordingly, there would be no

guarantee that users would then be satisfied with the system. User satisfaction is a

conglomerate of many parameters, objective as well as subjective (cf. Section 8.1), and users

may not even be aware of all the parameters which are important to them.

The adequacy evaluations show reasonable correspondence between the final WOZ

results and the results obtained during the user test. The most important complaint from

users seems to concern the flexibility of the system.

 240

9 NEXT STEPS IN INTERACTIVE SPEECH

SYSTEMS

9.1 INTRODUCTION

The advanced interactive speech systems technologies which we have been discussing

up to this point are more or less at the level of the Danish Dialogue System. It is an

interesting, even if somewhat vague, question how far it will be possible to advance towards

fully natural interactive speech systems on the basis of these technologies. What are the

issues ahead which will require significant changes of approach? In this chapter, we discuss

two such issues. The first issue we have chosen to term the „heterogeneous task‟ which

appears to demand a significant increase in systems‟ language processing skills and in the

theoretical underpinnings of these skills (Section 9.2). The second issue is multimodality. In

the future, spoken human-system interaction no doubt will become much more similar to

natural human-human spoken interaction than is currently the case. However, as long as the

interaction is purely spoken, and hence unimodal, it remains far from the ideal of fully

natural human-human communication presented in Section 1.1. Section 9.3 presents a range

of multimodal systems which actually or potentially incorporate advanced interactive speech

technologies, and discusses ways to develop a systematic understanding of such Advanced

Multimodal Interactive Speech Systems (AMISSs).

9.2 ADVANCED MIXED-INITIATIVE INTERACTIVE SPEECH

SYSTEMS

9.2.1 A POSSIBLE STUMBLING BLOCK: HETEROGENEOUS TASKS

It is difficult to tell exactly how far it will be possible to go in the development of

highly natural but still unimodal, advanced interactive speech systems on the basis of the

technologies discussed in the previous chapters. Based on the evaluation results reported in

Chapter 8, we believe that the Danish Dialogue System could be rather straightforwardly

developed into a commercial application. As it has a relatively large and quite complex task

structure, viable commercial applications could have that as well. Today it would not be

difficult to provide the system with an active vocabulary that matches the required domain

vocabulary of an estimated 1000-1200 words. It is now possible to go considerably higher

than that, depending on the nature of the vocabularies, grammars and parsing strategies

required. For instance, stereotypically adding another 1000 names of train stations to an

application is less of a problem than adding 1000 common words enabling a rather

sophisticated domain communication to take place between user and system.

Larger vocabulary, in combination with a less rigid interaction model, would enable

systems that are otherwise technologically similar to the Danish Dialogue System to handle

less well-structured tasks through mixed-initiative dialogue even if these tasks are relatively

large. If the system‟s active vocabulary allows it to spot that the user jumps to a different but

 241

still task-relevant topic, the flexible interaction model would enable the system to interact on

that topic and return to its own agenda later on, making sure that all the information which

needs to be exchanged with the user actually does get exchanged. Systems of this kind could

afford to ask questions that are considerably more open than those asked by the Danish

Dialogue System.

Furthermore, although this will not be straightforward to do, we believe it to be

possible to replace the single-word-command, user-initiated meta-communication in the

Danish Dialogue System with a more natural interaction in which the user can use the

standard phrases of the language of the interaction to initiate repair. User-initiated

clarification meta-communication would remain a difficult problem, though (see Sections

4.2 and 8.3). The style of the interaction would still be terse and the users‟ language would

have to be influenced by the system to ensure acceptable speech recognition and “robust

parsing”, even though we believe that the speech recognition and parsing abilities of the

Danish Dialogue System could be considerably improved using available technologies.

Prosody would still be a problem. Conceivably, the need for input prosody interpretation

grows with (non-stereotypical) vocabulary size and interaction model flexibility as well as

with the introduction of speech act identification as discussed below. Important advances are

currently being made in prosody for speech synthesis as well as in prosody interpretation for

semantic disambiguation in language understanding. In Verbmobil, recent demonstrations

have shown the exploitation of stress and pauses for semantic disambiguation.

Summarising, unimodal speaker-independent, continuous speech interactive speech

systems technologies are well underway to being able to handle a broad variety of tasks in a

reasonably natural way. Tasks may be quite large, and may be well-structured or ill-

structured. Mixed initiative interaction, as such, is not an insurmountable barrier. As we

have seen, even the Danish Dialogue System carries out mixed-initiative interaction, being

system directed in its domain communication but allowing user-initiated meta-

communication. We have also argued that large ill-structured tasks require mixed-initiative

dialogue (Section 2.4.2). If the task is „homogenous‟ in some sense to be explained below,

even if it is relatively large and complex, and no matter whether it is well-structured or ill-

structured, a flexible interaction model and a medium-size active vocabulary would enable

the system to handle the task through mixed-initiative domain communication. A medium-

vocabulary complex information system, for instance, can assume that whatever the user is

now contributing to the interaction, that contribution is either a request for information or

an initiation of repair meta-communication. The system might even be able to reason that, if

the user wants to know about X, the user would probably want to know about Y as well,

and might therefore ask the user whether that is the case, thus conducting natural mixed-

initiative interaction in the domain.

Several exploratory interactive speech systems projects have demonstrated mixed

initiative domain communication for small, ill-structured homogenous tasks [Kanazawa et

al. 1994, Smith 1991]. The Sundial system demonstrated the problems involved in carrying

out unrestricted mixed-initiative dialogue for large, ill-structured homogenous tasks, one

such problem being that users would tend to produce lengthy and verbose utterances at the

start of the interaction [Peckham 1993]. The Philips train-timetable inquiry system has

achieved mixed-initiative dialogue for a well-structured homogenous task that is slightly

smaller than Sundial‟s. Whereas the Sundial dialogues began with a completely open system

 242

question, such as “How may I help you?”, the Philips system opens with a brief introduction

followed by a focused question, i.e. “From where to where would you like to go?”. The

focused nature of the opening question gives the Philips system much more control of the

interaction from the start than was the case in Sundial. And having a much larger active

vocabulary than the Danish Dialogue System, the Philips system is able to not only accept

partial answers to its opening question but also to accept larger information packages than is

asked for as well as information which is simply different from that asked for. If the user

provides information on date or time in response to its opening question, the system will

accept this information and ask for the route information again (see Section 1.3.2).

In this section, we discuss what happens if the task is not „homogenous‟, that is, if the

task is not simply an ordering task, or an information task, or a task in which the user

controls a system through speech, such as an email system being controlled over the phone,

nor is the task an external combination of several such tasks. Rather, the task is inherently a

combination of several different tasks. Strictly speaking, as we have seen (Section 8.2), even

the flight ticket reservation task is not homogenous in this sense but is heterogeneous: flight

ticket reservation, like all or most other ordering tasks, is informed reservation (or

ordering). To make a rational decision during reservation, the user sometimes needs

information, such as on the flights that are available on a certain morning. User requests for

information during a reservation task in which it is mainly the system which asks the

questions, clearly requires mixed initiative interaction. Even then, it may be possible in

practice to do without mixed initiative interaction. The Danish Dialogue System is purely

system directed in its domain communication. In the user test, users sometimes needed

information from the system. It appears that several users found ways around the problem

that they could not ask questions, because the test only produced four user questions

(Section 8.2). The users probably managed to do so because the flight ticket reservation task

is only weakly heterogeneous, that is, users typically do not need large amounts of

information from the system in order to make their decisions. Moreover, when they do

require additional information, this happens at specific points during the interaction rather

than anywhere. Typically, users needed precise hours of departure. Instead of asking

questions to obtain these, they answered in terms of qualitative time expressions, such as “in

the morning” or “around noon”. Based on the admittedly limited evidence from the user test,

the Danish Dialogue System may perhaps be assumed to work acceptably in practice in its

domain even if it does not really cater for the fact that reservation is informed reservation.

However, the Danish Dialogue System may work in practice despite the fact that it is

not appropriate to the heterogeneous nature of the task and cannot handle heterogeneity

through natural interaction. However, suppose that the ordering task is a different one, i.e.

not flight ticket reservation but one for which users regularly need significant amounts of

information of a somewhat diverse nature in order to make their decisions. An example

could be the purchase of shoes and clothes through advanced spoken interaction. System

directed domain communication would probably be insufficient for such strongly

heterogeneous tasks. Mixed-initiative systems for homogeneous tasks as described above

would not work either, however. As argued, a fundamental reason why these systems

actually do work is that they can assume that the user always wants to, e.g., make either a

reservation commitment or initiate meta-communication. In informed reservation, the user

may intend to do either of those things or to be informed. So if the user says, for instance

 243

“Are there any late morning flights?” the system must not interpret this utterance as a

commitment to making a reservation on a late morning flight. For that matter, the user might

eventually decide to fly out in the evening of the previous day. Rather, the system should

understand the utterance as a different speech act from the speech act of making a

commitment to book a late morning flight, namely, as a speech act which requests

information.

It would thus appear that, to be natural, and sometimes to be possible at all, mixed-

initiative interaction for heterogeneous tasks requires the system to be able to distinguish

among different speech acts when processing the users' input. As argued above, a large class

of future, advanced interactive speech applications will not need the ability to process

different user speech acts. It is quite possible, on the other hand, that another large class of

possible future applications will need that ability, namely those systems which must handle

heterogeneous tasks. The question then becomes: what does it take to handle heterogeneous

tasks? Why do heterogeneous tasks appear to be, in principle, more difficult to handle by

machine than homogeneous tasks?

The handling by machine of heterogeneous tasks seems to raise at least four additional

difficulties. The first difficulty concerns the extent to which the system must be able to

understand users‟ speech acts. Once a system has to distinguish between user speech acts,

where is the stop condition? Does it have to distinguish between speech acts more or less in

general or are simpler solutions possible and, if so, why and how?

The second difficulty is that the system must do considerably more advanced

linguistic processing than a system handling a comparable homogeneous task. Word

spotting or simple phrase-spotting is not enough. These techniques will not capture the

difference between A and B in Figure 9.1.

A: S: When would you like to leave?

 U: On Saturday at 8:15 AM.

B: S: When would you like to leave?

 U: Is there a flight on Saturday at 8:15 AM?

Figure 9.1. A user commitment and a user request for information, respectively.

In (A), the user makes a commitment to depart on Saturday at 8:15 AM provided that

there is a flight and it is not fully booked. In B, the user makes no commitment to depart on

Saturday at 8:15 AM but merely inquires about flight availability. To detect the difference

between (A) and (B), the system must at least capture the fact that the user‟s utterance in

(B) is a question, not a statement, as far as its surface language is concerned.

The third difficulty may be illustrated as follows. Suppose that the system must

handle, in addition to meta-communication, the heterogeneous tasks HT1 and HT2. HT1

may be a reservation task and HT2 may be an information task. As argued earlier, speech act

identification by machine is difficult, primarily because speech acts can be indirect as well as

direct (Section 2.4.3). In principle, therefore, users may shift from HT1 to HT2 without this

being detectable in the surface language they use. In such cases, sufficient grammar and

 244

vocabulary will obviously not be enough. To discover such speech act ambiguities, the

system must first understand that the user‟s utterance is, for instance, a question as far as its

surface language is concerned. Secondly, the system must somehow realise that the user‟s

utterance is a case of speech act ambiguity and that it actually may be a reservation

commitment. Having detected that, the system would probably ask the user a clarification

question. We would like to have indications of how common are speech act ambiguities

before putting the search for such sophisticated technical solutions in motion.

The fourth difficulty is the question of how sophisticated the system‟s increased

linguistic processing skills need to be. What, exactly, is entailed by a system‟s having to spot

surface language differences indicating differences between, for instance, questions and

statements, and what does it take to identify speech act ambiguity, if necessary? To

understand this difficulty, let us expand on the presentation of Speech Acts Theory in

Section 2.4.3. Searle [1969] characterises speech acts in terms of four different types of

felicity conditions, as illustrated in Figure 9.2.

Felicity conditions Request Promise

Preparatory conditions

describe the necessary background

situation, especially between the

speakers, which must exist for the

appearance of the speech act.

H is able to perform

A. S believes H is

able to do A.

S is able to perform

A. H wants S to

perform A.

Sincerity condition

is the psychological state of the

speaker.

S wants H to do A. S intends to do A.

Propositional content condition

concerns the textual reference and

predication of the speech act.

S predicates a

future act A of H.

S predicates a

future act A of S.

Essential condition

expresses the “point” of the act, i.e.,

what the utterance “counts as”.

Counts as an

attempt by S to get

H to do A.

Counts as the

undertaking by S of

an obligation to do

A.

Figure 9.2. Felicity conditions of a directive (request) and a commissive

(promise). S is speaker, H is hearer, and A is action. Note that lists of felicity

conditions are not exhaustive. For instance, an additional preparatory condition

for the request could be that it is not obvious to both S and H that H will do A

of his own accord in the normal course of events [Schiffrin 1994].

Systems for heterogeneous tasks, one of which is an information task, will have to

interpret requests for information which belong to a sub-type of the request speech act

shown in Figure 9.2. What the table suggests is that requests for information can be asked in

many different ways when the felicity conditions are taken into account. The user may not

simply say, as in (B) above “Is there a flight on Saturday at 8:15 AM?”, but also “I would

like you to tell me if there is a flight on Saturday at 8:15 AM?” (cf. the sincerity condition),

or “Could you tell me if there is a flight on Saturday at 8:15 AM?” (cf. one of the

 245

preparatory conditions). Will the system need to understand and distinguish between all

these different expressions of the same question or are these differences immaterial?

In view of the above, it is perhaps not surprising that the attempts which have so far

been made to make interactive speech systems able to distinguish among speech acts more

or less in general, as in, for instance, the Esprit PLUS project, would seem to have failed

through inadequate rule maintenance [Grau et al. 1994]. One possibility worth exploring is

whether a large class of mixed-initiative interactive speech systems for heterogeneous tasks

can manage with much less than that. In the following section, we present early results on

interactive speech systems for heterogeneous tasks, based on explorations of how to extend

the Danish Dialogue System to deal with informed reservation, see also [Papazachariou et

al. 1995].

9.2.2 SIMULATING HETEROGENEOUS TASKS

As argued in Section 2.3, context may be viewed as a collection of all the elements of

interactive speech theory, each of which may be analysed with respect to its specific

contribution to spoken user-system interaction. Exploitation of context is essential in

interactive speech systems development for large tasks because such systems are feasible

only on the basis of a high degree of control of the environment in which the interaction

between user and system takes place. The single most important contextual element is the

task which imposes strong constraints on most other properties of the system, as illustrated

in Figure 9.3.

LARGE

WELL-STRUCTURED

TASK

T
E

C
H

N
O

L
O

G
IC

A
L

C
O

N
S

T
R

A
IN

T
S

U
S

A
B

IL
IT

Y

C
O

N
S

T
R

A
IN

T
S

Satisfy Satisfy

CONTEXTUAL CONSTRAINTS ON SYSTEM

• Restricted domain

• Sub-language, in part icular semantics

• Fixed amount of information to be exchanged

• Fixed sub-task order

• Reduced focus

• Dialogue end def inition (task record)

• System initiat ive

• Use of non-open questions

• Roles of system and user

• User model

• Asymmetrical user-system cooperativity

Generates

Figure 9.3. The well-structured task context of the Danish Dialogue System

generates constraints that may be exploited in system development, thereby

helping to satisfy both technological constraints and usability constraints.

 246

The problem of extending the Danish Dialogue System to deal with informed reservation
may be viewed as the question of how to exploit a specific heterogeneous task context. To
prepare the study, we tried to find a suitable corpus, preferably within the ATIS (air travel
information systems) domain. It appears, however, that publicly available and technologically
realistic, simulated human-machine mixed-initiative corpora are hard to find. We considered
two mixed-initiative corpora which, however, turned out to be inappropriate for our
purposes.

The American Express corpus is a corpus of spoken human-human dialogues between

customers and a travel agent from the American Express Card [Sidner 1992]. The topics of

the dialogues are reservations, information, help to customers in planning their journeys,

cancellations, and changes of specific reservations. However, as the spoken interactions are

conducted freely between humans, they exhibit none of the limitations and constraints which

are the constant focus of attention in human-machine interaction model development. The

American Express dialogues are far beyond what can be realised by today's machines.

The TRAINS corpus is a simulated human-machine corpus [Gross et al. 1993]. It is a

collection of 91 planning dialogues (only 16 of which were available via ftp at the time)

between a human and a system simulated by a human. The human is a manager whose task it

is to construct a plan for the delivery of goods by railway through help from the system. The

manager knows only the final goal of a certain delivery and has to obtain all the necessary

information from the system in order to successfully plan the necessary stages of delivery.

The system is able to provide the necessary information related to the freight problem. It can

check the feasibility of the manager‟s plan but cannot propose any solution. The human who

simulated the system maintained all its functional limitations, but his/her linguistic behaviour

was completely human and could not be realised in an implemented system.

We therefore decided to collect a mixed-initiative corpus ourselves by simulating an

extension of the Danish Dialogue System, which would allow user initiative to the extent

needed by the informed reservation task. Users could take the initiative and ask for

information whenever they needed to do so. In such cases, the system would act as the

domain expert who has the necessary information on domestic flights, such as departures,

arrivals, flight numbers and fares. The corpus was very small, typically including 2-4

dialogues per iteration and 13 dialogues in total, all of which were transcribed. Five subjects,

colleagues all, participated in the simulations. The subjects knew that the system was

simulated and who acted as wizard. Only two different scenarios were used throughout the

experiments. Four subjects performed both scenarios once. The fifth subject who was one of

the developers performed one scenario twice an the other scenario three times. The

scenarios forced users to ask questions in order to find the optimum solution for the

successful completion of their task (Figure 9.4). The simulations focused on domain

communication with no particular emphasis on simulation of meta-communication. The

wizard would follow an interaction model consisting in a set of behavioural rules (cf. Section

5.4) and a graphically presented network of speech acts. Each speech act was accompanied

by a list of typical instances of use for the purpose of informed reservation. An assistant

would operate the tape recorder, listen to the spoken interaction, and fill in a reservation

task template according to the commitments made by the subject. The filled template was

designed to be read aloud as summarising feedback. The scenarios are shown in Figure 9.4.

 247

1. You have to travel from Copenhagen to Aarhus for the weekend. The earliest you can

leave is Friday night, but you prefer to pass Friday night with your friends. On the other

hand, you have to be in central Aarhus at 9:50 AM on Saturday at the latest. Try to

make a reservation which will allow you to manage both plans.

2. You have to be in Aarhus before noon on Saturday. You prefer to leave on Friday night,

but there would be no problem travelling on Saturday morning if only you can be in

Aarhus before noon. You prefer to have a cheap ticket, if possible. You are thinking of

returning on Sunday evening, not very late. Try to make a reservation that will satisfy

all your priorities.

Figure 9.4. The two scenarios used in the informed reservation WOZ

experiments with the Danish Dialogue System‟s reservation task.

During the experiments, changes were made to the system‟s language and behaviour in
order to better control the users‟ language and the topics introduced by them. In the first
iteration, more initiative was left to the user than would be possible in an implemented
system. The opening system phrase invited the user to take the initiative and the wizard
would understand even very long user utterances. Having examined the first spoken
interactions, we realised that we had to impose additional constraints on the simulated
system. In its introduction to the interaction, the system would inform the users of its
inability to understand lengthy utterances but without defining more exactly what that meant.
What it actually did mean was that the wizard would not understand utterances which
addressed more than one sub-task and more than two topics. If the user did not adhere to
these restrictions, the system would fail to understand them or only understand the first part
of what they said. In the last experiment, for instance, the system would not understand the
final part of the user utterance in Figure 9.5, which addresses more than one sub-task.

S: Please state your business.

U: I'd like to make a reservation for a flight to Aarhus, for this weekend.

Figure 9.5. A user utterance addressing more than one sub-task.

To promote terse user language, the system would, perhaps not very politely, initiate

the domain communication phase of the interaction by saying "Please state your business".

The idea which eventually promised feasibility of implementation, was the following: at
a general level, it is assumed that the user‟s task goal is to make a reservation rather than
using the system as a general-purpose inquiry system. This allowed us to maintain the
stereotypical structure of the reservation task as a „backbone‟ for interaction design. The
task context would continue to strongly constrain the interaction behaviour of co-operative
users. These may be expected to follow the overall system directed course of the interaction
and to take over the initiative only when they need information from the system in order to
be able to proceed in making the commitments needed for reservation. The users‟ requests
for information can be expected to primarily concern sub-tasks which are closely associated
with the question in current system focus. Users would not normally ask, for instance, about
departure times when the system is addressing the travel destination. In other words, the
system will not need to be able to handle arbitrary requests for information at arbitrary points

 248

during interaction. This puts a limit to the uncontrolled growth in the focus set that would
otherwise have been necessary. Obviously, the idea just described would require further
testing before considering implementation.

Moreover, for some sub-tasks, such as number and names of travellers, or points of

departure and destination, we would expect no questions at all. For instance, users must be

expected to know who is going to travel without having to ask the system - which would

not be able to help anyway. The nature of the task thus imposes constraints on the number

of sub-tasks for which it may be relevant for users to ask for information. The following are

examples of such sub-tasks: users often do not know the precise departure and arrival times

and must be informed on these; users may want to know about reduced-fare departures

before committing to a specific departure time or even departure date; or the departure date

may depend on the available departure times. In fact, three of the four user questions asked

in the user test of the Danish Dialogue System concerned available departure times. An

example is shown in Figure 9.6.

Figure 9.6. Excerpt from dialogue T12a in the user test of the Danish Dialogue

System.

When users have part of the initiative during interaction, the length of their utterances can
be expected to grow compared to system directed interaction in which elliptical or otherwise
brief user answers are typical. Terse system language, interaction which was mainly system
directed and which proceeded through non-open questions which do not offer the initiative
to the users, and the system‟s introduction which would instruct users to only ask one
question at a time, jointly appeared to ensure limited and manageable growth in user
utterance length.

The above assumptions imply that, compared to the Danish Dialogue System, the revised

system would need limited extensions of (i) system focus and (ii) average user utterance

length. As argued in Section 9.2.1, (i) is not a major technical difficulty any more, and (ii)

does not seem to pose any serious technical difficulties. The need for (only) limited

extensions of (i) and (ii) was not contradicted by the simulations.

Let us now see what happened to the core issues of speech acts and heterogeneous tasks

in advanced mixed initiative user-system domain interaction (Section 9.2.1). Our hypothesis

was that most, if not all, task-oriented advanced interactive speech systems which need to

distinguish among speech acts to perform heterogeneous tasks, do not need the ability to

distinguish among speech acts in general. This ability will probably be needed in truly

conversational systems, such as Verbmobil. Rather, task-oriented advanced interactive

speech systems need to be able to distinguish among a small number of speech acts only. In

particular, in the informed reservation task context, only two different basic types of domain

speech act are relevant and must be distinguished by the system, namely, reservation

commitments and requests for information (ignoring meta-communication for the sake of the

following argument).

This hypothesis was confirmed in the WOZ simulations. In the terms of Speech Act
Theory, we found only two basic categories of speech act in human-machine domain

S3-24b: At which time?

U3-24a: Which possibilities are there?

 249

communication, namely directives and commissives (see Section 2.4.3). Although several
utterances appeared to express speech acts that do not belong in any of those two
categories, the indirect speech acts expressed in context turned out to be either directives or
commissives. For example, the corpus contained the surface expressive shown in Figure 9.7.

Figure 9.7. Surface expressive from the mixed-initiative corpus.

Although this utterance is a surface expressive speech act, in the specific context of
informed reservation it can only act as an indirect request for information (i.e. a directive). In
other situations, such as in communication with friends none of whom is an expert in the
field, and when the purpose of communication is not time-table inquiry but social
conversation, the same utterance could hardly act as a request for information. It would
remain an expressive speech act. Our small corpus did not contain any indirect expressives,
commissives or declaratives.

The system must have the linguistic capabilities to distinguish between the user‟s

commissives (or reservation commitments, cf. Figure 9.2) and directives (or requests for

information, cf. Figure 9.2), and to detect the shift in initiative which occurs when the user

requests domain information instead of simply answering the system‟s questions. Two

general cases may be distinguished.

In the first general case, the contents of a user utterance cannot be used to fill a slot in

the reservation record, either because the utterance provides no information that is relevant

to this purpose, as in “Which possibilities are there?”, or because the information provided is

only partial and hence cannot fill a slot in the record, as in “Which departures are there on

Saturday morning?”. In such cases, the system should treat the user utterance as a request

for information no matter whether it is phrased as a question or not. This rule incidentally

solves the problem that some requests for information may be hard to detect because their

status as questions is mainly expressed through intonation. An example from our

experiments is shown in Figure 9.8.

Figure 9.8. A request for information mainly expressed through intonation.

The system, therefore, should respond in the same way in the two cases shown in

Figure 9.9.

U: I would ehm I would like to know which flights there are eh on Friday evening,

tonight.

U And on Saturday morning before 12?

 250

Figure 9.9. Two different user answers requiring the same system response.

Correct interpretation of utterances such as the above does not require any significant

improvements in linguistic skills compared to those of the Danish Dialogue System.

In the second general case, the user‟s utterance does provide information that could

fill a slot in the reservation record. In this case there are two possibilities. The default

possibility is that the utterance fills a slot in the reservation record (Figure 9.10).

Figure 9.10. User information which may fill a slot in a reservation record.

However, the utterance might request information instead, as shown in Figure 9.11.

Figure 9.11. User answer requesting information.

In such cases, identification of the user‟s intended action is essential to the successful
completion of the reservation task. We analysed the corpus to identify the varieties of
expression of the two different speech acts involved. Users made their requests for
information in the four different ways shown in Figure 9.12.

a) Direct polar (yes/no) questions. Is there another flight after that, before

noon?

b) Direct WH questions. When is the earliest flight?

c) Questions that refer to the ability of

the system to provide information.

Could you tell me when is the last flight

on Friday night?

d) Intonation questions. And on Saturday morning before 12?

Figure 9.12. Four different ways of making requests for information.

The differences between (a) - (d) can be expressed in terms of the felicity conditions of
the speech acts performed, i.e. the preconditions which are responsible for characterising a
speech act as a request for information (Figure 9.2). The direct polar and WH questions (a)
and (b) are conventional (elliptical) ways of expressing the essential condition of requests for

S: When would you like to leave?

U: Which flights are there on Friday night?

S: On Friday night there is a flight at 19:30 and another one at 21:30. Would you like

one of these?

S‘: When would you like to leave?

U‘: On Friday night.

S‘: On Friday night there is a flight at 19:30 and another one at 21:30. Would you like

one of these?

S: When would you like to leave?

U: On Saturday at 8:15.

S: When would you like to leave?

U: Is there a flight at 7.15 AM?

 251

information. They are the most typical and simple cases of information requests, and, when
performed by users in the given context, can only be requests for information. In the same
category belongs the intonation question (d). The question about the ability of the system to
provide some piece of information (c) refers to one of the preparatory conditions, i.e. that
the hearer (the system) is able to provide the information, which is related to the expert role
of the system. (c) is an indirect speech act. It indirectly expresses a request for information
through reference to the system‟s abilities.

Searle [1975] argues that the speaker can make an indirect directive (requests for
information are directives) by stating either the preparatory conditions that refer to the ability
of the hearer, the sincerity condition, the propositional content condition or the essential
condition. In our small corpus we only found examples of some of Searle's categories.
Successful completion of part of the reservation task was achieved using the three types of
(user) expression shown in Figure 9.13:

a) Surface statements. S: Where are you going?

U: To Aarhus.

b) Surface questions about the ability of

the speaker to book a flight with specific

characteristics.

U: Could I have the Saturday morning

flight, at 9:20?

c) Surface questions about the ability of

the system to make a particular

reservation.

U: Can you give me an earlier flight,

between midnight and 9:00?

Figure 9.13. Three different ways of expressing reservation information.

User statements of type (a) are the typical (elliptical) expressions of simple answers.
The other two types of user expression (b) and (c) refer to felicity conditions of reservation
commitments. The question about the ability of the speaker to book a flight with specific
characteristics (b) refers to one of the preparatory conditions of the reservation commitment,
and the question about the ability of the system to make a particular reservation (c) refers to
another preparatory condition of the reservation commitment.

Comparing the above direct and indirect speech acts for reservation and information,

respectively, it appears that none of the reservation utterances refers to the felicity

conditions of the requests for information, and vice versa. In other words, there is some

evidence that speech act ambiguity is a rare phenomenon, at least for the informed

reservation task. This suggests that the system will be able to determine and distinguish the

speech acts produced by users in this type of interaction, from the semantics of their

utterances alone. If true, this means that the system can use the semantics of the users‟

utterances to identify the cases in which it has to provide information. When the semantics

do not refer to the felicity conditions of requests for information, and if the utterance makes

it possible to fill a slot in the reservation record, the system may safely accept the utterance

as a reservation commitment. In this situation, there will be no problem in identifying the

utterance in Figure 9.14 as a reservation commitment rather than a request for information.

Figure 9.14. A reservation commitment from the mixed initiative corpus.

U Could I have the Saturday morning flight at 9:20?

 252

To summarise, if the system can recognise that the meaning of an utterance refers to

either:

 one of the preparatory conditions concerning the ability of the system/expert to

provide the information;

 the sincerity condition of requests for information;

 the propositional content condition of requests for information; or

 the essential condition of requests for information -

then the system can safely identify the utterance as a request for information.

9.2.3 CONCLUSION

The following conclusions concerning the four difficulties described in Section 9.2.2 are

of course tentative and should be tested on larger corpora from several different spoken

human-machine interactions concerned with heterogeneous tasks.

The first conclusion is that heterogeneous tasks only require the system to identify and

distinguish between a small number of speech acts.

The second conclusion is that the system, in order to distinguish between speech acts at

all, must do considerably more linguistic processing than standard word spotting or phrase

spotting of parameters relevant to database lookups and the like. Simply expressed,

database lookups only require the system to capture the propositional contents of

utterances. But since the propositional contents can be identical across the different speech

acts between which the system must be able to distinguish, the system must capture more

than the propositional contents of utterances.

The third conclusion is that speech act ambiguity does not appear to be an important

problem. It probably can be ignored by developers of advanced interactive speech systems

for heterogeneous tasks.

The fourth conclusion is that, yes, the system must be able to understand felicity

condition references in order to identify speech acts.

A final problem is that, if non-keyword-based meta-communication is allowed as was the
case in the experiments described above, then the system can no longer simply interpret
every speech act which requests information as expressing a request for information at
domain level. However, it seems clear that, in any case, non-keyword-based, user initiated
meta-communication will require more sophisticated language processing of the system.

9.3 INTELLIGENT MULTIMODAL SYSTEMS USING

ADVANCED INTERACTIVE SPEECH

9.3.1 AMISSS DEFINED

As argued in Section 1.1, advanced interactive speech systems represent a step

towards natural human-computer communication as measured by the ideal standard of the

human-human face-to-face communication paradigm. Advanced mixed initiative systems for

heterogeneous tasks would constitute another step in that direction. Systems which were

 253

able to make natural use of prosody in speech input understanding and speech output

generation would represent yet another important step towards natural interactive speech

systems. These systems are all unimodal interactive speech systems which use nothing but

speech to enable users accomplish their tasks in increasingly natural spoken communication

with the system. Natural human-human communication is not unimodal, however, it is

massively multimodal. Lip movement, facial expression, bodily posture, and gesture towards

visible objects and other visually accessible information are all key ingredients for

representing information in human-human communication. Moreover, humans combine

these modalities with speech when they communicate, effortlessly generating messages in

several modalities simultaneously, such as when speaking about an object and selectively

pointing to its features, and effortlessly understanding such combined messages as well,

using lip movements and facial expression as additional cues in the understanding process.

Such multimodal systems incorporating speech as one of their modalities are becoming an

important research topic.

This section briefly addresses the emerging field of multimodal systems which

incorporate speaker independent, continuous speech understanding and/or speech

generation. We term these systems „Advanced Multimodal Interactive Speech Systems‟, or

AMISSs for short. Such systems are by definition „intelligent‟ whichever other modalities

are used in addition to the speech modalities. Although AMISSs point the way towards the

fully natural human-computer communication interface, AMISSs are not necessarily “next

steps” in terms of the technologies involved. In many cases, and probably in the first

AMISSs to become commercially available, their most advanced system components are the

advanced interactive speech components. The additional components typically derive from

the Graphical User Interface (GUI) paradigm. More advanced AMISSs include emerging

technologies, such as animated speaking faces, input lip movement interpretation, input

gesture interpretation, output gesture animation, advanced haptic input devices and 3D

graphics output.

In addition to offering increased naturalness of human-machine communication as

compared to unimodal interactive speech systems, AMISSs promise two additional practical

advances. First, AMISSs may augment the capabilities of computer systems viewed as task-

oriented tools, enabling the machine to accomplish more types of task than could have been

done using speech alone. The important factors involved are increased expressiveness and

increased intelligence through speech or otherwise. By itself, each modality for representing

information has limited expressiveness (Section 3.5). In combination, modalities allow the

accomplishment of interactive tasks that would not have been possible otherwise. Speech,

for instance, is not always appropriate for communicating large amounts of detailed factual

information in one turn. Users become inattentive and don‟t get the details right (cf. Figure

4.26). Static output graphics, on the other hand, is eminently suited for this purpose, as

argued in Section 3.5. In combination, speech input/output and static output graphics may

serve many tasks which either could not have been done, or could not have been done as

well, by each modality taken in isolation. Adding advanced interactive speech to the World

Wide Web with its rapidly growing output graphics capabilities, for instance, holds great

promise. In this way, multimodality helps alleviate the painstakingly slow progress towards

more intelligent computer systems. Still, increased system intelligence is another promise

held by AMISSs. It is increased system intelligence when an AMISS permits the user to

 254

synchronously input, for instance, a gesture delimiting an area in the graphical output

domain and speak a query for car rental companies in that area. In addition, AMISSs may

help the partner in communication, whether human or machine, to more easily decode the

information being communicated, for instance when the system‟s output speech is being

accompanied by a synchronised graphic “talking face”.

Section 9.3.2 provides an admittedly partial and incomplete perspective on AMISSs.

We discuss in turn AMISSs that include co-ordinated speech and analogue graphics, speech

and facial expression; speech and gesture; speech, typed text and analogue graphics; and

combinations of speech, analogue graphics, tables and facial expression. Section 9.3.3

presents early ideas on how to theoretically address the issue of AMISS functionality.

9.3.2 A PERSPECTIVE ON AMISS STATE OF THE ART

The following presents a structured view of AMISSs [cf. the surveys in Maybury

1993, Cole et al. 1996, Chap. 9, Oviatt and Wahlster 1997]. Currently, the sky is the limit

for the development of AMISSs. Existing research systems only manage to scratch the

surface of an immense and uncharted space of possibilities , and we are far from having a

systematic grasp of the functionality of multimodal systems (cf. on speech functionality in

Section 3.5). Several research systems in progress might have included spoken input and/or

spoken output but actually use typed natural language instead. These systems are outside the

scope of the present book but are mentioned to illustrate the potential scope of AMISSs

technologies. From a generic point of view, AMISSs are of at least two very different types:

systems which perform “conversion” between modalities and systems which exploit the

complementarity and possibly also the redundancy between different modalities.

Modality “conversion” systems take information represented in one modality (or

potentially in several modalities) and converts the information for expression in a different

modality (or potentially in several different modalities). Examples are systems which

simultaneously generate text based on visual scene/event/process understanding, such as

traffic scenes or soccer games [Wahlster 1989], and systems which create animations from

text [Badler et al. 1993, Yamada et al. 1992]. Although clearly multimodal in some sense,

modality “conversion” systems need not be interactive speech systems at all. Their basic

function is to perform transformations among modalities, and speech may be one of these.

Apart from that, they may be operated interactively using any number of different

input/output modalities. Such systems, although highly interesting from several points of

view, are not AMISSs proper and we shall disregard them in the remainder of this chapter.

Many modality “conversion” systems lack one of the distinctive advantages of

multimodality, namely, interactive task-sharing among modalities. Interactive task-sharing

among different modalities takes place when, for instance, modalities complement each other

to jointly profit from their respective expressive strengths, or when modalities are partially

redundant, which increases the likelihood that the message, being redundantly expressed in

different modalities, will be understood by the recipient. Humans are very good at

integrating complementary sensory inputs and exploiting the redundancy these might have.

Current machines are much less adept at fusioning the semantics of several different streams

of input information into one coherent message, and have corresponding difficulties in

 255

exploiting redundancy [Martin 1997]. Still, a number of systems in progress seek to exploit

these basic advantages of multimodality.

Intelligent multimedia presentation systems. The first type of system to be mentioned

currently uses typed natural language rather than speech. Intelligent multimedia presentation

systems generate co-ordinated multimodal presentations to user requests on the fly [Rist et

al., to appear]. They currently do so in instructional domains, such as providing support for

portable radio operation and maintenance [Feiner and McKeown 1993], or providing

instructions to users on how to operate expresso machines and lawn mowers, or perform

modem installation [Wahlster et al. 1993]. These systems output 3D (2 1/2D) analogue

graphics and animation (images and compositional diagrams) co-ordinated with (and

complementary to) static text. No intelligent multimedia presentation systems using

interactive speech appear to have been developed so far but this is an obvious research

challenge.

Speech and facial expression. Whether acting as input or output, a speaking face is an

image containing a series of complementary and redundant information channels that are

relevant to the decoding of the information communicated by the speaker. This leads to the

idea of AMISSs which (a) combine a microphone and a camera to enable the machine to

receive facial expression information in combination with spoken input, and/or (b) combine

an animated graphical face with speech output to facilitate the comprehension of synthetic

speech. Both combinations form natural parts of human-human conversation which becomes

artificially curtailed if speech alone is being used for input or output. Current systems work

investigates synchronous multimodal redundancy to aid the understanding of messages in

noisy environments or otherwise [Goldschen 1996, Benoit et al. 1996]. On the input side,

current systems work focuses on automatic lip reading while still ignoring most other facial

cues. On the output side, current systems work is moving beyond 3D lip movement

emulation [Guiard-Marigny et al. 1994] towards whole-face emulation adapted to speech

control [Cohen and Massaro 1990, 1993]. The combination of speech and facial expression

understanding and/or generation can be viewed as an approximation to natural human-

human face-to-face communication, which in principle can be added to any task-oriented

system featuring an input camera and/or an output graphical screen in addition to interactive

speech processing (cf. the Waxholm system below).

Speech and gesture. Another active field of research which addresses the emulation of

natural human-human face-to-face conversation is the combination of speech and gesture.

Speech and gesture can be combined in several different ways.

Spatial manipulation. One combination is the integration of speech and gesture as

complementary input using standard pointing devices, touch screens or data gloves for

gesture. Gesture is here understood as spatial manipulation in the “put that there”-paradigm

[Bolt 1980, Hauptmann and McAvinney 1993]. The user indicates a location of interest in

the graphical output domain through pointing gesture and tells the system what to do

through speech, such as moving an indicated object to an indicated location.

Non-spatial manipulation. A slightly different, non-spatial manipulation type of

natural pointing gesture is used to, e.g., indicate a point or area of interest, or point out a

route on a map as graphically displayed in the output domain. When combined with spoken

input for complementarity, this allows users to ask questions of, or provide input to, the

 256

system, such as asking about service facilities in the area indicated on a map [Guyomard et

al. 1995]. The AMISS that is being developed in the comprehensive MIT GALAXY project

[Goddeau et al. 1994] takes large-vocabulary multilingual speech, typed text and mouse

pointer events as input and outputs analogue graphics, typed text and multilingual

synthesised speech. GALAXY provides information in near-real-time on air travel, local city

navigation and weather using on-line information sources and services, such as airline

schedules, yellow pages, metropolitan maps and weather forecasts. By 1994, the travel

domain part of the system had been completed. More recently, it has become possible to

synchronously combine complementary input speech and mouse pointer events into a

graphical map in the output domain, so that users can query specific locations on the map

(Seneff, personal communication).

Discourse gesture. In addition to the forms of gesture discussed above, there is a class

of natural discourse gesture which provides “language-like” information complementary to

that provided by speech, and from which, presumably, the sign languages for the deaf have

arisen. As in the cases of facial expression and lip movements, such gestural combinations

with speech represent information relevant to the decoding of the information communicated

by the speaker. We are not aware of systems that explore the complementarities and

redundancies between discourse gesture and speech as input and/or output but, again, the

research challenge is clearly there.

Speech replacing gesture. For special user groups, speech may replace gesture.

Although Modality Theory predicts that speech is ill-suited for providing the detailed spatial

information needed for text editing operations (cf. MPs 1 and 2 in Figure 3.8), speech input

may be the only solution for blind users to perform limited editing operations. Or, rather,

this will be the case until the advent of more sophisticated haptic Braille workstations. The

French commercial system MEDITOR [Bellik and Burger 1994] is an AMISS multimodal

text editor for the blind. MEDITOR allows blind users to perform a number of common

editing tasks on textual documents using continuous speaker-independent speech

recognition and speech synthesis, Braille input and output, pointing gesture, and classical

keyboard writing. MEDITOR is a command-driven application which is in daily use by many

users. The vocabulary is restricted to keywords for editing (about 100) and the grammar is

simple (an average of 3 words per sentence). The computer environment in which

MEDITOR has been implemented is the basic workstation used by blind students at the

INJA Institute (Institut National des Jeunes Aveugles). It includes a desktop PC, a Braille

terminal and a French text-to-speech synthesiser. A speech recognition system has been

added.

Augmenting GUIs through speech. In Modality Theory, the term „analogue graphics‟

covers images, maps, compositional diagrams, graphs and conceptual diagrams (see Section

3.5). The AMISS combination of speech input/output with optional mouse and keyboard

input and typed text and analogue graphics output provides a wealth of application

opportunities. By contrast with advanced research systems such as GALAXY, these systems

do not require synchronous complementarity between input speech and gesture. Rather, they

simply add speech to standard GUIs, thereby significantly augmenting the expressiveness of

the communication that is possible between user and system.

 257

The British Telecom Business Catalogue system provides direct access to a sub-set of

the BT Business Catalogue which covers, among other things, telephones, answering

machines and phone systems [Wyard et al. 1995]. This near-real-time system combines

continuous, speaker independent speech, typed text and mouse pointing input with output

text-to-speech, typed text and graphical images in a WWW browser. It is a user initiative

system in which users have to express their requests and commands using the technical

terms of the catalogue.

The Japanese AMISS TOSBURG II [Kanazawa et al. 1994] combines speech

input/output with non-computerised static graphical typed text and images output (affixed

somewhere on the machine) to enable users to order burger bar food by mentioning the

listed food items, the desired food size and their listed number. Although the vocabulary is

small and word spotting is used, the system allows mixed initiative dialogue in both domain

communication and meta-communication. It needs to be added, though, that trials

demonstrated less than 50% success in processing unrestricted user input.

Another Japanese research AMISS, WEATHER [Yi 1993], combines small-

vocabulary speech input and text-to-speech output with graphical typed text output. The

system provides weather information on nine Japanese cities through mixed initiative

dialogue with users. It is reported that in a trial with 48 inexperienced and 5 skilled users,

151 dialogues in 174 were successful.

Combining speech, analogue graphics, tables and facial expression. The Swedish

Waxholm is a medium-size-vocabulary, real-time multimodal prototype AMISS which

provides information on boat traffic and accommodation in the Stockholm archipelago

[Bertenstam et al. 1995]. It references time tables for a fleet of some twenty boats from the

Waxholm company which connects about two hundred ports. Besides the dialogue

management and the speech recognition and synthesis components, the system contains

output modules that handle graphic information such as images, maps and time tables. This

information is presented through user-initiated dialogue. An interesting point about

Waxholm is that it combines increased-expressiveness functionality similar to that of the BT

system, TOSBURG II and WEATHER (see above), with increased-redundancy functionality

provided by an animated graphical output face image driven by the speech synthesiser. In

this way, Waxholm takes yet another step towards natural human-machine communication.

The small sample of systems briefly reviewed above can be seen as a set of state-of-

the-art building blocks which can be combined in numerous ways that have yet to be

demonstrated, and potentially serving a very large variety of users and tasks which,

everything else being equal, would be served in a poorer fashion or not at all by unimodal

interactive speech systems.

9.3.3 SPEECH FUNCTIONALITY IN A MULTIMODAL CONTEXT

From a theoretical point of view, addressing the issue of speech and multimodality is a

venture into very complex territory. In view of the early stage of theoretical research into

speech functionality (Section 3.5), it comes as no surprise that no principled, systematic

solution is available to the question: under which circumstances should systems and interface

developers use which multimodal input/output AMISSs combinations for task sharing in

which way? This question is more complex than the speech functionality problem because

 258

answering it requires (i) a more systematic charting of the properties of the non-speech

modalities and (ii) a thorough understanding of how speech works together with other

modalities. This section explores the complexity involved based on the list of modality

properties presented in Figure 3.8.

Considering the examples of ongoing work on (proper) AMISSs in Section 9.3.2, it

appears that most of the increased naturalness and tool versatility of these multimodal

combinations can be explained through reference to the modality properties (MPs) in Figure

3.8.

Independently of whether intelligent multimedia presentation systems use static text

or speech input/output, their superiority to unimodal speech or text-only resides in the fact

that these systems add analogue graphics to the linguistic modalities. Linguistic modalities,

having interpretational scope (MP1), are unsuited for expressing spatial details such as those

needed to understand the details and procedures of radio repair, modem installation, and

expresso machine and lawn mower operation. This observation may be generalised to

included any combination of linguistic input/output modalities and analogue graphics,

whether 2D, 2 1/2D, 3D, static or dynamic, or images, compositional diagrams, maps,

graphs or conceptual diagrams, thereby generating a huge space of potentially useful

multimodal systems. The differences between using static graphic output text and dynamic

output speech would have to be explained as well. It is quite likely that static graphic output

text would in many cases be preferable to dynamic output speech (MP8), at least when the

linguistic output information is complex (MP7). Dynamic speech input/output has the

advantage when the operations to be performed by the user require considerable limb and

visual activity (MP5). The modality properties in Figure 3.8, focusing on properties of

unimodal modalities, do not address the important aspect of intelligent multimedia

presentation systems that these systems offer co-ordinated complementary linguistic and

analogue graphic output.

In the case of speech and facial expression, MP1 excludes the possibility that the

information provided through facial expression input or output, including lip movement, can

be rendered through speech (speech being a linguistic modality). It follows that this

complementary and redundant information must be rendered in other ways, for instance

graphically. Haptics is hardly an option in this case because of the subtlety of facial

expressions. In addition, the current quality of synthetic speech imposes an extra cognitive

processing load on the user (MP13), which can be alleviated through the addition of facial

expression output.

The advantages offered by the two first cases of combined input speech and gesture

distinguished above, are negatively explained by MPs 1 and 2. These MPs exclude the

possibility that, in practice, the information provided for spatial manipulation tasks and

spatial indicative tasks can be rendered through speech. An additional MP is needed to

positively suggest the obvious, namely that gesture is well suited to input the information in

point (Figure 9.15).

MP19: Input and output gesture is good at providing spatial information, especially in spatial

regions of proximity, for spatial manipulation or otherwise.

Figure 9.15. A modality property of gesture.

 259

The „spatial proximity‟ qualification expresses the observation that gesture gradually

looses its precision when the objects indicated are spatially removed from the gesture. In

other words, speech input requires complementary haptic input modalities when there is a

need for providing specific spatial information and other information of significant

specificity, such as indexical information on specific locations, areas or routes. The

advantages of gestural input into the graphical output domain is widely recognised already,

and is fundamental to the GUI paradigm. What the combination with speech offers is the

simultaneity of linguistic input which is due to the fact that speech is hands-free (MP5).

This is both faster, more efficient and more natural than having to key in linguistic

instructions after having input the gestural information.

In the combined input speech and gesture case, the argument for the camera-captured,

graphical representation of input discourse gesture proceeds as for the representation of

facial expression.

In the MEDITOR case of speech replacing gesture, the prediction following from

MPs 1 and 2 are that replacement will only be practically feasible for a limited set of editing

operations because the difficulties of linguistically expressing complex spatial operations on

the typed text will otherwise become too great, and that spoken editing operations are

primarily advisable for special user groups, such as the blind.

The advantages of augmenting the static typed text and analogue graphics output of

GUIs through speech follows from MPs 1, 2, 7 and 8. Speech output just cannot replace

analogue graphics and, being dynamic, does not afford the freedom of perceptual inspection

needed by users for absorbing the details of larger amounts of linguistic output information.

It is much less clear, however, why output speech is needed in such applications in the first

place. The limited amount of output speech information provided could always be rendered

in typed text instead, once a graphical screen is available. In TOSBURG II, there is no

graphical output screen but only a fixed graphical display, so the advantage in terms of

augmented expressiveness provided by output speech is self-explanatory. However, both the

BT system and the WEATHER system have graphical output screens. In several speech-

augmented GUI systems, most of the spoken output has the general form “On the screen

you will see the answer to your query”, which is not a terribly exiting use of output speech.

Indeed, the point of having it at all is not obvious. By contrast, the use of complementary

text/speech output in the intelligent multimedia systems is considerably more informative,

and also GALAXY‟s spoken output is quite informative, to the point where it is now being

considered to create spin-off unimodal speech systems from the developed applications.

Three advantages of including speech output in GUI systems may be mentioned,

however, even before these systems have become more informative through spoken

language than is currently the case. One is that input speech tends to generate recognition

and understanding errors. Their repair is most naturally performed through spoken dialogue.

Of course, the strength of this argument increases with the sophistication of the system‟s

meta-communication abilities. The second reason, as pointed out by the BT designers, is that

even limited use of output speech may serve to focus the user‟s attention when faced with

large amounts of typed text and analogue graphics information [Wyard et al. 1995]. This is

suggested by, but not directly stated in, MPs 15 and 16. A third reason is highlighted by MP

 260

12: output speech removes the need to include a separate typed text output window that

provides the system‟s response to the user‟s spoken input.

Several advantages in using input speech for GUI systems follow from Figure 3.8. One

is that speech is hands-free (MP5). This means that spoken input may replace keyboard and

mouse in, for instance, public kiosk applications [Chhor 1997] where simplicity and

robustness of the hardware is important. It also suggests advantages in terms of speed and

effort minimisation when control keywords can be spoken instead of having to be clicked on

or otherwise pointed to in the graphical output domain using the mouse of other pointing

devices. Most importantly, speech is the more natural form of input communication

provided that the spoken input is not being restricted to specific designer-designed keywords

or otherwise. The problem requiring users to address the system through designer-designed

typed text output keywords is highlighted by MP 17. The BT designers recognise this

problem [Wyard et al. 1995], which might also partly account for the low transaction

success rate measured on TOSBURG II.

The advantages of combining speech, analogue graphics, tables and facial expression

(8) follow from the discussion of (2) and (7) above, and so do the potential drawbacks. Such

systems are essentially speech-augmented GUIs with talking output faces. If there is little

information for the output speech to provide, the same holds for the talking face.

Summarising, it seems that modality properties such as those listed in Figure 3.8 are a

powerful tool for analysing and predicting the advantages and disadvantages of AMISSs. It

is possible that a limited set of modality properties might provide a more or less exhaustive

basis for analysing all possible AMISSs. Furthermore, the analysis of AMISSs above

suggests the possibility of componential analysis of AMISSs into their component AMISSs,

which would strongly reduce the complexity of the problem. Componential analysis is

illustrated in the discussion of the Waxholm system. The Waxholm system is effectively

composed of speech-augmented GUIs and talking output faces (graphical spoken language).

The system does not have to be analysed from scratch but can be analysed much more

simply as a composite AMISS once its component AMISSs have been correctly analysed in

terms of modality properties. We are currently investigating how far it is possible to go on

the basis of the two ideas just presented.

 261

REFERENCES
[Ahrenberg et al. 1995] Lars Ahrenberg, Nils Dahlbäck, and Arne Jönsson: Coding schemes for

studies of natural language dialogue. In Proceedings of the AAAI 1995 Spring Symposium on

Empirical Methods in Discourse Interpretation and Generation, 1995, 8-13.

[Allen and Core 1997] James Allen and Mark Core: Dialogue Annotation Markup in Several

Layers. Working Report, Discourse Resource Initiative, 1997.

[Amalberti et al. 1993] René Amalberti, Noëlle Carbonell, and Pierre Falzon: User representations of

computer systems in human-computer speech interaction. International Journal of Man-

Machine Studies, 38, 1993, 547-566.

[Anastasi 1988] A. Anastasi: Psychological Testing. New York, Macmillan, 1988.

[Andernach and Buis, unpublished] Toine Andernach and J. Buis: An efficient system for the

simulation of man-machine keyboard dialogues. Parlevink Group, Department of Computer

Science, University of Twente, Enschede, The Netherlands, unpublished paper, year unknown.

[Andry and Thornton 1991] F. Andry and S. Thornton: A parser for speech lattices using a UCG

grammar. In Proceedings of Eurospeech‟91, 1991, 219-222.

ARISE: http://www2.echo.lu/langeng/en/le3/arise/arise.html

[ARPA 1994] Proceedings of the Speech and Natural Language Workshop. ARPA, San Mateo,

CA, Morgan Kaufmann, 1994.

[Aust 1996] Harald Aust: Dialog modelling. In Compendium of The Fourth European Summer

School on Language and Speech Communication: Dialogue Systems, Budapest, 1996.

[Aust and Oerder 1995] Harald Aust and Martin Oerder: Dialogue control in automatic inquiry

systems. In Proceedings of the ESCA workshop on Spoken Dialogue Systems, Vigsø,

Denmark, 1995, 121-124. Also in Proceedings of TWLT9, 9th Twente Workshop on Speech

and Language Engineering, Enschede, The Netherlands, 1995, 45-49.

[Aust et al. 1995] Harald Aust, Martin Oerder, Frank Seide, and Volker Stenbiss: The Philips

automatic train timetable information system. Speech Communication 17, 1995, 249-262.

[Baber 1993a] C. Baber: Speech output. In Baber and Noyes 1993, 21-24.

[Baber 1993b] C. Baber: Developing interactive speech technology. In Baber and Noyes 1993, 1-18.

[Baber and Noyes 1993] C. Baber and J. M. Noyes (Eds.): Interactive Speech Technology: Human

Factors Issues in the Application of Speech Input/Output to Computers. London, Taylor and

Francis, 1993.

[Badler et al. 1993] N. I. Badler, C. B. Philips, and Bonnie L. Webber: Simulating Humans:

Computer Graphics Animation and Control. New York, Oxford University Press, 1993.

[Baggia et al. 1994] Paolo Baggia, Elisabetta Gerbino, Egidio Giachin, and Claudio Rullent:

Spontaneous speech phenomena in naive-user interactions. In Proceedings of TWLT8, 8th

Twente Workshop on Speech and Language Engineering, Enschede, The Netherlands, 1994,

37-45.

 262

[Bahl et al. 1983] Lalit Bahl, Frederick Jelinek, and Robert L. Mercer: A maximum likelihood

approach to continuous speech recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence 5, 2, 1983, 179-190.

[Basson et al. 1996] S. Basson, S. Springer, C. Fong, H. Leung, E. Man, M. Olson, M. Pitrelli, R.

Singh, and S. Wong: User participation and compliance in speech automated

telecommunications applications. In Proceedings of ICSLP‟96, Philadelphia, 1996, 1680-

1683.

[Bates et al. 1990] M. Bates, S. Boisen, and J. Makhoul: Developing an evaluation methodology for

spoken language systems. In Proceedings of the DARPA Workshop on Speech and Natural

Language, Hidden Valley, Pennsylvania, 1990, 102-108.

[Bellik and Burger 1994] Y. Bellik and D. Burger: Multimodal interfaces: New solutions to the

problem of computer accessibility for the blind. In Proceedings of CHI‟94, Boston, 1994.

[Benoit et al. 1996] C. Benoit, D. W. Massoro, and M. M. Cohen: Modality integration: Facial

movement and speech synthesis. In Cole et al. 1996, Chapter 9.

[Bernsen 1993a] Niels Ole Bernsen: The structure of the design space. In P. F. Byerley, P. J.

Barnard, and J. May (Eds.): Computers, Communication and Usability: Design Issues,

Research and Methods for Integrated Services. Amsterdam, North-Holland, 1993, 221-244.

[Bernsen 1993b] Niels Ole Bernsen: Types of user problems in design. A study of knowledge

acquisition using the Wizard of Oz. Esprit Basic Research project AMODEUS Working

Paper UM/WP 14, in Deliverable D2: Extending the User Modelling Techniques, 1993.

[Bernsen 1994] Niels Ole Bernsen: Foundations of multimodal representations: A taxonomy of

representational modalities. Interacting with Computers 6, 4, 1994, 347-71.

[Bernsen 1995] Niels Ole Bernsen: Why are analogue graphics and natural language both needed in

HCI? In F. Paterno (Ed.): Interactive Systems: Design, Specification, and Verification. Focus

on Computer Graphics. Springer Verlag 1995, 235-51.

[Bernsen 1996] Niels Ole Bernsen: Towards a tool for predicting speech functionality. Free Speech

Journal 1996. URL http://www.cse.ogi.edu/CSLU/fsj/html/home.html

[Bernsen 1997] Niels Ole Bernsen: A reference model for output information in intelligent multimedia

presentation systems. In Giorgio P. Faconti and Thomas Rist (Eds.): Proceedings of the

ECAI‟96 Workshop: Towards a Standard Reference Model for Intelligent Multimedia

Presentation Systems. 12th European Conference on Artificial Intelligence, Budapest, 1996.

Revised version to appear in Computer Standards and Interfaces, 1997.

[Bernsen et al. 1996] Niels Ole Bernsen, Hans Dybkjær, and Laila Dybkjær: Cooperativity in human-

machine and human-human spoken dialogue. Discourse Processes 21, 2, 1996, 213-236.

[Bernsen et al. 1997] Niels Ole Bernsen, Hans Dybkjær, Laila Dybkjær, and Vytautas Zinkevicius:

Generality and transferability. Two issues in putting a dialogue evaluation tool into practical

use. In Proceedings of Eurospeech‟97, 1997 (in press).

[Bernsen and Fraser, forthcoming] Niels Ole Bernsen and Norman M. Fraser (Eds.): Spoken

Dialogue Systems: A Practical Introduction. To appear 1998.

[Bernsen and Ramsay 1994] Niels Ole Bernsen and Judith Ramsay: Design structure, process and

reasoning. The advancement of a tool for the development of design spaces. Esprit Basic

Research project AMODEUS-2 Working Paper RP3-ID-WP28, 1994.

 263

[Bertenstam et al. 1995] J. Bertenstam, J. Beskow, M. Blomberg, Rolf Carlson, Kjell Elenius, Björn

Granström, J. Gustafson, S. Hunnicutt, J. Högberg, R. Lindell, L. Neovius, L. Nord, A. de

Serpa-Leitao, and N. Ström: The Waxholm system - a progress report. In Proceedings of the

ESCA Workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995, 81-84.

[Bilange 1991] Eric Bilange: A task independent oral dialogue model. In Proceedings of the 5th

EACL, Berlin, 1991, 83-88.

[Blyth and Piper 1994] B. Blyth and H. Piper: Speech recognition: a new dimension in survey

research. Journal of the Market Research Society 36, 3, 1994, 183-203.

[Bolt 1980] R. A. Bolt: “Put-That-There”: Voice and gesture at the graphics interface. Computer

Graphics 14, 3, 1980, 262-270.

[Bossemeyer and Schwab 1991] R. W. Bossemeyer and E. C. Schwab: Automated alternate billing

services at Ameritech: Speech recognition and the human interface. Speech Technology

Magazine 5, 3, 1991, 24-30.

[Boyce and Gorin 1996] S. J. Boyce and A. L. Gorin: User interface issues for natural spoken

dialogue systems. In Proceedings of the International Symposium on Spoken Dialogue

(ISSD‟96), Philadelphia, 1996, 65-68.

[Brennan 1996] S. E. Brennan: Lexical entrainment in spontaneous dialogue. In Proceedings of the

International Symposium on Spoken Dialogue (ISSD‟96), Philadelphia, 1996, 45-48.

[Brill 1995] Eric Brill: Transformation-based error-driven learning and natural language processing:

A case study in part of speech tagging. Computational Linguistics, December 1995, 543-565.

[Brink et al. 1991] Lars Brink, Jørn Lund, Steffen Heger, and J. Norman Jørgensen in collaboration

with Harry Andersen, Ebbe Nielsen, and Suzanne Strange: Den Store Danske Udtaleordbog,

Copenhagen, Munksgaard, 1991.

[Buchberger 1995] Ernst Buchberger: On the use of prosodic cues in discourse processing. In

Dybkjær 1995.

[Bunt 1994] Harry Bunt: Context and dialogue control. Think 3, ITK, Tilburg University, the

Netherlands, 1994, 19-31.

[Burnard and Sperberg-McQueen 1995] Lou Burnard and C. Michael Sperberg-McQueen: TEI Lite:

An Introduction to Text Encoding for Interchange. Document No. TEI U 5, 1995. URL:

http://www.uic.edu:80/orgs/tei/intros/teiu5.html

[Bækgaard 1996] Anders Bækgaard: A Generic Dialogue System. Report 10 from the Danish Project

in Spoken Language Dialogue Systems, 1996. xii + 134 pages.

[Bækgaard et al. 1992] Anders Bækgaard, A. Roman, and P. Wetzel: Advanced dialogue design—

DDL Tool and ICM. Esprit project 2094 SUNSTAR Deliverable IV.6-2, 1992.

[Calzolari and McNaught 1996] N. Calzolari and J. McNaught: EAGLES—Expert Advisory Group

on Language Engineering Standards. http://www.ilc.pi.cnr.it/EAGLES/home.html, 1996.

[Campbell 1992] R. L. Campbell: Will the real scenario please stand up? SIGCHI Bulletin 24, 2,

1992, 6-8.

[Carberry 1990] Sandra Carberry: Plan Recognition in Natural Language Dialogue. Cambridge,

Massachusetts, MIT Press, 1990.

 264

[Carletta 1996] Jean Carletta: Assessing agreement on classification tasks: The kappa statistics.

Computational Linguistics 22, 2, 1996, 249-254.

[Carletta et al. 1995] Jean Carletta, Amy Isard, Stephen Isard, Jaqueline C. Kowtko, Alison

Newlands, Gwyneth Doherty-Sneddon, and Anne H. Anderson: Dialogue Structure Coding and

its Uses in the Map Task. University of Edinburgh and University of Glasgow, 1995. To

appear (reduced) in Computational Linguistics, Special Issue on Empirical Methods.

[Carletta et al. 1996a] Jean Carletta, Amy Isard, Stephen Isard, Jacqueline C. Kowtko, Gwyneth

Doherty-Sneddon, and Anne H. Anderson: The reliability of a dialogue structure coding

scheme. Computational Linguistics 1996.

[Carletta et al. 1996b] Jean Carletta, Amy Isard, Stephen Isard, Jaqueline C. Kowtko, Gwyneth

Doherty-Sneddon, and Anne Anderson: HCRC Dialogue Structure Coding Manual. Technical

Report HCRC/TR-82, Human Communication Research Centre, University of Edinburgh,

1996.

[Carletta et al. 1997] Jean Carletta, Nils Dahlbäck, Norbert Reithinger, and Marilyn A. Walker

(Eds.): Standards for Dialogue Coding in Natural Language Processing. Dagstuhl-Seminar-

Report 167, 1997.

[Chhor 1997] E. S. Chhor: MASK: Multimedia multimodal service kiosk. In K. Varghese and Silvia

Pfleger (Eds.): Human Comfort and Security of Information Systems. Advanced Interfaces for

the Information Society. Springer Verlag 1997, 87-92.

[Christiansen et al. 1996] Henning Christiansen, Henrik Legind Larsen, and Troels Andreasen (Eds.):

Proceedings of the Workshop on Flexible Query-Answering Systems, Roskilde University,

Denmark, 1996.

[Clark and Schaefer 1989] Herbert H. Clark and Edward F. Schaefer: Collaborating on contributions

to conversation. In Rainer Dietrich and Carl F. Graumann: Language Processing in Social

Context, North Holland Linguistic Series 54, 1989, 123-152.

[Cohen and Massaro 1990] M. M. Cohen and D. W. Massaro: Synthesis of visible speech.

Behaviour and Research Methods, Instruments and Computers 22, 2, 1990, 260-63.

[Cole et al. 1996] Ronald A. Cole, Joseph Mariani, Hans Uszkoreit, A. Zaenen, and Victor W. Zue

(Editorial Board), Giovanni Varile and Antonio Zampolli (Managing Editors): Survey of the

State of the Art in Human Language Technology. Sponsors: National Science Foundation,

Directorate XIII-E of the Commission of the European Communities, Center for Spoken

Language Understanding, Oregon Graduate Institute, 1996. URL:

http://www.cse.ogi.edu/CSLU/HLTsurvey/.

[Cole et al. 1994] Ronald A. Cole, David G. Novick, M. Fanty, P. Vermeulen, S. Sutton, D. Burnett,

and J. Schalkwyk: A prototype voice-response questionnaire for the US Census. In

Proceedings of the ICSLP‟94, Yokohama, 1994, 683-686.

[Copeland et al. 1991] C. Copeland, J. Durand, S. Krauwer, and Bente Maegaard (Eds.): The

Eurotra Formal Specifications. Studies in Machine Translation and Natural Language

Processing, Vol. 2, 1991.

[Dahlbäck and Jönsson 1992] Nils Dahlbäck and Arne Jönsson: An empirically based

computationally tractable dialogue model. In Proceedings of the Fourteenth Annual Meeting

of The Cognitive Science Society, Bloomington, Indiana, 1992, 785-790.

 265

[DARPA 1989] DARPA: Speech and Natural Language. Proceedings of a Workshop. San Mateo,

CA, Morgan Kaufmann, 1989.

[DARPA 1990] DARPA: Speech and Natural Language. Proceedings of a Workshop held at

Hidden Valley, Pennsylvania. San Mateo, CA, Morgan Kaufmann, 1990.

[DARPA 1991] DARPA: Speech and Natural Language. Proceedings of a Workshop. San Mateo,

CA, Morgan Kaufmann, 1991.

[DARPA 1992] DARPA. Proceedings of the Speech and Natural Language Workshop. San Mateo,

CA, Morgan Kaufmann, 1992.

[Day 1996] David S. Day: Alembic Workbench User‟s Guide. The MITRE Corporation, Bedford,

MA, 1996.

DISC: http://www.elsnet.org/disc/

[Dobler and Ruehl 1995] S. Dobler and H.-W. Ruehl: Speaker adaptation for telephone based speech

dialogue systems. In Proceedings of Eurospeech‟95, Madrid, Spain, 1995, 1139-1141.

[Dybkjær 1995] Laila Dybkjær (Ed.): Proceedings of the Second Spoken Dialogue and Discourse

Workshop, Dublin, Ireland, 1995.

[Dybkjær et al. 1996] Laila Dybkjær, Niels Ole Bernsen, and Hans Dybkjær: Evaluation of Spoken

Dialogues. User Test with a Simulated Speech Recogniser. Report 9b from the Danish Project

in Spoken Language Dialogue Systems. Roskilde University, 3 volumes of 18 pages, 265

pages, and 109 pages, respectively, 1996.

[Dybkjær and Dybkjær 1993] Laila Dybkjær and Hans Dybkjær: Wizard of Oz Experiments in the

Development of the Dialogue Model for P1. Report 3 from the Danish Project in Spoken

Language Dialogue Systems, Roskilde University, 1993.

[Dybkjær and Heid 1996] Hans Dybkjær and Ulrich Heid: Towards Annotated Dialogue Corpora.

Final report of the Elsnet transition phase dialogue annotation action, 1996. URL:

http://www.mip.ou.dk/nis/publications/Elsnet-DA-96/

[Eckert and McGlashan 1993] Wieland Eckert and Scott McGlashan: Managing spoken dialogues

for information services. In Proceedings of Eurospeech‟93, Berlin, 1993, 1653-1656.

[Ericsson and Simon 1985] K. Ericsson and H. Simon: Verbal reports as data. Psychological

Review, 67, 1985, 215-251.

[Fanty et al. 1995] M. Fanty, S. Sutton, David G. Novick, and Ronald Cole: Automated appointment

scheduling. In Proceedings of the ESCA workshop on Spoken Dialogue Systems, Vigsø,

Denmark, 1995, 141-144.

comp.speech: http://svr-www.eng.cam.ac.uk/comp.speech/FAQ.Packages.html

[Feiner and McKeown 1993] S. K. Feiner and K. R. McKeown: Automating the generation of

coordinated multimedia explanations. In M. T. Maybury (Ed.): Intelligent Multimedia

Interfaces. Cambridge, MA, MIT Press 1993.

[Fischer et al. 1994] Markus Fischer, Elisabeth Maier and Adelheit Stein: Generating cooperative

system responses in information retrieval dialogue. In Proceedings of the International

Workshop on Natural Language Generation (INLGW‟94), Kennebunkport, Maine, 1994,

207-216.

 266

[Flammia and Zue 1995] Giovanni Flammia and Victor Zue: N.b.: A graphical user interface for

annotating spoken dialogue. In Johanna Moore and Marilyn Walker (Eds.): Empirical

Methods in Discourse Interpretation and Generation. Papers from the 1995 AAAI

Symposium, 1995, 40-46.

[Forssten 1994] B. Forssten: Speech technology: A one-shot possibility. In Proceedings of Voice‟94.

London, 1994.

[Franco 1993] V. Franco: Automation of operator services at AT&T. In Proceedings of Voice‟93,

San Diego, 1993.

[Francony et al. 1992] Jean-Marc Francony, Evert Kuijpers, and Yolla Polity: Towards a

methodology for Wizard of Oz experiments. In Proceedings of the Workshop on Empirical

Models and Methodology for Natural Language Dialogue Systems. Trento, Italy, 1992.

[Fraser 1995] Norman M. Fraser: Quality standards for spoken language dialogue systems: A report

on progress in EAGLES. In Proceedings of the ESCA Workshop on Spoken Dialogue

Systems, Vigsø, Denmark, 1995, 157-160.

[Fraser and Gilbert 1991a] Norman M. Fraser and G. Nigel Gilbert: Effects of system voice quality

on user utterances in speech dialogue systems. In Proceedings of Eurospeech‟91, 1991, 57-60.

[Fraser and Gilbert 1991b] Norman M. Fraser and G. Nigel Gilbert: Simulating speech systems.

Computer Speech and Language 5, 1991, 81-99.

[Fraser and Thornton 1995] Norman M. Fraser and Simon Thornton: Vocalist: A robust, portable

spoken language dialogue system for telephone applications. In Proceedings of

Eurospeech‟95, Madrid, 1995, 1947-1950.

[Galliers and Jones 1993] J. R. Galliers and Karen Sparck Jones: Evaluating Natural Language

Processing Systems. Technical Report 291, University of Cambridge Computer Laboratory,

1993. Springer Lecture Notes in Artificial Intelligence.

[Gasterland et al. 1992] Terry Gasterland, Parke Godfrey, and Jack Minker: An overview of

cooperative answering. Journal of Intelligent Information Systems, 1, 1992, 123-157.

[Giachin 1996] Egidio Giachin: Spoken language dialogue. In Cole et al. 1996, Chapter 6.4.

[Gibbon et al. 1997] David Gibbon, Roger Moore, and R. Winski (Eds.): Handbook of standards

and resources for spoken language systems. Mouton de Gruyter, Berlin, New York, 1997.

[Goddeau et al. 1994] David Goddeau, Eric Brill, John Glass, C. Pao, M. Phillips, J. Polifroni,

Stephanie Seneff, and Victor W. Zue: Galaxy: A human-language interface to on-line travel

information. In Proceedings of the ICSLP94, Yokohama, 1994, 707-710.

[Goldschen 1996] A. J. Goldschen: Modality integration: Facial movement and speech recognition. In

Cole et al. 1996, Chapter 9.

[Grau et al. 1994] Brigitte Grau, Gérard Sabah, and Anne Vilnat: Control in man-machine dialogue.

Think, 3, 1994, 32-55.

[Gregersen and Pedersen 1991] Frans Gregersen and Inge Lise Pedersen (Eds.): The Copenhagen

Study in Urban Sociolinguistics. 2 Vols., Copenhagen, C.A. Reitzel, 1991.

[Grice 1975] Paul Grice: Logic and conversation. In P. Cole and J. L. Morgan (Eds.), Syntax and

Semantics Vol. 3: Speech Acts. New York: Academic Press 1975, 41-58. Reprinted in Paul

Grice: Studies in the Way of Words. Cambridge, MA, Harvard University Press, 1989.

 267

[Grice 1978] Paul Grice: Further notes on logic and conversation. In P. Cole (Ed.), Syntax and

Semantics Vol. 9: Pragmatics. New York: Academic Press, 1978, 113-128. Reprinted in Paul

Grice: Studies in the Way of Words. Cambridge, MA, Harvard University Press, 1989.

[Gross et al. 1993] Derek Gross, James F. Allen, and David R. Traum: The Trains 91 Dialogues.

TRAINS Technical Note 92-1, University of Rochester, New York, 1993.

[Grosz and Sidner 1986] Barbara J. Grosz and Candace L. Sidner: Attention, intentions, and the

structure of discourse. Computational Linguistics 12, 3, 1986.

[Grosz et al. 1989] Barbara J. Grosz, Martha E. Pollack, and Candace L. Sidner: Discourse. In

Michael I. Posner (Ed.): Foundations of Cognitive Science. MIT Press, 1989, 437-468.

[Grote et al. 1997] Brigitte Grote, Eli Hagen, Adelheit Stein and Elke Teich: Speech production in

human-machine dialogue: A natural language generation perspective. In Elisabeth Maier,

Marion Mast, and Susan LuperFoy (Eds.): Dialogue Processing in Spoken Language

Systems. Lecture Notes in Artificial Intelligence 1236, Springer Verlag, 1997.

[Guiard-Marigny et al. 1994] T. Guiard-Marigny, A. Adjoudani, and C. Benoit: A 3-D model of the

lips for visual speech synthesis. In Proceedings of the 2nd ESCA/IEEE Workshop on Speech

Synthesis, New York, 1994, 49-52.

[Guyomard and Siroux 1988] Marc Guyomard and Jaques Siroux: Experimentation in the

specification of an oral dialogue. In Heinrich Niemann, M. Lang, and G. Sagerer (Eds.):

Recent Advances in Speech Understanding and Dialog Systems. NATO ASI Series, Vol. F46,

Berlin, Springer Verlag, 1988, 497-501.

[Guyomard et al. 1995] Marc Guyomard, D. Le Meur, S. Poignonnec, and Jaques Siroux:

Experimental work on the dual usage of voice and touch screen for a cartographic application.

In Proceedings of the ESCA Workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995,

153-56.

[Hansen et al. 1993] Peter Molbæk Hansen, Peter Holtse, Henrik Nielsen, and Niels Reinholt

Petersen: Speech synthesis — Teaching a computer spoken language. In Teleteknik 1-2, 1993,

52-65.

[Haton 1988] Jean Haton: Knowledge-based approaches in acoustic-phonetic decoding of speech. In

Heinrich Niemann, M. Lang, and G. Sagerer (Eds.): Recent Advances in Speech

Understanding and Dialog Systems. NATO ASI Series, Vol. F46, Berlin, Springer Verlag,

1988, 51-70.

[Hauptmann 1989] Alexander G. Hauptmann: Speech and gestures for graphic image manipulation.

In Proceedings of CHI‟89, 1989, 241-245.

[Hauptmann and McAvinney 1993] Alexander G. Hauptmann and P. McAvinney: Gestures with

speech for graphic manipulation. International Journal of Man-Machine Studies 38, 2, 1993,

231-49.

[Hauptmann and Rudnicky 1988] Alexander G. Hauptmann and Alexander I. Rudnicky: Talking to

computers: An empirical investigation. International Journal of Man-Machine Studies 28,

1988, 583-604.

[Hazen and Zue 1994] Timothy J. Hazen and Victor W. Zue: Recent improvements in an approach to

segment-based automatic language identification. In Proceedings of ICSLP‟94, Yokohama,

Japan, 1994, 1883-1886.

 268

[Heisterkamp 1993] Paul Heisterkamp: Ambiguity and uncertainty in spoken dialogue. In

Proceedings of Eurospeech‟93, Berlin, 1993, 1657-1660.

[Hirschberg et al. 1995] Julia Hirschberg, Christine H. Nakatani, and Barbara J. Grosz: Conveying

discourse structure through intonation variation. In Proceedings of the ESCA Workshop on

Spoken Dialogue Systems, Vigsø, Danmark, 1995, 189-192.

[Hirschmann et al. 1997] Lynette Hirschmann, P. Robinson, John Burger, and Marc Vilain: The

MUC coreference annotation: Status and plans. In Proceedings of the SALT Club Workshop

on Evaluation in Speech and Language Technology, Sheffield 1997, 87-88.

[Hirschmann and Thompson 1996] Lynette Hirschmann and Henry S. Thompson: Overview of

evaluation in speech and natural language processing. In Cole et al. 1996, Section 13.1.

[Hovy and Arens 1990] E. Hovy and Y. Arens: When is a picture worth a thousand words?

Allocation of modalities in multimedia communication. Paper presented at the AAAI

Symposium on Human-Computer Interfaces, Stanford 1990.

IBM: http://www.software.ibm.com/is/voicetype/, 1996.

***[Iwanska 1995 -> move below Ide] Lucja Iwanska: Summary of the IJCAI-95 Workshop on

Context in Natural Language Processing, Montreal, Canada, 1995.

[Ide 1996] Nancy Ide (Ed.): CES. The Corpus Encoding Standard.

http://www.cs.vassar.edu/~ide/CES/CES1.html

[Ide and Véronis 1995] Nancy Ide and Jean Véronis (Eds.): Text Encoding Initiative. Background

and Context. The Netherlands, Kluwer Academic Publishers, 1995.

[Jekat et al. 1995] Susanne Jekat, A. Klein, Elisabeth Maier, Ilona Maleck, Marion Mast, and

Joachim Quantz: Dialogue acts in VERBMOBIL. Verbmobil Report 65, Universität Hamburg,

DFKI Saarbrücken, Universität Erlangen, TU Berlin, 1995.

[Johansson 1995] Stig Johansson: The encoding of spoken texts. In Ide and Véronis 1995, 149-158.

[Jones and Carigliano 1993] Cerian Jones and Roberto Carigliano: Dialogue analysis and generation:

A theory for modelling natural English dialogue. In Proceedings of Eurospeech‟93, Berlin,

1993, 951-954.

[Jönsson 1993] Arne Jönsson: Dialogue Management for Natural Language Interfaces. An

Empirical Approach. Ph.D. thesis, Linköping Studies in Science and Technology No. 312,

Sweden, 1993.

[Kamp and Reyle 1993] Hans Kamp and Uwe Reyle: From Discourse to Logic. Dordrecht, Kluwer

Academic Publishers, 1993.

[Kamp ***1982 -> 1992] Yves Kamp: Introduction to Continuous Speech Recognition. Fourth

European Summer School in Logic, Language and Information, Essex, England, 1992.

[Kanazawa et al. 1994] H. Kanazawa, S. Seto, H. Hashimoto, H. Shinchi, and Y. Takebayashi: A

user-initiated dialogue model and its implementation for spontaneous human-computer

interaction. In Proceedings of the ICSLP94, Yokohama, 1994, 111-114.

[Kitano 1991] Hiroaki Kitano: FDmDialog: A speech-to-speech dialogue translation system.

Machine Translation 5, 4, 1991, 301-338.

 269

[Klausen and Bernsen 1993] Tove Klausen and Niels Ole Bernsen: CO-SITUE: Towards a

methodology for constructing scenarios. In E. Hollnagel and M. Lind (Eds.): Proceedings of

the Fourth European Meeting on Cognitive Science Approaches to Process Control

(CSAPC‟93): Designing for Simplicity. Copenhagen, 1993, 1-16.

[Kompe et al. 1997] R. Kompe, A. Kiessling, H. Niemann, E. Noeth, A. Batliner, S. Schachtl, T.

Ruland, and H. Block: Improving parsing of spontaneous speech with the help of prosodic

boundaries. In Proceedings of ICASSP‟97, 1997.

[Kuhn et al. 1992] T. Kuhn, Heinrich Niemann, E. G. Schukat-Talamazzini, Wieland Eckert, and S.

Rieck: Context-dependent modeling in a two-stage HMM word recognizer for continuous

speech. In J. Vandewalle, R. Boite, M. Moonen, and A. Oosterlinck (Eds.): Signal Processing

VI: Theories and Applications, Vol. 1. Amsterdam, Elsevier Science Publishers, 1992, 439-

442.

[Lamel et al. 1995] Lori Lamel, S. Bennacef, H. Bonneau-Maynard, S. Rosset, and J. L. Gauvain:

Recent developments in spoken language systems for information retrieval. In Proceedings of

the ESCA Workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995, 17-20.

[Lavie et al. 1996] A. Lavie, A. Waibel, L. Levin, D. Gates, M. Gavaldà, T. Zeppenfeld, P. Zhan

and O. Glickman: Translation of conversational speech with JANUS-II. In Proceedings of

ICSLP‟96, Philadelphia, 1996, 2375-2378.

[Leech et al. 1995] Geoffrey Leech, Greg Myers, and Jenny Thomas (Eds.): Spoken English on

Computer. Transcription, markup and application. New York, Longman Group Ltd., 1995.

[Life et al. 1996] A. Life, I. Salter, J. N. Temem, F. Bernard, S. Rosset, S. Bennacef, and Lori

Lamel: Data collection for the MASK kiosk: WOZ vs. prototype system. In Proceedings of

ICSLP‟96, Philadelphia, 1996, 1672-1675.

[Lindberg and Kristiansen 1995] Børge Lindberg and Jan Kristiansen: Real-time Continuous Speech

Recognition within Dialogue Systems. Report 8 from the Danish Project in Spoken Language

Dialogue Systems, Aalborg University, 1995.

[Lindberg et al. 1992] Børge Lindberg, Jan Kristiansen, and B. Andersen: SUNCAR functional

description. Esprit Project 2094 SUNSTAR, STC.WPIV.008, 1992.

[Litman 1985] D. Litman: Plan Recognition and Discourse Analysis: An Integrated Approach for

Understanding Dialogues. Technical Report TR 170, University of Rochester, NY, 1985.

[Llisterri 1996] Joachim Llisterri: Preliminary recommendations on spoken texts, Eagles Document.

EAG-TCWG-SPT/P, 1996.

[Luzzati and Néel 1989] D. Luzzati and Francoise Néel: Dialogue behaviour induced by the machine.

In Proceedings of Eurospeech‟89, Paris, 1989, 601-604.

[MacDermid 1993] C. MacDermid: Features of naive callers‟ dialogues with a simulated speech

understanding and dialogue system. In Proceedings of Eurospeech‟93, Berlin, 1993, 955-958.

MAIS: http://guagua.echo.lu/langeng/en/mlap94/mais.html

[Mann and Thompson 1987a] William C. Mann and Sandra A. Thompson: Rhetorical structure

theory: A theory of text organisation. In Livia Polanyi (Ed.): The Structure of Discourse.

Norwood, NJ, Ablex Publishing Company, 1987, 85-96.

 270

[Mann and Thompson 1987b] William C. Mann and Sandra A. Thompson: Rhetorical structure

theory: Description and construction of text structures. In Gerard Kempen (Ed.): Natural

Language Generation. New Results in Artificial Intelligence, Psychology and Linguistics.

NATO ASI Series E No. 135, Chapter 7. The Netherlands, Martinus Nijhoff Publishers, 1987.

[Mariani and Krauwer 1996] Joseph Mariani and Steven Krauwer: Is speech language? In

Proceedings of COLING „96, Copenhagen, 1996, 996.

[Martin 1997] J.-C. Martin: Towards "intelligent" co-operation between modalities. The example of a

system enabling multimodal interaction with a map. In Proceedings of the IJCAI‟97 Workshop

on Intelligent Multimodal Systems. Nagoya, Japan, 1997. URL:

http://www.limsi.fr/Individu/martin/ijcai/article.html

[Martin et al. 1996] Paul Martin, Frederick Crabbe, Stuart Adams, Eric Baatz, and Nicole

Yankelovich: SpeechActs: A spoken language framework. IEEE Computer 29, 7, 1996.

[Maulsby et al. 1993] D. Maulsby, S. Greenberg, and R. Mander: Prototyping an intelligent agent

through Wizard of Oz. In Proceedings of INTERCHI‟93. Amsterdam, 1993, 277-284.

[Maybury 1993] Maybury, M. T. (Ed.): Intelligent Multimedia Interfaces. Cambridge, MA: MIT

Press, 1993.

[MAX 1991] Reference Card for MAX, ECHO, European Commission Host Organisation, BP 2373,

L-1023 Luxembourg G. D., 1991.

[Mazor et al. 1994] B. Mazor, J. Braun, B. Ziegler, S. Lerner, M.-W. Feng, and H. Zhou: OASIS - a

speech recognition system for telephone service orders. In Proceedings of the ICSLP94,

Yokohama, 1994, 679-682.

[McEnery and Wilson 1996] Tony McEnery and Andrew Wilson: Corpus Linguistics. Edinburgh,

Scotland, Edinburgh University Press, 1996.

[McGlashan et al. 1992] Scott McGlashan, Norman M. Fraser, G. Nigel Gilbert, Eric Bilange, Paul

Heisterkamp, and Nick J. Youd: Dialogue management for telephone information services. In

Proceedings of the 3rd International Conference on Applied Natural Language Processing,

Trento, 1992, 245-246.

[Miller 1984] G. Miller: Experimental Design and Statistics. London, Methuen, New Essential

Psychology, 1984.

[Moran and Carroll 1996] Tom Moran and Jack Carroll: Design Rationale: Concepts, Techniques

and Use. Hillsdale, NJ, Lawrence Erlbaum Associates, 1996.

[Morel 1989] M. A. Morel: Computer-human communication. In M. M. Taylor, Francoise Néel, and

D. G. Bouwhuis (Eds.): The Structure of Multimodal Dialogue. Amsterdam, North-Holland,

1989, 323-330.

[Music and Offersgaard 1994] Bradley Music and Lene Offersgaard: The NLP Module. Report 7

from the Danish Project in Spoken Language Dialogue Systems. The Centre for Language

Technology, Copenhagen, 1994.

[Naito et al. 1995] M. Naito, S. Kuroiwa, K. Takeda, S. Yamamoto, and F. Yato: A real-time speech

dialogue system for a voice activated telephone extension service. In Proceedings of the ESCA

workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995, 129-132.

[Newell et al. 1991] A. F. Newell, J. L. Arnott, R. Dye, and Y. Cairns: A full-speed listening

typewriter simulation. International Journal of Man-Machine Studies 35, 1991, 119-131.

 271

[Niemann et al 1988] Heinrich Niemann, A. Brietzmann, U. Ehrlich, S. Posch, P. Regel, G. Sagerer,

R. Salzbrunn, and G. Schukat-Talamazzini: A knowledge based speech understanding system.

International Journal of Pattern Recognition and Artificial Intelligence 2, 2, 1988, 321-350.

[Nielsen 1993] Jacob Nielsen: Usability Engineering. New York, Academic Press, 1993.

[Niimi and Kobayashi 1995] Yasuhisa Niimi and Yutaka Kobayashi: Modeling dialogue control

strategies to relieve speech recognition errors. In Proceedings of Eurospeech‟95. Madrid,

Spain, 1995, 1177-1180.

[Nofsinger 1991] Robert E. Nofsinger: Everyday Conversation. Newbury Park, California, Sage

Publications, 1991.

[Novick and Sutton 1996] David G. Novick and Stephen Sutton: Building on experience: Managing

spoken interaction through library subdialogues. In Proceedings of TWLT11, 11th Twente

Workshop on Speech and Language Engineering, Enschede, The Netherlands, 1996, 51-60.

[Noyes 1993] J. Noyes: Speech technology in the future. In Baber and Noyes 1993, 189-208.

Operetta: http://www.vocalis.com/pages/products/operetta.htm

[Ortel 1995] W. C. G. Ortel: Observed long-term changes in customer calling patterns in a telephone

application using automatic speech recognition. In Proceedings of Eurospeech‟95, Madrid,

1995, 269-272.

[Ostler 1996] Nick Ostler: Working dialogue systems: Summary. Electronic mail on Elsnet-list, 15

August 1996.

[Oviatt and Wahlster 1997] Sharon Oviatt and Wolfgang Wahlster: Introduction to this special issue

on multimodal interfaces. Human-Computer Interaction 12, 1-2, 1997.

[Papazachariou et al. 1995] Dimitris Papazachariou, Niels Ole Bernsen, Laila Dybkjær and Hans

Dybkjær: Identification of speaker actions in mixed initiative dialogue. In Dybkjær 1995.

[Peckham 1991] Jeremy Peckham: Speech understanding and dialogue over the telephone: An

overview of progress in the SUNDIAL project. In Proceedings of Eurospeech‟91, Genova,

1991, 1469-1472.

[Peckham 1993] Jeremy Peckham: A new generation of spoken dialogue systems: Results and lessons

from the SUNDIAL project. In Proceedings of Eurospeech‟93, Berlin, 1993, 33-40.

[Peckham and Fraser 1994] Jeremy Peckham and Norman M. Fraser: Spoken language dialogue over

the telephone. In H. Niemann, R. de Mori, and G. Hanrieder (Eds.): Progress and Prospects of

Speech Research and Technology. Sankt Augustin: Infix, 1994, 192-203.

[Peckham and Fraser (forthcoming)] Jeremy Peckham and Norman M. Fraser: Speech

Understanding and Dialogue. Cambridge, MA: MIT Press (forthcoming).

[Peng and Vital 1996] J.-C. Peng and F. Vital: Der sprechende Fahrplan. Output 10, 1996.

[Ponamalé et al. 1990] M. Ponamalé, Eric Bilange, K. Choukri, and S. Soudoplatoff: A computer-

aided approach to the design of an oral dialogue system. In Wade Webster and Ranjeet

Uttamsingh: AI and Simulation. Theory and Application. Proceedings of the SCS Eastern

Multiconference, Nashville, Tennessee, 1990, 229-232.

[Povlsen 1994] Claus Povlsen: Sublanguage Definition and Specification. Report 4 from the Danish

Project in Spoken Language Dialogue Systems. The Centre for Language Technology,

Copenhagen, 1994.

 272

[Rabiner 1988] Lawrence R. Rabiner: Mathematical foundations of hidden Markov Models. In

Heinrich Niemann, M. Lang, and G. Sagerer (Eds.): Recent Advances in Speech

Understanding and Dialog Systems, NATO ASI Series F: Computer and Systems Sciences,

Vol. 46, Springer Verlag, 1988, 183-206.

[Richards and Underwood 1984] M. A. Richards and K. Underwood: Talking to machines. How are

people naturally inclined to speak. In E. D. Megaw (Ed.): Contemporary Ergonomics.

London, Taylor and Francis, 1984, 62-67.

[Rist et al. 1997, to appear] Thomas Rist et al. (Eds.): Special Issue on Intelligent Multimedia

Presentation Systems. Computer Standards and Interfaces, 1997 (to appear).

[Roach and Arnfield 1995] Peter Roach and Simon Arnfield: Linking prosodic transcription to the

time dimension. In Leech et al. 1995.

[Russell and Norvig 1995] Stuart Russell and Peter Norvig: Solution Manual for Artificial

Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice Hall, 1995.

[Sadek et al. 1996] M. D. Sadek, A. Ferrieux, A. Cozannet, P. Bretier, F. Panaget, and J. Simonin:

Effective human-computer cooperative spoken dialogue: The AGS demonstrator. In

Proceedings of ICSLP‟96, Philadelphia, 1996, 546-549.

[Salber and Coutaz 1993a] David Salber and Joëlle Coutaz: A Wizard of Oz platform for the study

of multimodal systems. In INTERCHI‟93 Adjunct Proceedings. Amsterdam, 1993, 95-96.

[Salber and Coutaz 1993b] David Salber and Joëlle Coutaz: Applying the Wizard of Oz technique to

the study of multimodal systems. In L. Bass, J. Gornostaev, and C. Unger (Eds.): Proceedings

of Human Computer Interaction, 3rd International Conference EWHCI‟93, East/West

Human Computer Interaction, Moscow. Lecture notes in Computer Science, Vol. 753,

Springer Verlag, 1993, 219-230.

[Schiffrin 1994] D. Schiffrin: Approaches to Discourse. Oxford, Blackwell, 1994.

[Schneider et al. 1996] Daniel K. Schneider, Terence M. Drozdowski, Gustavo Glusman, Richard

Godard, K. Block, and Jenifer Tennison: The Evolving TecfaMOO Book - Part I: Concepts,

1996. URL: http://tecfa.unige.ch/moo/book1/tm.html

[Schneidermann 1987] Ben Schneidermann: Designing the User Interface. Reading, MA, Addison-

Wesley, 1987.

[Searle 1969] John R. Searle: Speech Acts. An Essay in the Philosophy of Language. Cambridge,

Cambridge University Press, 1969.

[Searle 1975] Searle, J. R.: Indirect speech acts. In P. Cole and J. L. Morgan (Eds.): Syntax and

Semantics. Vol. 3: Speech Acts. New York, Academic Press, 1975.

[Searle 1979] John R. Searle: Expression and Meaning. Studies in the Theory of Speech Acts. New

York, Cambridge University Press, 1979.

[Searle 1992] John R. Searle: Conversation. In Herman Parret and Jef Verschueren (Eds.): (On)

Searle on Conversation. Amsterdam, John Benjamin‟s Publishing Company, 1992.

[Sidner 1992] Candace Sidner: The American Express Corpus. SRI, Stanford Research Institute,

USA, 1992.

[Simpson and Fraser 1993] A. Simpson and Norman M. Fraser: Black box and glass box evaluation

of the SUNDIAL system. In Proceedings of Eurospeech‟93, Berlin, 1993, 1423-1426.

 273

[Smith 1991] Ronnie W. Smith: A Computational Model of Expectation-Driven Mixed-Initiative

Dialogue Processing. Ph.D. Thesis, Department of Computer Science, Duke University,

Durham, NC 27706, USA, 1991.

[Smith and Hipp 1994] Ronnie W. Smith and D. Richard Hipp: Spoken Natural Language Dialog

Systems: A Practical Approach. New York, Oxford University Press, 1994.

[Sommerville 1992] I. Sommerville: Software Engineering. Fourth Edition, Addison-Wesley, 1992.

SPEECHtel: http://www.vocalis.com/pages/products/spchtel.htm

[Sperber and Wilson 1987] D. Sperber and D. Wilson: Précis of relevance, communication and

cognition with open peer commentary. Behavioral and Brain Sciences 10, 4, 1987, 697-754.

[Burnard and Sperberg-McQueen 1995] Lou Burnard and C. Michael Sperberg-McQueen: TEI Lite:

An Introduction to Text Encoding for Interchange. Document No: TEI U 5, 1995. URL:

http://www.uic.edu:80/orgs/tei/intros/teiu5.html

[Stein and Maier 1994] Adelheit Stein and Elisabeth Maier: Structuring collaborative information-

seeking dialogues. Knowledge-Based Systems 8, 2-3, 1994, 82-93.

[Strik et al. 1996] H. Strik, A. Russel, H. Heuvel, C. Cucchiarini, and Louis Boves: Localising an

automatic inquiry system for public transport information. In Proceedings of ICSLP‟96,

Philadelphia, 1996, 853-856.

[Sutton et al. 1996] S. Sutton, David Novick, Ron Cole, P. Vermeulen, J. Villiers, J. Schalkwyk, and

M. Fanty: Building 10,000 spoken dialogue systems. In Proceedings of ICSLP‟96,

Philadelphia, 1996, 709-712.

[Thompson 1992] Henry Thompson: HCRC Map Task Editorial Conventions and Markup Structure.

HCRC, University of Edinburgh, Scotland, 1992.

[Traum and Dillenbourg 1996] David R. Traum and Pierre Dillenbourg: Miscommunication in multi-

modal collaboration. In Workshop Notes of the AAAI-Workshop on Detecting, Repairing, and

Preventing Human-Machine Miscommunication. Portland, OR, 1996.

[Traum and Heeman 1996] David R. Traum and Peter A. Heeman: Utterance units in spoken

dialogue. In Proceedings of the ECAI‟96 Workshop on Dialogue Processing in Spoken

Language Systems, Budapest, Hungary, 1996, 84-91.

[Tutiya 1996] Syun Tutiya: Chiba Map Task Dialog Corpus Project Home Page.

http://cogsci.l.chiba-u.ac.jp/MapTask/, 1996.

Vocalis Operetta: http://www.vocalis.com/pages/products/operetta.htm

[Vossen 1991] P. H. Vossen: Evaluating speech input and output in a CAD system using the hidden-

operator method. In Proceedings of Eurospeech‟91, 1991, 69-72.

[Wahlster 1989] Wolfgang Wahlster: One word says more than a thousand pictures. On the

automatic verbalization of the results of image sequence analysis systems. Computers and

Artificial Intelligence 8, 1989, 479-92.

[Wahlster 1993] Wolfgang Wahlster: Verbmobil - Translation of face to face dialogues. Machine

Translation Summary IV, Kobe, Japan, 1993.

[Wahlster et al. 1993] Wolfgang Wahlster, Elizabeth André, W. Finkler, H.-J. Profitlich, and

Thomas Rist: Plan-based integration of natural language and graphics generation. Artificial

Intelligence, 1993, 387-427.

 274

[Waibel 1996] Alex Waibel: Interactive translation of conversational speech. IEEE Computer, 1996,

41-48.

[Whittaker and Stenton 1988] S. Whittaker and P. Stenton: Cues and control in expert-client

dialogues. In Proceedings of the 26th Annual Meeting of the ACL, 1988, 123-130.

[Wyard et al. 1995] P. Wyard, S. Appleby, E. Kaneen, S. Williams, and K. Preston: A combined

speech and visual interface to the BT Business Catalogue. In Proceedings of the ESCA

Workshop on Spoken Dialogue Systems, Vigsø, Denmark, 1995, 165-168.

[Yamada et al. 1992] A. Yamada, T. Yamamoto, H. Ikeda, T. Nishida, and S. Doshita:

Reconstructing spatial images from natural language texts. In Proceedings of the 14th

International Conference on Computational Linguistics, 1992, 1279-1283.

[Yi 1993] J. Yi: Analysis of user‟s responses in a speech dialogue system. In Proceedings of

International Symposium on Spoken Dialogue. New Directions in Human and Man-Machine

Communication, Tokyo, 1993, 37-40.

[Young 1997] S. Young: Speech recognition evaluation: A review of the ARPA CSR Programme. In

Proceedings of the SALT Club Workshop on Evaluation in Speech and Language

Technology, Sheffield 1997, 197-205.

[Yourdon 1982] Edward Yourdon: Managing the System Life Cycle. A Software Development

Methodology Overview. New York, Yourdon Press, 1982.

[Zhan et al. 1996] P. Zhan, K. Ries, M. Gavaldà, D. Gates, A. Lavie and A. Waibel: JANUS-II:

Towards spontaneous Spanish speech recognition. In Proceedings of ICSLP‟96, Philadelphia,

1996, 2285-2288.

[Zoltan-Ford 1991] Elisabeth Zoltan-Ford: How to get people to say and type what computers can

understand. International Journal of Man-Machine Studies 34, 1991, 527-547.

[Zue 1994] Victor W. Zue: Toward systems that understand spoken language. IEEE Expert, 1994,

51-59.

